Initial conditions for heavy ion collisions

Aleksas Mazeliauskas

Institut für Theoretische Physik
Universität Heidelberg

October 02, 2017
Initial conditions with QCD kinetic theory

Aleksas Mazeliauskas

Institut für Theoretische Physik
Universität Heidelberg

October 02, 2017

see also Teaney 18/09 IS’17
Ultra-relativistic heavy ion collisions in a nutshell

Boundary between initial stages and medium physics τ_{hydro} is artificial.

- when does jet quenching begin?
- when does QGP start emitting photons?

Our goal: consistent theoretical overlap of initial stages and the onset of hydrodynamics.
Initial stages in weak coupling picture

At high collision energies and densities $\alpha_s \ll 1$

QCD kinetic theory interpolates between strong fields and hydrodynamics

18/09 IS’17
Gelis
Boguslavski
Wu 20/19

hydro

$\alpha_s \ll 1$

$1 \ll f \ll \frac{1}{\alpha_s}$

$f \sim 1$

$\sim \frac{1}{\alpha_s} \gg 1$
Initial stages in weak coupling picture

At high collision energies and densities $\alpha_s \ll 1$

QCD kinetic theory interpolates between strong fields and hydrodynamics
Thermalization in QCD effective kinetic theory

QCD effective kinetic theory
Arnold, Moore, Yaffe (2003)[2]

“Bottom-up” thermalization scenario
Baier, Mueller, Schiff, and Son (2001)[5]

Prescription: solve Boltzmann equation for distribution function $f(p)$

$$\partial_\tau f + \frac{p}{|p|} \cdot \nabla f - \frac{p_z}{\tau} \partial_{p_z} f = - \frac{C_2}{f} f - \frac{C_1}{f} f$$

- elastic $2 \leftrightarrow 2$ and inelastic $1 \leftrightarrow 2$ scatterings (with LPM suppression)

 the same QCD processes as in jet quenching

- at late times equilibrates to conformal hydrodynamics

- single parameter — the coupling constant $\lambda = 4\pi \alpha_s N_c$.

In practise need to extrapolate λ to realistic values.

High-pT QCD kinetic theory \Rightarrow parton energy loss

Low-pT QCD kinetic theory \Rightarrow thermalization

“Jet quenching and fluid dynamics = two manifestations of the same physics” – Wiedemann

21/09 IS’17
From classical simulations to kinetic theory but anisotropies should create plasma instabilities.

Classical-statistical lattice simulations find the “bottom-up” attractor.

Numerical results for thermalization in kinetic theory

“Bottom-up” thermalization scenario

Numerical realization

\[f(p_\perp, p_z) \]

\[\langle p_{\perp}^2 \rangle \gg \langle p_z^2 \rangle \]

1. elastic 2 \leftrightarrow 2 scatterings

Baier, Mueller, Schiff, and Son (2001)[5]
Kurkela and Zhu (2015)[4]

see also Teaney 18/09 IS’17
Numerical results for thermalization in kinetic theory

“Bottom-up” thermalization scenario

Numerical realization

\[f(p_\perp, p_z) \]

2. soft $1 \leftrightarrow 2$ splitting

see also Teaney 18/09 IS’17
Numerical results for thermalization in kinetic theory

“Bottom-up” thermalization scenario
Numerical realization

$f(p_\perp, p_z)$

3. mini-jet quenching

see also Teaney 18/09 IS’17
Numerical results for thermalization in kinetic theory

“Bottom-up” thermalization scenario
Numerical realization

\[f(p_{\perp}, p_z) \]

\[\langle p_{\perp}^2 \rangle \approx \langle p_z^2 \rangle \]

4. isotropization

see also Teaney 18/09 IS’17
Scaling of pressure evolution for boost invariant system

Pressure isotropization in kinetic theory

$$\frac{\tau}{T_{Id.}} / (4\pi \eta / s)$$

$\lambda = 10$ ($\eta / s \approx 0.62$)
$\lambda = 15$ ($\eta / s \approx 0.34$)
$\lambda = 20$ ($\eta / s \approx 0.22$)
$\lambda = 25$ ($\eta / s \approx 0.16$)

