Open heavy flavour with ALICE

A. Rossi (INFN Padova) on behalf of the ALICE Collaboration

12th International Workshop on high-\(p_T\) physics in the RHIC/LHC era
Heavy-flavour with ALICE: main goals

Pb-Pb collisions
- Large mass → early formation time
- Creation/annihilation rate in the medium very small
- Production can be calculated with pQCD down to $p_T=0$
- **Ideal probes to study the parton interactions in the medium**
- **Heavy-quark energy loss:**
 - radiative + collisional processes
 - mass and Casimir factor dependence
 - hadronisation via coalescence → enhanced D_s and charmed-baryon yields
- **Heavy-quark azimuthal anisotropy**
 - participation to system collective motion and possible thermalisation (at low p_T)
 - path length dependence of energy loss (at high p_T)

pp collisions
- Reference for p-Pb and Pb-Pb collisions.
- Characterise heavy-flavour production and set constraints to theoretical calculations.

p-Pb collisions
- Study cold nuclear matter effects (shadowing, gluon saturation, k_T-broadening, energy loss in CNM in the initial and final state)
- Address possible collective effects and effects related to the (possible) formation of a QGP in p-Pb collisions.

More theoretical insight: M. Nahrgang (next talk)
Open heavy-flavour with ALICE

Charmed hadrons ($|y|<0.5$)
Invariant mass analysis of
- $D^0 \rightarrow K^- \pi^+$
- $D^{**} \rightarrow D^0 \pi^+$
- $D^+ \rightarrow K^- \pi^+ \pi^+$
- $D_s^+ \rightarrow \phi \pi^+, \phi \rightarrow K^- K^+$
- $\Lambda_c^+ \rightarrow p K^- \pi^+$
- $\Lambda_c^+ \rightarrow p K^0_s, K^0_s \rightarrow \pi^+ \pi^-$
- $\Lambda_c^+ \rightarrow e^+ \Lambda \nu, \Lambda \rightarrow p \pi^-$
- $(\Xi_b \rightarrow) \Xi_c^0 \rightarrow e^+ \Xi^- \nu_e, \Xi^- \rightarrow \pi^- \Lambda$

HF –decay electrons ($|y|<0.9$)
- c, b hadrons $\rightarrow e X$
- b hadrons $\rightarrow e X$

Beauty-decay J/ψ ($|y|<0.9$)
- b hadron $\rightarrow J/\psi X, J/\psi \rightarrow e^+ e^-$

HF-decay muons ($2.5<y<4$)
- c, b hadrons $\rightarrow \mu X$

Measurements of:
- Single particle production
 - Also vs. event activity (multiplicity, centrality)
- Angular correlations with charged particles
- HF-tagged jets
Recent results in pp collisions

- D⁰, D⁺, D*⁺, D⁺s meson cross section measured at several collision energies
- Down to $p_T=0$ for D⁰ at 7 TeV
- pQCD calculations describe the data within uncertainties
- Data uncertainties much smaller than theoretical ones
Heavy-flavour decay electron cross section at 13 TeV in |y|<0.8

Very precise data to constrain charm and beauty production → input to theorists
Yield of forward HF-decay muons increases with charged particle multiplicity at central rapidity

- Slightly faster than linear increase at high mult.
- p_T dependence under scrutiny

Similar increase for HF-decay muons (2.5<y<4) and D mesons ($|y|<0.5$)

Model calculations need to include multiple parton interactions to qualitatively describe the trend (see backup)
Charmed baryons in pp and p-Pb collisions

Λ_c production cross section higher than theoretical expectations in pp and p-Pb collisions
Charmed baryons in pp and p-Pb

- Λ_c^+/D^0 and Ξ_c^0/D^0 higher than theoretical expectations (large uncertainties)
 → Is charm hadronisation understood?
 → Need to reduce experimental uncertainties to provide more precise input to models
p-Pb collisions
Non-strange D meson and $D_s^+ R_{pPb}$ compatible with unity.

Described by models including Cold Nuclear-Matter effects.

Described by models including formation of QGP in p-Pb, though data disfavour suppression >10-15% at high p_T.

