Effects of hadronic rescattering in mini-jet production and energy loss at the LHC

Sangwook Ryu

In collaboration with
Scott McDonald, Chun Shen, Sangyong Jeon and Charles Gale
By colliding heavy nuclei (at RHIC and the LHC), we can
create quark-gluon plasma (QGP) and
study its properties (e.g. transport coefficients).

This can be done by creating a realistic dynamical model of heavy ion collisions.

Different aspects of QGP and hadronic matter influence each other. e.g.,
non-zero ζ/s alters the estimate of η/s
jet quenching in hadronic phase changes determination of the jet-medium interaction in QGP.

Goal: hybrid model covering all these different aspects.
PART 1
Hybrid approach and description of soft (low-p_T) physics

PART 2
Jet production and energy loss for hard (high-p_T) physics
PART 1
Hybrid approach and description of soft (low-p_T) physics

PART 2
Jet production and energy loss for hard (high-p_T) physics
Hybrid approach

Collision geometry

Pre-thermalization dynamics

Collective dynamics (hydrodynamics)

Jet production and energy loss

Hadronic re-scattering (microscopic transport)

figure by Steffen Bass
Model Structure

Collision Geometry

IP-Glasma
Initial Condition

MUSIC
hydrodynamics

Cooper-Frye
particlization

MARTINI
jet

PYTHIA/LUND
string fragmentation

Hadronic E-loss

UrQMD
cascade
Model Structure

- **Collision Geometry**

 - **IP-Glasma**
 - **Initial Condition**
 - **MUSIC**
 - hydrodynamics
 - Cooper-Frye particlization
 - **PYTHIA/LUND**
 - string fragmentation
 - **Hadronic E-loss**
 - **UrQMD**
 - cascade
 - **MARTINI**
 - jet
Model : IP-Glasma I.C.
B. Schenke, P. Tribedy and R. Venugopalan (2012)
Classical YM dynamics with color sources in nuclei

color charge distribution

\[\langle \rho^a(x'_T) \rho^a(x''_T) \rangle = g^2 \mu_A^2 \delta^{ab} \delta^2(x'_T - x''_T) \]

\[A^i_{(1,2)}(x_T) = \frac{i}{g} U_{(1,2)}(x_T) \partial_i U^\dagger_{(1,2)}(x_T) \]

\[U_{(1,2)}(x_T) = \mathcal{P} \exp \left[-ig \int dx^\pm \frac{\rho^{(1,2)}(x_T, x^\pm)}{\nabla^2_T - m^2} \right] \]

\[A^i(\tau = +0) = A^i_{(1)} + A^i_{(2)} \]

\[A^n(\tau = +0) = \frac{ig}{2} [A^i_{(1)}, A^i_{(2)}] \]

\[\partial_\mu F^{\mu\nu} - ig [A_\mu, F^{\mu\nu}] = 0 \]

\[T^{\mu \nu} (\tau = \tau_0) u^\nu = \epsilon u^\mu \]
Model: IP-Glasma I.C.

B. Schenke, P. Tribedy and R. Venugopalan (2012)

Classical YM dynamics with color sources in nuclei

well describes v_n distribution

Model Structure

Collision Geometry

IP-Glasma
Initial Condition

MUSIC
hydrodynamics

MARTINI
jet

PYTHIA/LUND
string fragmentation

Hadronic E-loss

Cooper-Frye
particlization

UrQMD
cascade
Model: MUSIC hydro

Hydrodynamic equations of motion

Conservation equation \(\partial_\mu T^{\mu\nu} = 0 \)

Decomposition \(T^{\mu\nu} = \epsilon_0 u^\mu u^\nu - (P_0(\epsilon_0) + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu} \)

Local 3-metric \(\Delta^{\mu\nu} = g^{\mu\nu} - u^\mu u^\nu \)

Local 3-gradient \(\nabla^\mu = \Delta^{\mu\nu} \partial_\nu \)
Model: MUSIC hydro

Equation of motion for viscous corrections

Shear viscosity relaxation equation

\[\dot{\pi}^{\mu\nu} = -\frac{\pi^{\mu\nu}}{\tau_\pi} + \frac{1}{\tau_\pi} \left(2\eta \sigma^{\mu\nu} - \delta^{\mu\nu} \pi^{\rho\sigma} \theta + \varphi_7 \pi^{\langle \rho \sigma \rangle \alpha} + \lambda_\pi (\Pi \Pi \sigma^{\mu\nu}) \right) \]

Expansion rate

\[\theta = \nabla_\mu u^\mu \]

