# Effects of wire on tails at injection

<u>Miriam Fitterer</u>, G. Stancari, A. Valishev (Fermilab) R. Bruce, Y. Papaphilippou, S. Redaelli (CERN) Acknowledgements: S. Fartoukh, R. De Maria, G. Sterbini





#### Motivation:

- halo is depleted in collision in presence of strong long range beam-beam effects
- wire mimics the long-range beam-beam force => show that halo can be depleted while core stays unchanged.

#### Relevant questions for halo depletion:

- What is the effect of the wire/long-range beam-beam on tail particles and the beam distribution?
- Does the wire/long-range beam-beam deplete the halo?
- If long-range beam-beam anyway depleted the halo, would we then acutally still need further halo control?







Multipole expansion of wire field [1]:

$$\int ds \left[ B_y + iB_x \right] = \sum_{k=1}^{\infty} \left[ B_k + iA_k \right] z^{k-1}$$
  
with  $B_k + iA_k = \frac{\mu_0 IL}{2\pi} \times \frac{1}{z_0^k}$ 

z = transverse position of test particle in respect to the beam centroid

 $z_0$  = distance between wire and beam

I = current of wire, L = length of wire

- $\Rightarrow$  for wire in the horizontal plane (z<sub>0</sub>=x<sub>0</sub> real) only normal multipole components (A<sub>k</sub> = 0 for all k)
- $\Rightarrow$  wire drives only resonances with

$$p \cdot Q_x + q \cdot Q_y = n, \ n \in \mathbb{N}$$
 with  
 $p \in \mathbb{N}, q = 0 \text{ or } p \mod 2 = 0, q \in \mathbb{N}$ 

[1] S. Fartoukh et al., Compensation of the long-range beam-beam interactions as a path towards new configurations for the high luminosity LHC, PRSTAB 18, 121001 (2015)



#### Some theory ...



#### Driving terms [1]:

$$c_{p,q}^{w} = \sum_{k=L,R} \frac{\beta_{x}^{|p|/2}(s_{k})\beta_{y}^{|q|/2}(s_{k})}{d_{w}^{|p|+|q|}(s_{k})[\mathbf{m}]} e^{i(p\mu_{x}(s_{k})+q\mu_{y}(s_{k}))}$$
$$\Rightarrow c_{p,q}^{w} \sim \sum_{k=L,R} \frac{1}{r}^{|q|/2} \frac{1}{d_{w}^{|p|+|q|}(s_{k})[\sigma]} \text{ with } r = \frac{\beta_{x}(s_{k})}{\beta_{y}(s_{k})}$$

 $d_w$  = distance between wire and beam

- $\Rightarrow$  at injeciton wires on left and right can not be simply lumped together in one interaction as the phase advance between the two wires is 1.4  $\pi$
- $\Rightarrow$  RDTs scale with ratio of the  $\beta$ -function r and the distance  $d_w$  [\sigma] between wire and beam

[1] S. Fartoukh et al., Compensation of the long-range beam-beam interactions as a path towards new configurations for the high luminosity LHC, PRSTAB 18, 121001 (2015)







ARP

5



## Optics @ injection



|                                                                                          | TCL.4L5.B2 | TCTPH.4R5.B2 |
|------------------------------------------------------------------------------------------|------------|--------------|
| d <sub>jaw&lt;-&gt;wire</sub>                                                            | 3 mm       |              |
| β <sub>x</sub> [m]                                                                       | 81.2       | 169.6        |
| β <sub>y</sub> [m]                                                                       | 166.5      | 81.3         |
| $\beta_x / \beta_y$                                                                      | 0.5        | 2.1          |
| D <sub>x</sub> [m]                                                                       | -0.1       | 0.1          |
| $Δ\mu_x$ (TCL.4L5,TCTPH.4R5) [π]                                                         | 1.43       |              |
| Δμ <sub>y</sub> (TCL.4L5 <i>,</i> TCTPH.4R5) [π]                                         |            |              |
|                                                                                          |            |              |
| $d_{jaw < -> beam}$ [σ]<br>for $d_{wire < -> beam}$ = 9.6 σ (ε <sub>N</sub> =3.5 μm)     | 5.7        | 6.9          |
| $d_{jaw < ->beam}$ [mm]<br>for $d_{wire < ->beam} = 9.6 \sigma$ (ε <sub>N</sub> =3.5 μm) | 6.5        | 9.3          |

 $\Rightarrow$  larger effect for wire on left side



#### Tune footprints, no octupoles





Effect of wire on halo

Second Workshop on Wire Experiment for Long Range Beam-Beam Compensation, Divonne, 20/03/2017



#### Tune footprints, with octupoles





8



### Simulation setup



#### Code: Lifetrac

Optics: 2016 and 2017 injection optics (changes are marginal)

Beam: beam 2, Nb=1.1x10<sup>11</sup>,  $\epsilon_N$ =3.5 µm

FMA analysis:

- turns tracked: 10<sup>4</sup>
- quadratic grid up to 8  $\sigma$
- Long term tracking:
- distribution: uniform distribution in x and y within [-5.7,5.7]  $\sigma$
- turns tracked: 10<sup>6</sup>
- single aperture in IP3 @ 5.7 σ (only betatron part) -> any diffusion above this aperture doesn't matter!