\rightarrow Need to improve precision at low p_T for more conclusive statements

\rightarrow Looking forward to new pp run at 5 TeV
Production vs. centrality

Extension of results in ALICE-PUBLIC-2017-008

\[Q_{p\text{Pb}}^{0-10\%}(p_T) = \frac{dN_{p\text{Pb}}^{0-10\%}}{dp_T} \times \frac{\langle T_{AA} \rangle_{0-10\%} \times d\sigma_{pp}}{dp_T} \]

Event centrality determined with ZN calorimeters (least biased selection, PRC 91 064905 2015)

- D-meson \(Q_{p\text{Pb}}\) in 0-10% and 60-100% compatible with unity and within each other
- Similar trends than charged particles
Production vs. centrality

Extension of results in ALICE-PUBLIC-2017-008

- Hint for D-meson “Central-to-peripheral” ratio (Q_{CP}) larger than unity
 - 1.5σ in $2<p_T<8$ GeV/c
- Very similar to charged particle Q_{CP}
- Similar “bumpy” trend observed for proton and strange-baryon R_{pPb}
 - Initial-state effect? Mass effect? Radial flow?
 - … early to say, need comparison with theoretical calculations
In pp and p-Pb collisions no evidence of modification of D_s^+/D^+ ratio
Heavy-flavour decay electron v_2

- Analysis of “per-trigger” HF-decay electron-hadron azimuthal correlations in 20% collisions with higher multiplicity (selected with V0A, $2<\eta<5.1$)
Heavy-flavour decay electron v_2

- Analysis of “per-trigger” HF-decay electron-hadron azimuthal correlations in 20% collisions with higher multiplicity (selected with V0A, $2<\eta<5.1$)
- Subtraction of jet contribution from correlations in 60-100% multiplicity class
Heavy-flavour decay electron v_2

- Analysis of “per-trigger” HF-decay electron-hadron azimuthal correlations in 20% collisions with higher multiplicity (selected with V0A, $2<\eta<5.1$)
- Subtraction of jet contribution from correlations in 60-100% multiplicity class
- Positive $v_2\{2,\text{sub}\}$ measured for heavy-flavour decay electrons in $-1.26<y<0.34$
 - Initial-state effects, collective effects?
- Data suggest relevant effect, close to maximum observed for charged particles
Pb-Pb collisions
Non-strange-D-meson R_{AA}

- Strong suppression of high-p_T D-meson production in central Pb-Pb collisions.
- Suppression increasing with centrality.
- Similar R_{AA} at 2.76 TeV and 5 TeV
 - Improved precision and high-p_T reach with run-2 data
• Strong suppression of high-p_T D-meson production in central Pb-Pb collisions.
• Suppression increasing with centrality.
• Similar R_{AA} at 2.76 TeV and 5 TeV
 • Improved precision and high-p_T reach with run-2 data
 • Expected in models from balancing of denser medium and harder spectrum

D_s^+-meson R_{AA}

Pb-Pb, $\sqrt{s_{NN}} = 5$ TeV (run 2)

- Average D^0, D^+, D^{**}
- D_s^+

Filled markers: pp rescaled reference
Open markers: pp p_T-extrapolated reference

Hints

- Hint for $R_{AA}(D_s^+) > R_{AA}$ (non-strange D) at low p_T.
- Hint for higher D_s^+/non-strange D meson ratio in Pb-Pb than pp collisions, w/o evident centrality dependence

→ Hadronisation via coalescence in a strangeness-rich environment?
D_{s}^{+}-meson \ R_{AA}

Pb-Pb, $$\sqrt{s_{NN}}=5 \text{ TeV (run 2)}$$

- **ALICE Preliminary**
 - 0-10% Pb-Pb, $$\sqrt{s_{NN}} = 5.02 \text{ TeV}$$
 - $$|y|<0.5$$

- PHSD, Average $$D^{0}, D^{+}, D^{++}$$
- PHSD, $$D_{s}^{+}$$
- TAMU, Average $$D^{0}, D^{+}, D^{++}$$
- TAMU, $$D_{s}^{+}$$

Filled markers: pp rescaled reference

Open markers: pp, $$\rho_{\gamma}$$-extrapolated reference

- Average $$D^{0}, D^{+}, D^{++}$$
- $$D_{s}^{+}$$

Hint for $\ R_{AA}(D_{s}^{+})>R_{AA}$(non-strange D) **at low** p_{T}.