Shear tensor

\[\sigma^{\mu\nu} = \frac{1}{2} \left[\nabla^\mu u^\nu + \nabla^\nu u^\mu - \frac{3}{2} \Delta^{\mu\nu} (\nabla_\alpha u^\alpha) \right] \equiv \nabla^{\langle \mu \nu \rangle} \]
Model: MUSIC hydro

equation of motion for viscous corrections

Shear viscosity relaxation equation

\[
\frac{\dot{\pi}}{\pi} = -\frac{\pi^{\mu\nu}}{\tau_{\pi}} + \frac{1}{\tau_{\pi}} \left(2\eta \sigma^{\mu\nu} - \delta_{\pi\pi} \pi^{\mu\nu} \theta + \varphi_{7} \pi^{\langle \mu \pi \rangle \alpha} \right) \\
- \tau_{\pi\pi} \pi^{\langle \mu \sigma^{\nu}\rangle \alpha} + \lambda_{\pi\Pi} \Pi \sigma^{\mu\nu}
\]

Shear viscosity

\[
\frac{\eta}{s} = \text{const}
\]
shear viscosity relaxation equation

\[\dot{\pi} \langle \mu\nu \rangle = -\frac{\pi^{\mu\nu}}{\tau_{\pi}} + \frac{1}{\tau_{\pi}} \left(2\eta \sigma^{\mu\nu} - \delta_{\pi\pi} \pi^{\mu\nu} \theta + \varphi \pi^{\mu\nu}\alpha \right. \\
\left. - \tau_{\pi\pi} \pi^{\mu\nu}\alpha + \lambda_{\pi\Pi} \Pi \sigma^{\mu\nu} \right) \]

Model: MUSIC hydro

14-moment approximation in the small mass limit

G. Denicol, S. Jeon, and C. Gale (2014)

\[\frac{\eta}{\tau_{\pi}} = \frac{1}{5} (\epsilon_0 + P_0) \quad \frac{\delta_{\pi\pi}}{\tau_{\pi}} = \frac{4}{3} \quad \frac{\lambda_{\pi\Pi}}{\tau_{\pi}} = \frac{6}{5} \quad \frac{\tau_{\pi\pi}}{\tau_{\pi}} = \frac{10}{7} \]

second-order transport coefficients
Model: MUSIC hydro

equation of motion for viscous corrections

bulk viscosity relaxation equation

\[
\dot{\Pi} = -\frac{\Pi}{\tau_{\Pi}} + \frac{1}{\tau_{\Pi}} \left(-\zeta \theta - \delta_{\Pi\Pi} \Pi \theta + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu} \right)
\]

Bulk viscosity relaxation equation

\[
\dot{\Pi} = -\frac{\Pi}{\tau_\Pi} + \frac{1}{\tau_\Pi} \left(-\zeta \theta - \delta_{\Pi\Pi} \Pi \theta + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu} \right)
\]

14-moment approximation in the small mass limit

G. Denicol, S. Jeon, and C. Gale (2014)

\[
\frac{\zeta}{\tau_\Pi} = 15 \left(\frac{1}{3} - c_s^2 \right)^2 (\epsilon_0 + P_0)
\]

\[
\frac{\delta_{\Pi\Pi}}{\tau_\Pi} = \frac{2}{3} \quad \frac{\lambda_{\Pi\pi}}{\tau_\Pi} = \frac{8}{5} \left(\frac{1}{3} - c_s^2 \right)
\]

Model: MUSIC hydro

Equation of motion for viscous corrections

Second-order transport coefficients
Model : Equation of state

P. Huovinen, and P. Petreczky (2010)

Equation of state : **hadron gas** + **lattice data**

Only those included in UrQMD

Cross over phase transition around $T = 180$ MeV
Collision Geometry

IP-Glasma Initial Condition

MUSIC hydrodynamics

Cooper-Frye particlization

MARTINI jet

PYTHIA/LUND string fragmentation

Hadronic E-loss

UrQMD cascade
Model: Cooper-Frye sampling

F. Cooper and G. Frye (1974)

t

\[\sum (T = T_{sw}) \]

\[\frac{dN}{d^3 p} = \int \sum \frac{p^\mu d^3 \Sigma_\mu}{E_p} \]

\(f(x, p) \)

sampling particles according to the Cooper-Frye formula
(transform hydrodynamic information into particles)

isothermal hypersurface

hydrodynamic information (temperature, flow velocity, ...)

