End of Lecture I.

- Take away messages:
- Elements heavier than Fe are produced by neutron capture processes
- There exists two major categories of processes with low and high densities
- s-process nucleosynthesis is observed and ongoing in AGB stars
- r-process site(s) is so far unknown: supernova, neutron star mergers...
- Observation in EMP display similar pattern above Z=56 -> robust r
- Below Z=56, many more fluctutaions -> weak r process
- Other signature of weak r process exist in CEMP-i stars and in meteorites
- Need measurements to better understand the corresponding processes

Experiments relevant for a better understanding of explosive neutron capture scenarios ...

- I. Reminder of essential properties required for the r process
- II. Studies of atomic masses
- III. Studies of Beta decay lifetimes
- IV. Studies of neutron-delayed emission probabilities
- V. Studies of neutron capture rates

With material from S. Nishimura, G. Lorusso, K.-L. Kratz, V. H. Phong

CERN, May 10th 2017

Experiments relevant for a better understanding of explosive neutron capture scenarios ...

- I. Reminder of essential properties required for the r process
- II. Studies of atomic masses
- III. Studies of Beta decay lifetimes
- IV. Studies of neutron-delayed emission probabilities
- V. Studies of neutron capture rates

With material from S. Nishimura, G. Lorusso, K.-L. Kratz, V. H. Phong

CERN, May 10th 2017

Neutron capture processes

Experiments relevant for a better understanding of explosive neutron capture scenarios ...

I. Reminder of essential properties required for the r process
II. Studies of atomic masses
III.Studies of Beta decay lifetimes
IV.Studies of neutron-delayed emission probabilities
V. Studies of neutron capture rates

With material from S. Nishimura, G. Lorusso, K.-L. Kratz, V. H. Phong

CERN, May 10th 2017

Mass measurements of neutron-rich P-Ar nuclei at GANIL/SPEG

Mass measurement in the FRS-ESR storage ring

Y. Litvinov EJC school 2015

In principle $M/\Delta M \approx 10^6$ 30 keV for heavy ions...

Many species measured at the same time

Need of a Brho tagging from the FRS

Need of known masses together with new ones to correct from systematic errors (e.g. frequency dependence with A/Q and with the number of revolutions in the ring) R. Knöbel et al. EPJA 52 (2016)

Mass measurements in the FRS-ESR storage ring

R. Knöbel, PLB 754 (2016)

Precision mass measurements of ¹²⁹⁻¹³¹Cd isotopes

Precision mass measurements of ¹²⁹⁻¹³¹Cd isotopes

0.017

 $GAP \approx S_n(N=82)-S_n(N=83)$

HFB-24 does not give a statisfactory trends below Z=50

Some physics ingredients missing

Better extrapolation is needed ...

AME12 is complemented by HFB-24 when unknown

CCSNe

NS-BH merger

AME12

New

Experiments relevant for a better understanding of explosive neutron capture scenarios ...

I. Reminder of essential properties required for the r process
II. Studies of atomic masses
III. Studies of Beta decay lifetimes
IV. Studies of neutron-delayed emission probabilities
V. Studies of neutron capture rates

With material from S. Nishimura, G. Lorusso, K.-L. Kratz, V. H. Phong

CERN, May 10th 2017

First studies of r process nuclei: the case of ¹³⁰Cd

already B²FH (Revs. Mod. Phys. 29; 1957) C.D. Coryell (J. Chem. Educ. 38; 1961)

...hunting for nuclear properties of waiting-point isotope ¹³⁰Cd...

"climb up the <u>staircase</u>" at N=82; major waiting point nuclei; "break-through pair" ¹³¹In, ¹³³In;

"association with the rising side of major peaks in the abundance curve" climb up the N= 82 <u>ladder</u> ... (n,γ) - (γ,n) equilibrium Wait for beta-decay to increase Z

 $\Sigma T_{1/2}$ at closed shells -> total duration of the r-process τ_r

Beta decay lifetime of ¹³⁰Cd

First $T_{1/2}$ of ¹³⁰Cd at SC-ISOLDE (1986)

- non-selective plasma ion-source
- selective quartz transfer line
- selective ßdn-counting

Obviously not sufficient High background from

- surface-ionized ¹³⁰In, ¹³⁰Cs
- molecular ions [40Ca90Br]+

Request: additional selectivity steps

- Fast UC_x target
- Neutron converter
- Laser ion-source
- Hyperfine splitting
- Isobar separation
- Repeller
- Chemical separation
- Multi-coincidence setup

7

developed since 1993

Chemically selective, three-step laser ionisation of Cd into continuum

Efficiency $\approx 10\%$ Selectivity $\approx 10^3$

More accurate lifetime

 $\boldsymbol{\gamma}$ spectroscopy becomes possible

A Neutron converter to optimize fission rates

R. Luis et al. Eurisol-Net 2011

Beta Decay of ¹²⁹Ag (N=82)

Future: Determine the energy of the $1/2^{-1}$ isomer, study its neutron capture cross section

Experiments relevant for a better understanding of explosive neutron capture scenarios ...