Hint for higher D_{s}^{+}/non-strange D meson ratio in Pb-Pb than pp collisions, w/o evident centrality dependence

→ **Hadronisation via coalescence in a strangeness-rich environment?**

- TAMU: PLB 735, 445-450 (2014)
Heavy-flavour decay leptons

- Strong suppression of heavy-flavour decay electrons [muons] at central [forward] rapidity in 0-10% Pb-Pb collisions. Similar results at central and forward rapidity
- Beauty main component from $p_T > 5$ GeV/c (FONLL and pp measurements)
 → indication of beauty suppression at high p_T
- Beauty-electron R_{AA} measured directly with impact parameter fit (at 2.76 TeV): indication of suppression for $p_T > 3$ GeV/c
- Hint of R_{AA} (beauty electrons) > R_{AA} (HF electrons): consistent with expectation of smaller energy loss for beauty quarks
Open charm and beauty

At high p_T:

\[R_{AA}(J/\psi \text{ from B}) > R_{AA}(D) \text{ in central collisions} \]

Indication of $R_{AA}(B) > R_{AA}(D)$

The different suppression and the centrality dependence as expected from models with quark-mass dependent energy loss ($\Delta E_g > \Delta E_{lq} \geq \Delta E_c > \Delta E_b$)

Expected from dead cone effect:

\[\alpha \propto \frac{1}{\left[\theta^2 + \left(\frac{m_Q}{E_Q}\right)^2 \right]^2} \]

Dokshitzer, Khoze, Troyan, JGP 17 (1991) 1602.
Open charm and beauty

At high p_T:

$$R_{AA}(J/\psi \text{ from B}) > R_{AA}(D)$$

in central collisions

Indication of $R_{AA}(B) > R_{AA}(D)$

The different suppression and the centrality dependence as expected from models with quark-mass dependent energy loss

$(\Delta E_g > \Delta E_{lq} \geq \Delta E_c > \Delta E_b)$

Expected from dead cone effect:

\[
\frac{1}{\theta^2 + (m_Q / E_Q)^2} \propto \theta^2
\]

Similar D meson and pion R_{AA}

Expected from small charm-quark mass effects + different charm and gluon/light-quark spectrum slope and fragmentation

(e.g. see M. Djordjevic, PRL112 (2014) 042302)
D-meson v_2

- Compatible v_2 of D^0, D^+, D^{*+}.
- D-meson average v_2 significantly larger than 0 up to 10 GeV/c charm quarks sensitive to medium collective motion.
- First measurement of D_s v_2: compatible with non-strange D-meson v_2 within uncertainties.
D-meson v_2

- Compatible v_2 of D^0, D^+, D^{*+}.
- D-meson average v_2 significantly larger than 0 up to 10 GeV/c \rightarrow charm quarks sensitive to medium collective motion.
- First measurement of $D_s v_2$: compatible with non-strange D-meson v_2 within uncertainties.
- Similar v_2 at $\sqrt{s_{NN}}$=2.76 and 5 TeV.
- D meson and charged pion v_2 compatible within uncertainties: hint for smaller v_2 of D mesons for $p_T<4$ GeV/c.
D-meson v_2

- Compatible v_2 of D^0, D^+, D^{*+}.
- D-meson average v_2 significantly larger than 0 up to 10 GeV/c →charm quarks sensitive to medium collective motion.
- First measurement of D_s v_2: compatible with non-strange D-meson v_2 within uncertainties.
- Similar v_2 at $\sqrt{s_{NN}} = 2.76$ and 5 TeV.
- D meson and charged pion v_2 compatible within uncertainties: hint for smaller v_2 of D mesons for $p_T < 4$ GeV/c.