2nd hydro

onset of hydrodynamics

c.f. attractor solutions:
Strickland 18/09 IS'17
Romatschke 20/09 IS'17
Spalinski 21/09 IS'17

kinetic theory

Collapse to scaling solution for time

$$\frac{\tau}{T_{Id.}} / \eta / s \propto \frac{\tau}{\tau_R}$$ in units of relaxation time.
Out-of-equilibrium energy evolution for boost invariant system

scaling in hydro:

\[e(\tau) = \nu g \frac{\pi^2}{30} T_{\text{Id.}}^4 \left(1 - \frac{8}{3} \frac{\eta/s}{\tau T_{\text{Id.}}} \right) + C_2 \left(\frac{\eta/s}{\tau T_{\text{Id.}}} \right)^2 \]

\[(\nu g \frac{\pi^2}{30} T_{\text{Id.}}^4) \text{ “ideal” temp.} \]

\[(\frac{8}{3} \frac{\eta/s}{\tau T_{\text{Id.}}}) \text{ ideal} \]

\[(\frac{\eta/s}{\tau T_{\text{Id.}}}) \text{ viscous} \]

\[C_2 \left(\frac{\eta/s}{\tau T_{\text{Id.}}} \right)^2 \text{ 2nd order hydro} \]

\[e(\tau) \big/ \left(\nu g \frac{\pi^2}{30} T_{\text{Id.}}^4 \right) \]

\[\tau T_{\text{Id.}} \big/ (4\pi \eta/s) \]
Out-of-equilibrium energy evolution for boost invariant system

Generalized scaling:

\[e(\tau) = \nu g \frac{\pi^2}{30} T_{Id}^4(\tau) \times \mathcal{E} \left[x = \frac{\tau T_{Id}(\tau)}{\eta/s} \right] \]

- **Kinetic theory**
- **2nd order hydro**
- **Free streaming**
- **Ideal hydro**
- **Pre-equilibrium**
- **Onset of hydrodynamics**
Event by event pre-equilibrium dynamics
Realistic initial conditions for hydrodynamics

\[\tau_{\text{hydro}} \sim 1 \text{ fm}/c \]

\[\tau_{\text{fo}} \sim 10 \text{ fm}/c \]

Examples of initial stages:

A MC-Glauber:
 ✓ e-by-e fluctuations, ✗ dynamics, ✗ flow, ✗ hydrodynamization

B IP-Glasma: Schenke, Tribedy, Venugopalan (2013)[6]
 ✓ e-by-e fluct., ✓ 2+1D Yang-Mills, ✓ flow, ✗ hydrodynamization

 See also EKRT model (includes nPDFs), Niemi 19/09 IS’17

Use the out-of-equilibrium kinetic theory to map IP-Glasma initial conditions to hydrodynamics.
Evolution of perturbations with kinetic theory

IP-Glasma initial conditions at $\tau_{EKT} = 0.2$ fm

$\tau_{EKT} = 0.2$ fm

$\tau_{EKT} = 0.2$ fm

$\tau_{hydro} = 1.2$ fm

$\tau_{hydro} = 1.2$ fm

$e(x, \tau_{EKT}), \vec{v}(x, \tau_{EKT}) \implies f(\tau, p, x) \implies e(x, \tau_{hydro}), \vec{v}(x, \tau_{hydro})$
Plane wave perturbations in transverse plane

Simplify 5+1D problem for \(f(\tau, p, x_\perp) \) by linearization

\[
f(\tau, p, x_\perp) = \underbrace{\bar{f}_p}_{\text{uniform background}} + \underbrace{\delta f_{k_\perp, p} e^{i k_\perp \cdot x_\perp}}_{\text{transverse perturbations}}.
\]

Linearized Boltzmann equation for perturbations

\[
\left(\partial_\tau - \frac{p_z}{\tau} \partial_{p_z} \right) \bar{f}_p = -C[\bar{f}]
\]

background

\[
\left(\partial_\tau - \frac{p_z}{\tau} \partial_{p_z} + \frac{i p_\perp \cdot k_\perp}{p} \right) \delta f_{k_\perp, p} = -\delta C[\bar{f}, \delta f]
\]