I. Reminder of essential properties required for the r process
II. Studies of atomic masses
III.Studies of Beta decay lifetimes (non Isolde method)
IV.Studies of neutron-delayed emission probabilities
V. Studies of neutron capture rates

With material from S. Nishimura, G. Lorusso, K.-L. Kratz, V. H. Phong

CERN, May 10th 2017

Beam Production at RIBF

Decay spectroscopy station

WAS³ABi (Wide-range Active Silicon Strip Stopper for beta and ions)

Collaboration RIKEN / TUM / IBS

- 8 DSSD 1-mm thick
- 20 keV threshods
- 20 keV energy resolution
- 100-200 pps Maximum rate
- cooled at 10 °C
- Q value capability?
- 2 10⁴ pixels

EUroball RIKEN Cluster Array (2012–2015)

New lifetime measurements

Too strong odd-even effect for FRDM+QRPA model Too steep decrease of lifetimes for KTUY+GT2

Lorusso et al. PRL 114, 192501 (2015)

r-process implications

Results of a parametrized explosion with a superposition of entropy values (T^3/ρ) , a proton to nucleon ratio of 0.3 and a time scale of about 100ms show a better agreement with SS observations

New measurements have an impact on SS abundance curve

Lorusso et al., PRL 114 (2015) 192501

Limits of current lifetime / mass measurements

Experiments relevant for a better understanding of explosive neutron capture scenarios ...

- I. Reminder of essential properties required for the r process
- II. Studies of atomic masses
- III. Studies of Beta decay lifetimes
- IV. Studies of neutron-delayed emission probabilities
- V. Studies of neutron capture rates

With material from S. Nishimura, G. Lorusso, K.-L. Kratz, V. H. Phong

CERN, May 10th 2017

P_n values

Smoothening of the r abundance curve No more odd-even effect as for s elements

Emitted eutrons can be further captures by other nuclei, modifying the resulting abundance of the elements

Neutron-delayed emission probability P_n

A,Z+1

Fig. From A. Fijałkowska et.al

Status of P_n values in some isotopic chains / plans at RIKEN

V. H. Phong

Beta-delayed neutron studies at BRIKEN

Beta-delayed neutron studies at BRIKEN

Experiments relevant for a better understanding of explosive neutron capture scenarios ...

- I. Reminder of essential properties required for the r process
- II. Studies of atomic masses
- III. Studies of Beta decay lifetimes
- IV. Studies of neutron-delayed emission probabilities
- V. Studies of neutron capture rates

With material from S. Nishimura, G. Lorusso, K.-L. Kratz, V. H. Phong

CERN, May 10th 2017

Determination of neutron capture rates

What for ? : s process, r process freeze-out, neutron bursts, cooling of neutron stars High excitation energy / heavy nuclei : large density of levels

Measurements:

Usually stable nuclei or long-lived

Use neutron beams on targets (p+⁷Li source, or neutrons from nTOF)

Determine (n,γ) capture rates using activation or in-flight techniques

Transfer (d,p) reactions can provide S_n , E, L, SF required for n captures Comparison of (n, γ) versus (d,p)-derived cross section (Kraussmann et al. PRC 53 (1996)) Choose the appropriate energy for momentum matching $(v/c\sim0.1)$, RIB of $\sim10^5$ pps

⁴⁸Ca overabundance in EK 1-4-1 inclusion of meteorite

Allende meteorite:

fell in 1969 weight 2t chondraneous carbide several CaAl-rich inclusions

EK1-4-1 inclusion :

spherical shape, white colour diametre 1cm Fusion temperature 1500-1900K Correlated over-abundances ⁴⁸Ca-⁵⁰Ti-⁵⁴Cr-⁵⁸Fe-⁶⁴Ni Underabundance of ⁶⁶Zn, r process Nd, Sm (A~150)

$^{48}Ca/^{46}Ca \approx 250 \text{ (solar = 53)}$

Mass number

Determine experimental (n,γ) rates on unstable Ar nuclei.

Determine ⁴⁶Ar(n,γ)⁴⁷Ar using ⁴⁶Ar(d,p)⁴⁷Ar reaction

Excitation energy spectrum for ⁴⁷Ar

Use of spectrometer suppress C induced background -> good mass resolution Can be complemented by gamma-ray spectroscopy to achieve better energy resolution

Neutron capture rate at N=28 (⁴⁶Ar)

(d,p) access to E*, SF., spins \rightarrow derive (n, γ) stellar rates O. Sorlin et al. CR Phys 4 (2003) Direct capture (E1) with $\boldsymbol{e}_n = 0$ on p states dominates L. Gaudefroy et al., EPJA (2006) Speed up neutron-captures at the N=28 closed shell Favor the enhancement of ⁴⁸Ca over that of ⁴⁶Ca using d_n= 3 10²¹ cm⁻³

Neutron captures at the N=82 shell closure

Go to more neutron Study the Cd chain...

Conclusions of Lect II.

Experimental masses, lifetimes, P_n values and neutron capture cross sections must be measured in order to be used in the various explosive scenarios in which weak or strong r process conditions are found.

These properties are needed for many nuclei, but mainly those at closed shells.

New generations of accelerator / detectors will continue to bring new results in the forthcoming years.

As all nuclei involved in explosive conditions cannot be reached experimentally (yet), extrapolations are required with the use of theoretical models that are implementing suitable physics ingredients.

A better understanding of the synthesis of heavy elements can only be obtained from the combined progresses in stellar modeling, galactic chemical evolution, astronomy, geochemistry, nuclear structure and reactions.

It is a fantastic endeavour that encompasses many aspects modern physics and foster synergies between different disciplines of nuclear astrophysics.