- Similar D^0 v_2 in 10-30% and 30-50%
D-meson \(v_2 \) with Event-Shape Engineering

Event-by-event variation of the flow coefficients \((v_n)\) at fixed centrality can be large

Related to initial-condition fluctuations and event eccentricity

→ Investigate flow vs. 2\(^{nd}\) order reduced \(q \)-vector

\[
q_2 = \frac{|\bar{Q}_2|}{\sqrt{M}}, \quad Q_{2,x} = \sum_{i=1}^{M} \cos 2\varphi_i, \quad Q_{2,y} = \sum_{i=1}^{M} \sin 2\varphi_i
\]

\[
\langle q_2^2 \rangle \approx 1 + \langle M - 1 \rangle \left\langle v_2^2 - \delta_2 \right\rangle
\]

\(\delta \): non-flow effects

\(M \): multiplicity

\(v_2 \): flow strength

Significant separation of D-meson \(v_2 \) in events with **large** and **small** \(q_2 \)

Charm sensitive to collectivity of light-hadron bulk, and by **event-by-event initial-conditions fluctuations**
Comparison to models (2)

High p_T: region dominated by radiative energy loss

PQCD-based models provide a fairly good description

<table>
<thead>
<tr>
<th>pQCD e-loss MODELS</th>
<th>Collisional energy loss</th>
<th>Radiative energy loss</th>
<th>Recombination</th>
<th>Hydro</th>
<th>nPDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUJET3.0 JHEP 02 (2016) 169</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Djordjevic PRC 92 (2015) 024918</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>MC@sHQ+EPOS PRC 89 (2014) 014905</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>SCET JHEP 03 (2017) 146</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
</tr>
</tbody>
</table>
Comparison to models (1)

Low p_T: fairly good description with transport models → important role of recombination and elastic scatterings

<table>
<thead>
<tr>
<th>TRANSPORT MODELS</th>
<th>Collisional energy loss</th>
<th>Radiative energy loss</th>
<th>Recombination</th>
<th>Hydro/dynamics</th>
<th>nPDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAMPS</td>
<td>✔</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
</tr>
<tr>
<td>LBT</td>
<td>✔</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>arXiv:1703.00822</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHSD</td>
<td>✔</td>
<td></td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PRC 93 (2016) 034906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWLANG</td>
<td>✔</td>
<td></td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>EPJC 75 (2015) 121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAMU</td>
<td>✔</td>
<td></td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Courtesy of E. Bruna
Comparison to models (3)

• Models able to reproduce v_2 favour diffusion coefficient $2\pi TD_s(T)$ in the range 1.5-7 at T_c with a corresponding thermalisation time $\tau_{charm}=3$-14 fm/c.

• Powerful constraints by considering complementary observables (R_{AA} and v_2 of non-strange D and D$_s^+$) over wide p_T ranges and in different centrality classes.

More by M. Nahrgang (next talk)
Plans for run 3 and run 4

Detector upgrade (LS2) → improve data precision, extend p_T range, new observables, in particular D meson down to $p_T=0$, B mesons, heavy-flavour baryons in Pb-Pb.

→ Deeper understanding of heavy-quark interaction with the QGP constituents

→ Allows for determination of transport coefficients and diffusion coefficients

... and tremendous boost for HF jets, HF correlations, event-shape-engeneering, studies as a function of event multiplicities in small systems, ...
First steps towards the study of heavy-flavour jet production and properties
Charm jet production in pp and p-Pb collisions

- Charm jets **tagged by the presence of a fully reconstructed D meson**
- D-jet spectrum measured from $p_T=5$ GeV/c to 30 GeV/c \rightarrow low p_T reach!
- Described by POWHEG+PYTHIA6 (Perugia 2011 tune) simulation within uncertainty
- Data uncertainty smaller than theoretical ones
- Promising for future measurements on larger samples (pp) and in Pb-Pb collisions
 - Unique opportunity to study charm jet properties and structure
Azimuthal correlation of D mesons and charged particles: described by PYTHIA6 Perugia tunes, PYTHIA8 and POWHEG+PYTHIA after baseline subtraction
• p-Pb results in agreement with those measured in pp at 7 TeV (EPJC 77 245 (2017))
• Calibrated tool to investigate possible modification of charm jet properties in Pb-Pb
HF-decay electron correlation with charged particles in Pb-Pb collisions