\(k_\perp \) perturbation

Construct kinetic response functions to energy/momentum perturbations

\[
\frac{\delta T^{\mu\nu}(\tau, k)}{e(\tau)} = \tilde{G}^{\mu\nu}_{(\tau, i)}(k, \tau, \tau_0) \times \begin{bmatrix} \frac{\delta T^{\tau\tau}(\tau_0, k)}{e(\tau_0)} \text{ or } \frac{\delta T^{\tau i}(\tau_0, k)}{e(\tau_0)} \end{bmatrix}
\]

output for hydro non-equilibrium kinetic response initial perturbations
Scaling of kinetic theory response functions

- Response to perturbations also collapse to scaling solutions
 \[\tilde{G}^{\mu\nu}(|k|, \tau, \tau_0, e(\tau_0), \lambda) = \tilde{G}^{\mu\nu,\text{univ}}\left(\frac{\tau T_{\text{Id.}}}{\eta/s}, |k|(\tau - \tau_0)\right) \]

- Agrees with hydrodynamic scaling in \(\tau \to \infty, |k|\tau \to 0 \) limit.
- Good scaling for a range of \(\eta/s = 0.16-0.62 \) values.
Kinetic evolution with IP-Glasma initial conditions
Equilibration with IP-Glasma initial conditions

$\tau_{\text{EKT}} = 0.2 \, \text{fm}$

$0.4 \, \text{fm}$

$\tau_{\text{hydro}} = 1.2 \, \text{fm}$

IP-Glasma

kinetic theory

2nd order hydro

$\tau e^{3/4} (\text{GeV}^2)$

$k e^{3/4} (\text{GeV}^2)$

$x (\text{fm})$

$y (\text{fm})$

$\tau e^{3/4} (\text{GeV}^2)$

$z (\text{fm})$

kinetic equilibration

$e(x, \tau_{\text{EKT}}), \vec{v}(x, \tau_{\text{EKT}}) \rightarrow e(\tau) + \delta e(\tau, x), \vec{v}(\tau, x) \rightarrow T^{\mu\nu}(x, \tau_{\text{hydro}})$

non-zero initial flow

full eng.-mom. tensor
Average pressure in the transverse plane

$\tau_{\text{EKT}} = 0.2 \text{ fm}$

0.4 fm

$\tau_{\text{hydro}} = 1.2 \text{ fm}$

Not a cartoon!

Overlapping and consistent pressure evolution between initial stages!
Transverse averaged density and flow

\(\tau_{\text{EKT}} = 0.2 \text{ fm} \quad 0.4 \text{ fm} \quad \tau_{\text{hydro}} = 1.2 \text{ fm} \)

kinetic theory

2nd order hydro

transverse averages

\[\langle \ldots \rangle = \frac{\int d^2 x_\perp u^\tau e \ldots}{\int d^2 x_\perp u^\tau e} \]

entropy per rapidity

radial velocity
Hadronic observables: IP-Glasma

\[\tau_{\text{EKT}} = 0.2 \text{ fm} \quad 0.4 \text{ fm} \quad \tau_{\text{hydro}} = 1.2 \text{ fm} \]

Thermal pions at freeze-out \(T_{\text{fo}} = 145 \text{ MeV} \)

Multiplicity

Radial flow

Elliptic flow

Approximate independence of \(\tau_{\text{hydro}} \) for kinetic pre-equilibrium evolution!
Summary

“Bottom-up” equilibration for realistic heavy ion initial conditions:
- Background evolution described by a scaling solution in $\tau T_{\text{Id.}}/(\eta/s)$
- Found linear kinetic response functions $G^{\mu\nu}(\tau T_{\text{Id.}}/(\eta/s), r/(\tau - \tau_0))$
- Demonstrated small dependence on crossover time τ_{hydro}

Smooth and consistent matching between IP-Glasma initial conditions and hydrodynamics!

