

Simulation of LRBB Impact on Lifetime

A.Valishev, A.Patapenka, Y.Papaphilippou

Acknowledgments: F. Antoniou, R. De Maria, S. Fartoukh, M. Fitterer, H. Schmickler, G. Sterbini

Second Workshop on Wire Experiment for Long Range Beam-Beam Compensation 20 March 2017, Divonne-les-Bains

Motivation

- BBLR potential for HL-LHC and impact on performance discussed in talk by S.Fartoukh
- We address the proof-of-principle demonstration experiments with wire-incollimator devices in the LHC in 2017 and 2018
 - 2 wires at IP5 available in 2017
 - Full set of 4 wires in 2018
 - Aim at demonstration with minimum machine configuration changes

Basic Parameters

- Minimum changes to the machine / optics configuration from the nominal operation
- The study scenario would be weak-strong with 1(2,3) weak bunches and trains in the 'strong' beam.
- Machine: 6.5TeV, collisions at IP1 and IP5
- Optics: β^* =40cm, '2016 collision' and/or ATS
- Beam parameters
 - 'Strong' beam1: ε=2.5µm N_p=1.15×10¹¹
 - 'Weak' beam2: ε=2.5μm or 5μm
- Parameter to vary: crossing angle θ
- Constants:
 - Betatron tunes Q_x=0.31, Q_y=0.32 (with and without wire)
 - Chromaticity = 15
 - I_MO=550A

Simulation Tools

- Sixtrack major developments
 - Wire element
 - Modeling of macroscopic observables
 - Beam intensity lifetime
 - Emittances
 - 10⁴ particles over 10⁶ turns
- Lifetrac
 - FMA for visualization and quick assessment
 - Long-term macroparticle bunch tracking
 - 10⁴ particles over 10⁶ turns / 90s
 - Wire simulated as long-range beam-beam σ =0.3mm

Sixtrack Development – Field of Straight Wire

Vector potential of straight wire centered at the origin of Cartesian system:

$$A_i(x, y, z) = \frac{I\mu_0 \cos(c_i)}{4\pi} \cdot \left(\operatorname{asinh}\left(\frac{L/2 - a}{\sqrt{b - a^2}}\right) - \operatorname{asinh}\left(\frac{-L/2 - a}{\sqrt{b - a^2}}\right) \right), \ i = x, y, z,$$

where the parameters a and b are defined as

$$a = x \cdot \cos(c_x) + y \cdot \cos(c_y) + z \cdot \cos(c_z),$$

$$b = x^2 + y^2 + z^2,$$

Direction cosines:

$$\cos(c_x) := \frac{\tan(\phi)}{\sqrt{\tan^2(\phi) + \tan^2(\theta) + 1}}$$
$$\cos(c_y) := \frac{\tan(\theta)}{\sqrt{\tan^2(\phi) + \tan^2(\theta) + 1}}$$
$$\cos(c_z) := \frac{1}{\sqrt{\tan^2(\phi) + \tan^2(\theta) + 1}}.$$

The potential is fully described by 4 parameters: 2 tilt angles, wire's length and current.

Sixtrack Development – Wire Map

First order integrator – needs additional parameter – integration interval (or embedded drift)

$$\Delta p_x = \int_{-L_{\rm emb}/2}^{+L_{\rm emb}/2} \frac{\partial A_z(x, y, s)}{\partial x} ds,$$
$$\Delta p_y = \int_{-L_{\rm emb}/2}^{+L_{\rm emb}/2} \frac{\partial A_z(x, y, s)}{\partial y} ds,$$

Transport MAP for arbitrary oriented wire was implemented into SixTrack code.

The explicit formula for the kick is:

$$p_x \to p_x - 10^{-7} \cdot I \frac{e}{P_0} \frac{r_x}{r^2} \left(d^+ - d^- \right) - p_{co,wire}$$
$$p_y \to p_y - 10^{-7} \cdot I \frac{e}{P_0} \frac{r_y}{r^2} \left(d^+ - d^- \right) - p_{co,wire}$$

with d^+ and d^- defined as:

$$d^{+} = \sqrt{(L_{\text{emb}} + L)^{2} + 4r^{2}}$$
$$d^{-} = \sqrt{(L_{\text{emb}} - L)^{2} + 4r^{2}}$$

 $\mathsf{P}_{\mathsf{co,wire}}$ closed orbit kick due to the wire (can be subtracted during SixTrack simulations in the consistent way with Beam-Beam element)

Sixtrack Development – Wire vs. Beam-Beam

LHC optics: MD2016, Collisions at IP1&5 Crossing angle 180 murad.; Emit. = 2.5. **6 sigma separation for compensators**

4 wires per beam (2 per IP), I=55 Amps

4 beam-beam elements per beam, S=8 (eq. current 46 Amps)

Top left - effect on beam life time, beam decay constants:

3.98 for wires, 4.4 for beam-beam.