Near-side yield:

\[
\frac{N_{\text{coll}}}{N_{\text{d}}(\Delta \phi)} = \frac{1}{N_{\text{d}}(\Delta \phi)}
\]

Pb-Pb collisions

\[
\Delta \phi (\text{rad})
\]

Near-side

- \(c, b\) → e-charged particles \(\Delta \phi\) distribution
- \(4 < p_T^{\text{HF,le}} < 12 \text{ GeV/c}, 1 < p_T^{\text{assoc}} < 2 \text{ GeV/c}\)
- \(|\Delta \eta| < 1\)

Pb-Pb

- 0-20% Pb-Pb

p-Pb

- 0-20% central

Hint for an enhancement of associated yield of low-\(p_T\) particles in central Pb-Pb collisions w.r.t. p-Pb collisions

Similar to \(\pi^0\)-hadron

(PLB 762 238-250 (2016))

ALICE Preliminary

- \(\sqrt{s_{NN}} = 5.02 \text{ TeV}\)

Near-side yield:

- \(Y_{\text{Pr-Pb}/Y_{p-Pb}}\)

ALICE Preliminary

- \(4 < p_T^{\text{le}} < 12 \text{ GeV/c}\)
- \(|\Delta \eta| < 1\)
- \(|\Delta \phi| < 0.8\)

HF electron as “trigger” particle

Underlying event

- ALICE, 0-10% Pb-Pb, \(\sqrt{s_{NN}} = 2.76 \text{ TeV}\)
- \(8 < p_T^{\text{n}} < 16 \text{ GeV/c}\)
- Near side (\(|\Delta \eta| < 0.7\))

- \(\pi^0\)-hadron (v, bkg)
- AMPT model
- JEWEL model
Conclusion

Proton-proton
• D-meson production in proton-proton collisions described by pQCD over a wide momentum range (down to $p_T=0$): theoretical uncertainties much larger than data ones.
• Λ_c^+,Ξ_c^0-baryon production underestimated by models: do we have charm hadronisation under control?

Proton-Pb
• D-meson R_{pPb} compatible with unity \rightarrow “small” effects from CNM (or QGP in p-Pb)
 • Crucial to improve precision at low p_T \rightarrow new pp reference (2017)
• Hint for $Q_{\text{CP}} > 1$
• Positive v_2 of HF-decay electrons

Pb-Pb
• Significant D-meson suppression \rightarrow significant charm energy loss
• Indication for $R_{\text{AA}}(D) < R_{\text{AA}}(B)$ \rightarrow mass-dependent energy loss
• Hint for $R_{\text{AA}}(D_s^+) > R_{\text{AA}}$(non-strange D) \rightarrow hadronisation via coalescence?
• Significant charm flow observed: hint for $v_2(D) < v_2(\pi^+)$ below 4 GeV/c

\rightarrow Charm quarks strongly interact with the medium and are influenced by its collective motion
\rightarrow Further support for hadronisation via coalescence?
• Improved precision from run-2 data allows to set important constraints for models describing charm R_{AA} and v_2.

Next, run 2: improve precision with data from incoming pp run at 5 TeV and 2018 Pb-Pb run
run 3,4: “precision era” for charm an beauty
Conclusion

Proton-proton

• D-meson production in proton-proton collisions described by pQCD over a wide momentum range (down to $p_T=0$): theoretical uncertainties much larger than data ones.
• $\Lambda_c^+,$ Ξ_c^0-baryon production underestimated by models: **do we have charm hadronisation under control?**

Proton-\(\text{Pb}\)

• D-meson R_{pPb} compatible with unity à “small” effects from CNM (or QGP in \(\text{p-Pb}\))
• Crucial to improve precision at low p_T à new \(\text{pp}\) reference (2017)
• Hint for $Q^\text{CP}>1$
• Positive v_2 of HF-decay electrons

Pb-Pb

• Significant D-meson suppression à significant charm energy loss
• Indication for $R_{\text{AA}}(D)<R_{\text{AA}}(B)$ à mass-dependent energy loss
• Hint for $R_{\text{AA}}(D_s^+ +) > R_{\text{AA}}(\text{non-strange D})$ à hadronisation via coalescence?
• Significant charm flow observed: hint for $v_2(D)<v_2(\pi^+)$ below 4 GeV/c à Charm quarks strongly interact with the medium and are influenced by its collective motion à Further support for hadronisation via coalescence?