transport

hydro
Model: Cooper-Frye sampling

F. Cooper and G. Frye (1974)

sampling particles according to the Cooper-Frye formula

\[
\begin{align*}
\frac{dN}{d^3\mathbf{p}}igg|_{\text{1-cell}} &= [f_0(x, p) + \delta f_{\text{shear}}(x, p) + \delta f_{\text{bulk}}(x, p)] \frac{p^\mu \Delta^3 \Sigma_\mu}{E_p} \\
f_0(x, p) &= \frac{1}{\exp \left(\frac{(p \cdot u)}{T}\right) + 1} \\
\delta f_{\text{shear}}(x, p) &= f_0(1 \pm f_0) \frac{p^\mu p^\nu \pi^{\mu\nu}}{2T^2(\epsilon_0 + P_0)} \\
\delta f_{\text{bulk}}(x, p) &= -f_0(1 \pm f_0) \frac{C_{\text{bulk}} \Pi}{T} \left[c_s^2 (p \cdot u) - \frac{(-p^\mu p^\nu \Delta_{\mu\nu})}{3(p \cdot u)} \right] \\
\frac{1}{C_{\text{bulk}}} &= \frac{1}{3T} \sum_n m_n^2 \int \frac{d^3\mathbf{k}}{(2\pi)^3 E_\mathbf{k}} \ f_{n,0}(1 \pm f_{n,0}) \left(c_s^2 E_\mathbf{k} - \frac{\left|\mathbf{k}\right|^2}{3E_\mathbf{k}} \right)
\end{align*}
\]

P. Bozek (2010)
Model: UrQMD cascade

Ultra-relativistic Quantum Molecular Dynamics

S. A. Bass et al. (1998)

Monte-Carlo implementation of transport theory

\[p^\mu \frac{\partial}{\partial x^\mu} f_i(x, p) = C_i[f] \]

Which species? : 55 baryons + 32 mesons with masses up to 2.25 GeV

Cross sections : based on experimental data

Jet-hadron interaction by PYTHIA

Keeps track of particle trajectories
Parameters are tuned to fit multiplicity, mean p_T and integrated flow coefficients v_n.

The bulk viscosity is crucial to describe those observables.

The shear viscosity $\frac{\eta}{s} = 0.095$ is favored.
The low- \(p_T \) spectra are well described.
Identified hadron p_T-spectra

arXiv:1704.04216

Jet production and energy-loss are necessary.
Jet production and energy-loss are necessary.

Elliptic flow (identified hadrons)

arXiv:1704.04216

Jet production and energy-loss are necessary.
PART 1
Hybrid approach and description of soft (low-p_T) physics

PART 2
Jet production and energy loss for hard (high-p_T) physics
Hard process at the position of binary collision (PYTHIA)

Energy loss
- Radiation (AMY)
- Collision (with thermal partons)

Fragmentation into hadrons (PYTHIA / LUND string model)

Model: MARTINI jets

Modular Algorithm for Relativistic Treatment of heavy IoN Interaction
B. Schenke, C. Gale and S. Jeon (2010)
Model: MARTINI jets

Modular Algorithm for Relativistic Treatment of heavy Ion Interaction
B. Schenke, C. Gale and S. Jeon (2010)

Hard process at the position of binary collision (PYTHIA)

\[P_{\text{jet}}(\hat{p}_T, \text{min}) = \frac{\sigma_{\text{jet}}(\hat{p}_T, \text{min})}{\sigma_{\text{inel}}} \]

\[\sigma_{\text{jet}}(\hat{p}_T, \text{min}) = \sum_{i,j} \int dx_1 f_i(x_1) \int dx_2 f_j(x_2) \hat{\sigma}_{(i,j)}(x_1, x_2; \hat{p}_T, \text{min}) \]
Model: MARTINI jets

Modular Algorithm for Relativistic Treatment of heavy Ion Interaction
B. Schenke, C. Gale and S. Jeon (2010)

Hard process at the position of binary collision (PYTHIA)

Energy loss
- Radiation (AMY)
- Collision (with thermal partons)
Model: MARTINI jets

Modular Algorithm for Relativistic Treatment of heavy Ion Interaction
B. Schenke, C. Gale and S. Jeon (2010)

Hard process at the position of binary collision (PYTHIA)

Energy loss
- Radiation (AMY)
- Collision (with thermal partons)

Fragmentation into hadrons (PYTHIA / LUND string model)
Model: jet energy loss

Radiative energy loss (AMY)

Collinear emission

Nearly on-shell intermediate propagator

Infinite number of diagrams ➤ Integral equations

figures by G-Y. Qin
Model: jet energy loss

Collisional energy loss (soft approximation)