Bottom – effect on tune shift: left – beambeam elements; right – wires

Benchmarking vs. MD

- Difference in treatment of aperture between two codes
- Big statistical error at low loss (large separation)
- Losses at 180urad → 90% vertical A.Valishev | BBLR Impact on Lifetime

Effect of Optics Parameters

LARP

Effect of Optics and Beam Emittance

L-LHC PROJEC

LARP

Lifetrac simulation ATS optics

Impact of Wires at θ =180urad (6 σ sep.)

Impact of Wires on Lifetime at θ=180urad

- Weak beam emittance 2.5um
- Wires at 6 beam sigma proper for 180urad
- L5 collimator jaw at 0.6 collimation sigma \Box

Boundary Conditions for Wires

ATS Optics (3/2017 S.Fartoukh)

Place	β _x (m)	β _y (m)	$\sigma_{\rm x}$ coll (mm)	$\sigma_{ m y}$ coll (mm)	Min. Sep. (mm)	Min Sep. (<i>σ</i> 2.5 μm)	Min Sep. (<i>σ</i> 5 μm)
L5 TCL.4L5.B2	887	1297	0.67		7.0	12.4	8.8
R5 TCTPH.4R5.B2	1319	945	0.82		7.9	11.4	8.1
L1 -172.2 from IP1	400	1029		0.72	7.3	12.0	8.5
R1 TCTPV.4R1.B2	1341	1003		0.71	7.2	12.0	8.5

Impact of 2 IP5 Wires at θ =180urad (6 σ sep.) Increased Wire Distance

Lifetrac simulation ATS optics, ε =2.5um

- Wires at 12.4 beam sigma current increased to 350A
- L5 collimator jaw at 6 collimation sigma \Box

Impact of 2 IP5 Wires at θ =180urad (6 σ sep.) Increased Wire Distance

Lifetrac simulation ATS optics, ε =2.5um

- Wires at 12.4 beam sigma current increased to 350A
- L5 collimator jaw at 6 collimation sigma \Box

Impact of 2 IP5 Wires at θ =240urad (5.6 σ sep.) Increased Wire Distance

Lifetrac simulation ATS optics, ε =5um

- Wires at 8.8 beam sigma current increased to 350A
- L5 collimator jaw at 6 collimation sigma □

Impact of 2 IP5 Wires at θ =180urad (5.6 σ sep.) Increased Wire Distance

Lifetrac simulation ATS optics, ε =5um

- Wires at 8.8 beam sigma current increased to 350A
- L5 collimator jaw at 6 collimation sigma \Box

Impact of 2 IP5 Wires on Lifetime L5 collimator jaw at 6σ coll.

Summary

- Without major changes to machine configuration, beam lifetime degradation due to long-range begins at separations of $<6\sigma$.
- Wire-in-collimator compensators present a less than ideal option for long-range beam-beam compensation at small crossing angle
- However, even a 2-wire scheme can show measurable benefit to lifetime
 - 4x in 2016 optics at θ =180urad
 - 2x in ATS optics and θ =180urad
 - 2x in ATS optics, ε =5um and θ =240urad

Sixtrack Development – Beam Life Time

ALGORITHM:

SIXTRACK input generating with MADX*	Wires are switched OFF
SIXTRACK wires tune shift calculation	Wires are switched ON
SIXTRACK input generating with MADX, Wires tune shift compensation	Wires are switched OFF
SIXTRACK: 6D Gaussian distribution tracking, Data accumulation. 6D Gaussian distribution generated with Sigma matrix = $T^{T}ET$ (T is calculating in SixTrack: one turn map M= T ⁻¹ RT) Initial distribution: Beam Core + Beam Halo [Halo statistically weighted with the core and transverse emittance 10 times bigger ~ 3 times wider beam]	Wires are switched ON
Data processing: Beam intensity decay constant calculation	
	 SIXTRACK input generating with MADX* SIXTRACK wires tune shift calculation SIXTRACK input generating with MADX, Wires tune shift compensation SIXTRACK: 6D Gaussian distribution tracking, Data accumulation. 6D Gaussian distribution generated with Sigma matrix = T^TET (T is calculating in SixTrack: one turn map M= T⁻¹RT) Initial distribution: Beam Core + Beam Halo [Halo statistically weighted with the core and transverse emittance 10 times bigger ~ 3 times wider beam] Data processing: Beam intensity decay constant calculation

Impact of 2 IP5 Wires at 180 µrad

Lifetrac simulation 2016 optics, ϵ =2.5um

Impact of 2 IP5 Wires at 180 µrad

Ay wire2016colnoerr_180urad_wire0.as00_12 Avwire2016colnoerr_180urad_wire16.as00_12 6. Ax 0. 0. 0. O. 6.

Lifetrac simulation 2016 optics, ε=2.5um