Outlook

- publish kinetic pre-equilibrium response code KoMPoST
 Kurkela, Mazeliauskas, Schlichting and Teaney, to appear soon
- study chemical equilibration (i.e. add quarks)
- out-of-equilibrium photon production (c.f. Berges et al. (2017))
- study jet “thermalization”, i.e. quenching, in the same setup
Backup
Evolution of transverse energy perturbations

\[\tau_{EKT} = 0.1 \text{ fm} \quad 0.4 \text{ fm} \quad \tau_{\text{hydro}} = 1.2 \text{ fm} \]

MC-Glauber

\[\tau e^{3/4} (\text{GeV}^2) \]

kinetic theory

2nd order hydro

MC-Glauber kinetic equilibration

\[e(x, \tau_{EKT}) \quad \Rightarrow \quad e(\tau) + \delta e(\tau, x) \quad \Rightarrow \quad T^{\mu\nu}(x, \tau_{\text{hydro}}) \]

linearization in causal circle

full energy momentum tensor
Transversely averaged density and flow

\[\tau_{\text{EKT}} = 0.1 \text{ fm} \quad 0.4 \text{ fm} \quad \tau_{\text{hydro}} = 1.2 \text{ fm} \]

transverse averages

\[\langle ... \rangle = \frac{\int d^2 \mathbf{x}_\perp u^\tau e \ldots}{\int d^2 \mathbf{x}_\perp u^\tau e} \]

entropy per rapidity

radial velocity

conformal EoS
Transversely averaged density and flow

\[\tau_{\text{EKT}} = 0.1 \text{ fm} \]

\[\tau_{\text{hydro}} = 0.4 \text{ fm} \]

\[\tau_{\text{hydro}} = 1.2 \text{ fm} \]

```
transverse averages
\langle \ldots \rangle = \frac{\int d^2 \mathbf{x}_\perp u^\tau e \ldots}{\int d^2 \mathbf{x}_\perp u^\tau e}
```

entropy per rapidity

radial velocity

lattice EoS
Hadronic observables: MC-Glauber

\(\tau_{\text{EKT}} = 0.1 \text{ fm} \)

\(0.4 \text{ fm} \)

\(\tau_{\text{hydro}} = 1.2 \text{ fm} \)

Thermal pions at freeze-out \(T_{\text{fo}} = 145 \text{ MeV} \)

Approximate independence of \(\tau_{\text{hydro}} \) for kinetic pre-equilibrium evolution!
Entropy profile evolution for MC-Glauber

\[\tau_{EKT} = 0.1 \text{ fm} \quad 0.4 \text{ fm} \quad \tau_{\text{hydro}} \quad 1.2 \text{ fm} \]

\[\tau_{\text{out}} = 1.20 \text{ fm} \]

\[\tau_{\text{hydro}} = 0.4 \text{ fm} \]
\[\tau_{\text{hydro}} = 0.6 \text{ fm} \]
\[\tau_{\text{hydro}} = 0.8 \text{ fm} \]
\[\tau_{\text{hydro}} = 1.0 \text{ fm} \]
\[\tau_{\text{hydro}} = 1.2 \text{ fm} \]
Entropy profile evolution for MC-Glauber

\[\tau_{EKT} = 0.1 \text{ fm} \quad 0.4 \text{ fm} \quad \tau_{\text{hydro}} = 1.2 \text{ fm} \]

\[\tau_{\text{hydro}} = 0.4 \text{ fm} \quad \tau_{\text{hydro}} = 0.6 \text{ fm} \quad \tau_{\text{hydro}} = 0.8 \text{ fm} \quad \tau_{\text{hydro}} = 1.0 \text{ fm} \quad \tau_{\text{hydro}} = 1.2 \text{ fm} \]

\[\tau_{\text{out}} = 2.00 \text{ fm} \]
Entropy profile evolution for MC-Glauber

\[\tau_{EKT} = 0.1 \text{ fm} \quad 0.4 \text{ fm} \quad \tau_{\text{hydro}} \quad 1.2 \text{ fm} \]

\[\tau_{\text{out}} = 5.00 \text{ fm} \]

\[\tau_{e^{3/4} \text{ GeV}^2} \]