#### Notation:

- Separation d<sub>wire<->beam</sub> is always given in terms of d<sub>jaw<->beam</sub> for the wire on the left side. The right side is then set so that d<sub>wire<->beam,L</sub> [σ] = d<sub>wire<->beam,R</sub> [σ].
- LEFT and RIGHT wire refer to the position from the IP: LEFT = TCL.4L5, RIGHT = TCTPH.4R5

# $I_{wire} < 0$ injection optics injection tunes $Q_x = 62.28$ , $Q_y = 60.31$ $Q_x' = Q_y' = 4$ $I_{oct} = 0$ A

### $I_{wire}$ <0, no octupoles, wire R





Effect of wire on halo

Second Workshop on Wire Experiment for Long Range Beam-Beam Compensation, Divonne, 20/03/2017

11

#### I<sub>wire</sub><0, no octupoles, wire L, wire L+R





Effect of wire on halo

Second Workshop on Wire Experiment for Long Range Beam-Beam Compensation, Divonne, 20/03/2017

12

# $I_{wire} < 0$ injection optics injection tunes $Q_x=62.28$ , $Q_y=60.31$ $Q_x'=Q_y'=4$ $I_{oct}=+10$ A

# $I_{wire} < 0, I_{oct} = +10 \text{ A}, \text{ no wire, wire L}$

**NO WIRE:**  $I_{oct}$ =+10A



- resonances from octupoles enhanced with wire
- 1Q<sub>x</sub>-4Q<sub>y</sub> resonances results in cleaning also in vertical plane

High Luminosity LHC

- on-momentum: clear cleaning above ~6 σ
- off-momentum: cleaning down to ~4 σ





#### $I_{wire} < 0$ , $I_{oct} = +10$ A, wire R, wire L+R



15

#### WIRE RIGHT: $I_{wire.L}$ =0 A, $I_{wire.R}$ =-350 A, $d_{jaw-beam,L}$ =5.7 $\sigma$ , $I_{oct}$ =+10A



- WIRE RIGHT: small effect, octupolar resonances are enhanced
- WIRE LEFT+RIGHT: additional wire on right does not have a considerable effect

WIRE LEFT+RIGHT:  $I_{wire,L}$ =-350 A,  $I_{wire,R}$ =-350 A,  $d_{jaw-beam,L}$ =5.7  $\sigma$ ,  $I_{oct}$ =+10A



 $I_{wire} > 0$ injection optics injection tunes  $Q_x=62.28$ ,  $Q_y=60.31$  $Q_x'=Q_y'=4$  $I_{oct}=+10 A$ 



## I<sub>wire</sub>>0,wire L







WIRE LEFT:  $I_{wire,L}$ =+350 A,  $I_{wire,R}$ =0 A,  $d_{jaw-beam,L}$ =5.7  $\sigma$ ,  $I_{oct}$ =+10A



- without octupoles cleaning down to ~6 σ
- with octupoles cleaning down to small amplitudes in both planes, even better than for lwire<0</li>
- tune footprint collapses to thin line with octupoles -> beam stability?

. Workshop on Wire Experiment for Long Kange Bean-Beam Compensation, Divonne, 20/03/2017 17

 $I_{wire} < 0$ injection optics change of working point  $Q_x'=Q_y'=4$  $I_{oct} = +10 A$ 



## $I_{wire} < 0, I_{oct} = +10 \text{ A}, \text{ wire L}$





# $I_{wire} < 0$ injection optics injection tunes $Q_x=62.28$ , $Q_y=60.31$ $Q_x'=Q_y'=4$ $I_{oct} = +10 A$ Dependence on $d_{wire <-> beam}$ and $I_{wire}$



## $I_{wire} < 0$ , $I_{oct} = +10$ A, wire L+R



#### **WIRE LEFT+RIGHT,** $d_{jaw-beam,L} = d_{jaw-beam,R}$ : $I_{wire,L} = I_{wire,R}$ , $I_{oct} = +10A$



 weak dependence on current I<sub>wire</sub> compared to d<sub>wire<->beam</sub>

 effect of wire rapidly decreases with d<sub>wire<->beam</sub>
-> most likely have to use minimal separation of d<sub>jaw<->beam</sub> =5.7 σ

Effect of wire on halo

Second Workshop on wire Experiment for Long Range Beam-Beam Compensation, Divonne, 20/03/2017 2

21

l<sub>wire</sub> < 0 injection optics injection tunes  $Q_x = 62.28$ ,  $Q_v = 60.31$  $Q_x' = Q_v' = \overline{4}$  $I_{oct} = +10 \text{ A}$ 





#### **WIRE LEFT+RIGHT,** $d_{jaw-beam,L} = d_{jaw-beam,R} = 5.7 \sigma$ , $I_{wire,L} = I_{wire,R} = -350 \text{ A}$ , $I_{oct} = +10 \text{ A}$



- small impact due to betabeat and non-linear errors expected
- closed orbit distortions are not taken into account as collimator alignment is considered to be "good enough".