B. Schenke, C. Gale and G-Y. Qin (2009)

G-Y. Qin et al. (2008)

\[
\begin{align*}
\frac{dE}{dt} \bigg|_{qq} &= \frac{2}{9} n_f \pi \alpha_s^2 T^2 \left[\ln \frac{ET}{m_g^2} + c_f \frac{23}{12} + c_s \right] \\
\frac{dE}{dt} \bigg|_{gq} &= \frac{4}{3} \pi \alpha_s^2 T^2 \left[\ln \frac{ET}{m_g^2} + c_b \frac{13}{6} + c_s \right] \\
\frac{dE}{dt} \bigg|_{gq} &= \frac{1}{2} n_f \pi \alpha_s^2 T^2 \left[\ln \frac{ET}{m_g^2} + c_f \frac{13}{6} + c_s \right] \\
\frac{dE}{dt} \bigg|_{gg} &= 3\pi \alpha_s^2 T^2 \left[\ln \frac{ET}{m_g^2} + c_b \frac{131}{48} + c_s \right]
\end{align*}
\]
Identified hadron p_T-spectra

Jet production and energy-loss are necessary.
Identified hadron p_T-spectra

Jet production and energy-loss are necessary.
Charged hadron R_{AA} (inclusive)

Hadronic rescattering has significant effects on p_T distribution.
Elliptic flow (identified hadrons)

Hadronic rescattering makes it more anisotropic.
Elliptic flow (identified hadrons)

Hadronic rescattering makes it more anisotropic.
Triangular flow (charged hadrons)

Hadronic rescattering makes it more anisotropic.

Legend
- UrQMD w/ coll feeddown
- CMS $v_3 \{EP\}$

Graph Details
- $h/-$
- Pb+Pb 2.76 TeV 20-30%
- $\alpha_S = 0.23$
- $\alpha_S = 0.2$
- $\eta/s = 0.095$
- $T_{sw} = 145$ MeV

Equations
- $v_3[2] (p_T)$
- p_T (GeV)
Conclusion & Outlook

- A hybrid model, involving both the soft and hard physics of heavy ion collisions, is presented.

- The low-p_T distribution is well reproduced, while we need jet production and energy-loss to extend toward the higher p_T regime.

- Jet quenching in hadronic phase has significant effects in the intermediate-p_T regime of mini-jets.

- Long-term plan: using SMASH as an afterburner
Backup Slides
Model: Cooper-Frye sampling

F. Cooper and G. Frye (1974)

sampling particles according to the Cooper-Frye formula

1. sample number of particles based on Poisson distribution

\[\bar{N}|_{1\text{-cell}} = \begin{cases}
[n_0(x) + \delta n_{\text{bulk}}(x)] u^\mu \Delta \Sigma_\mu & \text{if } u^\mu \Delta \Sigma_\mu \geq 0 \\
0 & \text{otherwise}
\end{cases} \]

\[n_0(x) = d \int \frac{d^3k}{(2\pi)^3} f_0(k) \]

\[\delta n_{\text{bulk}}(x) = d \int \frac{d^3k}{(2\pi)^3} \delta f_{\text{bulk}}(k) \]

2. sample momentum of each particles

according to the Cooper-Frye formula shown in the main slide
Model: jet energy loss

Radiative energy loss (AMY)

\[
\frac{d\Gamma}{dk}(p, k) = \frac{C_s g^2}{16\pi p^7} \frac{e^{k/T}}{e^{(p-k)/T} + 1} \left\{ \begin{array}{l}
\frac{1+(1-x)^2}{x^3(1-x)^2} \quad q \to qg \\
N_f \frac{x^2+(1-x)^2}{x^2(1-x)^2} \quad g \to q\bar{q} \\
\frac{1+x^4+(1-x)^4}{x^3(1-x)^3} \quad g \to gg
\end{array} \right. \\
\times \int \frac{d^2h}{(2\pi)^2} 2h \cdot \text{Re} \mathbf{F}(h, p, k)
\]

\[
2h = i \delta E(h, p, k) \mathbf{F}(h, p, k) + g_s^2 \int \frac{d^2q_\perp}{(2\pi)^2} \frac{m_D^2}{q_\perp^2(q_\perp^2 + m_D^2)} \times \left\{ (C_s - C_A/2)[\mathbf{F}(h) - \mathbf{F}(h - k \mathbf{q}_\perp)] + (C_A/2)[\mathbf{F}(h) - \mathbf{F}(h + p \mathbf{q}_\perp)] \right. \\
\left. + (C_A/2)[\mathbf{F}(h) - \mathbf{F}(h - (p - k) \mathbf{q}_\perp)] \right\}
\]

\[
\delta E(h, p, k) = \frac{h^2}{2pk(p-k)} + \frac{m_k^2}{2k} + \frac{m_{(p-k)}^2}{2(p-k)} - \frac{m_p^2}{2p} \\
h \equiv (k \times p) \times \mathbf{e}_\parallel
\]