\(x \text{ fm} \)
Transverse velocity evolution for MC-Glauber

\[\tau_{\text{EKT}} = 0.1 \text{ fm} \]

[0.4 fm] \[\tau_{\text{hydro}} \]

[1.2 fm]

\[\tau_{\text{out}} = 1.20 \text{ fm} \]

\[\tau_{e^{3/4}} > 0.1 \text{ GeV}^2 \]

\[\tau_{\text{hydro}} = 0.4 \text{ fm} \]

\[\tau_{\text{hydro}} = 0.6 \text{ fm} \]

\[\tau_{\text{hydro}} = 0.8 \text{ fm} \]

\[\tau_{\text{hydro}} = 1.0 \text{ fm} \]

\[\tau_{\text{hydro}} = 1.2 \text{ fm} \]
Transverse velocity evolution for MC-Glauber

MC-Glauber

\[\tau_{\text{EKT}} = 0.1 \text{ fm} \]

kinetic theory

2nd order hydro

\[0.4 \text{ fm} \]

\[\tau_{\text{hydro}} \]

\[1.2 \text{ fm} \]

\[\tau_{\text{out}} = 2.00 \text{ fm} \]

\[\tau e^{3/4} > 0.1 \text{ GeV}^2 \]
Transverse velocity evolution for MC-Glauber

\[\tau_{\text{EKT}} = 0.1 \text{ fm} \quad 0.4 \text{ fm} \quad \tau_{\text{hydro}} \quad 1.2 \text{ fm} \]

\[\tau_{\text{out}} = 5.00 \text{ fm} \]

\[\tau e^{3/4} > 0.1 \text{ GeV}^2 \]
Shear-stress profile evolution for MC-Glauber

$\tau_{EKT} = 0.1 \text{ fm}$

0.4 fm

$\tau_{\text{hydro}} = 1.2 \text{ fm}$

$\tau_{\text{hydro}} = 0.8 \text{ fm}$

$\tau_{\text{hydro}} = 1.0 \text{ fm}$

$\tau_{\text{hydro}} = 1.2 \text{ fm}$

$\sim \eta(\sigma^{xx} + \sigma^{yy})$

$(\pi^{xx} + \pi^{yy}) \text{ GeV/fm}^3$

$x \text{ fm}$

$\tau_{T\text{eff}}/(4\pi\eta/s)$

$x \text{ fm}$
Parametrization of distribution function

“Bottom-up” thermalization scenario
Baier, Mueller, Schiff, and Son (2001)[5]

Universal-attractor
Berges, Boguslavski, Schlichting, Venugopalan (2014)[3]

Numerical realization
Kurkela and Zhu (2015)[4]

Initial anisotropic gluon distribution function

\[
\begin{align*}
\mathcal{f}_{BG}(p_\perp, p_z) &= \frac{A}{\lambda} \frac{p_0}{\tilde{p}} e^{-\frac{2}{3} \frac{\tilde{p}^2}{p_0}}, \\
\tilde{p} &= \sqrt{p_\perp^2 + \xi^2 p_z^2}
\end{align*}
\]

with \(\xi = 10 \) and \(A \) and \(p_0 = 1.8Q_s \) adjusted to match lattice results [4, 7].

c.f. scaling solution for scalar theories [8]

\[
\begin{align*}
\mathcal{f}(p_\perp, p_z) &= \frac{A}{\lambda} \frac{p}{p_T} e^{-\frac{p_z^2}{2\sigma^2}}
\end{align*}
\]

Scalar and vector perturbations for background

\[
\delta f^{(s)}_k = \frac{\delta Q_s(k)}{Q_s} \partial_{Q_s} \mathcal{f}_{BG} \left(\frac{|p_\perp|}{Q_s} \right), \quad \delta f^{(v),i}_k = \partial_{v_i} \mathcal{f}_{BG} \left(\frac{|p_\perp - v_p p_\perp|}{Q_s} \right) \bigg|_{v=0}
\]

Gluon spectrum in the glasma from JIMWLK evolution.

Nonequilibrium fixed points in longitudinally expanding scalar theories: infrared cascade, Bose condensation and a challenge for kinetic theory.