# Histograms for long term tracking (10<sup>6</sup> turns)





Injection tunes ( $Q_x$ =.28,  $Q_y$ =.31),  $I_{wire}$  < 0

WIRE LEFT: 
$$I_{wire,L}$$
=-350 A,  $I_{wire,R}$ =0 A,  
d<sub>jaw-beam,L</sub> =5.7  $\sigma$ ,  $I_{oct}$ =0A

WIRE LEFT:  $I_{wire,L}$ =-350 A,  $I_{wire,R}$ =0 A, d<sub>jaw-beam,L</sub> =5.7  $\sigma$ ,  $I_{oct}$ =+10A







Injection tunes ( $Q_x$ =.28,  $Q_y$ =.31),  $I_{wire}$  < 0

WIRE RIGHT:  $I_{wire,L}$ =0 A,  $I_{wire,R}$ =- 350 A, d<sub>jaw-beam,L</sub>=5.7  $\sigma$ ,  $I_{oct}$ =+10A







27

Injection tunes ( $Q_x$ =.28,  $Q_y$ =.31),  $I_{wire} > 0$ 

WIRE LEFT: 
$$I_{wire,L}$$
=+350 A,  $I_{wire,R}$ =0 A,  
d<sub>jaw-beam,L</sub>=5.7  $\sigma$ ,  $I_{oct}$ =0A

# WIRE LEFT: $I_{wire,L}$ =-350 A, $I_{wire,R}$ =0 A, $d_{jaw-beam,L}$ =5.7 $\sigma$ , $I_{oct}$ =+10A







collision tunes ( $Q_x$ =.31,  $Q_y$ =.32) WIRE LEFT:  $I_{wire,L}$ =-350 A,  $I_{wire,R}$ =0 A,  $d_{jaw-beam,L}$ =5.7  $\sigma$ ,  $I_{oct}$ =+10A





## **Expected lifetimes**





- Gaussian distribution assumed for lifetime calculation. Lifetime obtained from uniform distribution in x and y.
- from 100 700 of 10 000 are lost -> still small statistics?

## Conclusion



## Conclusions



- effect of wire on lifetime is small at injection even at minimal separation of  $d_{jaw <-> beam} = 5.7 \sigma$  and current of  $I_{wire} = 350 \text{ A}$
- effect of WIRE RIGHT is small compared to WIRE LEFT due to different ratio in beta function
- wire contributes considerably to the tune spread
- ⇒ tune spread generated by octupoles might be compensated by wire (e.g. thin line for  $I_{wire} > 0$ )
- without octupoles, wire cleans in horizontal plane (1/r potential)
- with octupoles, the effect of the wire on the tail particles depends on:
  - the non-linearities present
  - the working point
- ⇒ effect of wire on tail particles depends strongly on machine configuration (mainly tune and octupoles)
- $\Rightarrow$  wire does not necessarily deplete particles uniformly in x and y





#### Backup



### Crossing scheme



Calculation of  $d_{jaw-beam}$ :

- use sigma of ideal beam optics to calculate the opening of the distance between the beam and the jaw d<sub>iaw-beam</sub>
- 2. add the distance between collimator and wire with  $d_{iaw-wire} = 3 \text{ mm}$

$$d_{beam-wire} = d_{jaw-beam} + d_{jaw-wire} = n \sigma_{col} + 3mm$$

- 3. calculate displacement of wire:
  - a. assume that collimator will be perfectly aligned around orbit -> calculate orbit at wire at the end (after bb, error assignment, tune adjustement etc.)
  - b. assume that wire is at inner jaw between the two beams (see x-scheme)

$$\begin{aligned} x_{wire,left} &= -(d_{jaw-beam} + d_{jaw-wire}) + x_{closed orbit} \\ x_{wire,right} &= (d_{jaw-beam} + d_{jaw-wire}) + x_{closed orbit} \\ y_{wire,left} &= y_{closed orbit} \\ y_{wire,right} &= y_{closed orbit} \end{aligned}$$



#### Crossing scheme





wire placed between both beams in H, on orbit in V: BBWIRE\_L5: x<0, y<0 BBWIRE\_L5: x>0, y>0