• Improved precision from run-2 data allows to set important constraints for models describing charm R_{AA} and v_2 D-meson data (RHIC and LHC run 1) used to constrain diffusion coefficient with a Bayesian model-to-data analysis

\[R_{\text{AA}} \text{ and } v_2 \text{ D-meson data (RHIC and LHC run 1) used to constrain diffusion coefficient with a Bayesian model-to-data analysis} \]

It will be a long journey … but (hopefully) rewarding

Run 3,4: “precision era” for charm and beauty

Y. Xu, M. Nahrgang et al, arxiv 1704.078001v1
Extra
D-meson v_2 with Event-Shape Engineering

New promising testing ground for theoretical models

P. Gossiaux et al., arXiv:1705.02271
Production vs. centrality

- Heavy-flavour electron QCP compatible with unity
- Consistent with D-meson result once decay kinematics is taken into account
Heavy-flavour reconstruction with ALICE

Heavy-flavour hadron decay leptons:
- Electrons at mid rapidity ($|y|<0.9$)
 - electron identification with TPC, TOF, ITS, TRD, EMCAL
 - Non-HF electrons (mainly gamma-conversion and π^0, η Dalitz decay) removed
 1) statistically with data-tuned cocktail
 2) by finding the “partner” with e^+e^- invariant mass technique
- Muons at forward rapidity (-4<$$\eta$$<-2.5) with muon spectrometer:
 - Tracks matched with trigger
 - Subtraction of muons from primary π,K decays via simulations with data-tuned π,K abundances

Charmed hadron reconstruction ($|y|<0.9$)
Invariant mass analysis of reconstructed hadronic decays:
$D^0 \rightarrow K^-\pi^+$, $D^{*+} \rightarrow D^0\pi^+$, $D^+ \rightarrow K^+\pi^+\pi^+$ $D^+_s \rightarrow \phi\pi^+$, $\phi \rightarrow K^-K^+$
$\Lambda_c^+ \rightarrow pK^-\pi^+$, $\Lambda_c^+ \rightarrow pK^0_s$

Displaced secondary vertices (\rightarrow ITS)
+ PID (p/K/π separation with TOF+TPC)

... and semi-leptonic decays (no decay vertex reco)
$\Lambda_c^+ \rightarrow e^+\Lambda\nu$, $\Lambda \rightarrow p\pi^-$
$\Xi_c^0 \rightarrow e^+\Xi^-\nu_e$, $\Xi^- \rightarrow \pi^-\Lambda$

ALICE charged particles

Int. J. Mod. Phys. A 29 (2014) 1430044
More details on D^0 reconstruction

2 techniques
-- “Standard” with decay vertex reconstruction: topological selection to reject background → higher S/B, lower selection efficiency (see backup)

-- (D0 only) Analysis w/o vertex reconstruction: yield extraction with background invariant mass distribution estimated with several techniques (event mixing, track rotation, like-sign, direct fit), better precision for $p_T<1$ GeV/c (short decay length)

$\rightarrow D^0$ cross section measured down to $p_T=0$ (so far in pp at $\sqrt{s}=7$ TeV and p-Pb at $\sqrt{s_{NN}}=5$ TeV)
The ALICE detector

Central barrel (|\eta|<0.9, B=0.5 T)
Track and vertex reconstruction (TPC, ITS)
Particle Identification

EMCAL

-4<\eta<-2.5 (2°<\theta<9°)

DCAL

TOF

ITS

TPC

Topological layout of the ALICE detector components:

- **TPC**
- **TOF**
- **ITS**
- **DCAL**
- **EMCAL**
- **MUON SPECTROMETER**

Data:

- **p-Pb**
 - \(p_{\text{lab}} = 5.02 \text{ TeV} \)
 - 1.5 < p < 1.6 (GeV/c)

PID:

- Hadron rejection factor: 185
- Electron efficiency: 0.86

Graphs:

- Distribution of particles in TPC and TOF
- PID efficiency

Equations:

- \(-1 \sigma < (\text{TPC } dE/dx - <\text{TPC } dE/dx>) < 3 \sigma \)
- \((\text{TPC } dE/dx - <\text{TPC } dE/dx>) < -4 \sigma \)
ALICE data-taking in Run-2

<table>
<thead>
<tr>
<th>System</th>
<th>Year</th>
<th>$\sqrt{s_{NN}}$ (TeV)</th>
<th>L_{int}</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>2015-2016</td>
<td>13</td>
<td>~14 pb$^{-1}$</td>
</tr>
<tr>
<td>pp</td>
<td>2015 (~4 days)</td>
<td>5.02</td>
<td>~100 nb$^{-1}$</td>
</tr>
<tr>
<td>p-Pb</td>
<td>2016</td>
<td>5.02</td>
<td>~3 nb$^{-1}$</td>
</tr>
<tr>
<td>p-Pb</td>
<td>2016</td>
<td>8.16</td>
<td>~20 nb$^{-1}$</td>
</tr>
<tr>
<td>Pb-p</td>
<td>2016</td>
<td>8.16</td>
<td>~20 nb$^{-1}$</td>
</tr>
<tr>
<td>Pb-Pb</td>
<td>2015</td>
<td>5.02</td>
<td>~0.4 nb$^{-1}$</td>
</tr>
</tbody>
</table>

- Goals for 2017-18:
 - Pb-Pb: reach 1/nb target
 - pp 13 TeV: reach 40/pb target
 - High statistics pp 5 TeV sample
Recent results in pp collisions

Important constraints for theoretical calculations
D-meson yields vs. multiplicity: comparison with models (pp)

Percolation (Ferreiro, Pajares, PRC 86 (2012) 034903)
Particle production via exchange of colour sources between projectile and target (close to MPI scenario)
- Faster than linear increase

EPOS 3.099 (Werner et al., PRC 89 (2014) 064903)
Gribov-Regge multiple-scattering formalism
Saturation scale to model non-linear effects
Number of MPI directly related to multiplicity ➔ slightly faster than linear
With hydrodynamical evolution applied to the core of the collision ➔ faster than linear increase

Soft-QCD tune
Colour reconnection
MPI ➔ Linear increase
Charm-particle species ratios (pp)

- D-meson species relative abundances as expected from theory, including D_s/non-strange D.
- Λ_c^+/D^0 and Ξ_c^0/D^0 higher than theoretical expectations (large uncertainties)
 → Is charm hadronisation understood?
 → Need to reduce experimental uncertainties to provide more precise input to models
Charmed baryons in pp and p-Pb

- Λ_c production cross section higher than theoretical expectations
- R_{pPb} compatible with unity, with D meson R_{pPb}, with pQCD+nPDF, as well as with a model assuming QGP formation in p-Pb
Charm jet properties: D-h correlations

- Azimuthal correlation of D mesons and charged particles: described by PYTHIA6 Perugia tunes, PYTHIA8 and POWHEG+PYTHIA
- p-Pb results in agreement with those measured in pp at 7 TeV (EPJC 77 245 (2017))
Charm jet properties: D-h correlations

Similar correlation functions in pp at 7 TeV (EPJC 77 245 (2017)) and p-Pb at 5.02 TeV, after baseline subtraction
D0-tagged jet in pp: detector performance

ALICE Simulation, PYTHIA6, pp, $\sqrt{s} = 7$ TeV
Charged Jets, Anti-k_T, $R=0.6$, $|\eta_{jet}|<0.3$ with $D^0 \rightarrow K\pi^+$ and c.c.
$0.2 < z_{det} < 1.0, 1 < p_{T,D} < 30$ GeV/c

Mean p_T resolution $\sim 11\%$

Jet p_T resolution $\sim 3\%$
In events with a selected D-meson candidate, jets are reconstructed replacing the D meson daughters with the reconstructed D-meson particle.

D-jets = jets with D-meson as one of the constituents

Spectrum of real D-jets obtained by subtracting the spectrum of jets with background D in the invariant mass sidebands from the spectrum in the D mass peak

Correction for efficiency

Feed-down subtraction based on POWHEG+PYTHIA simulations and efficiencies

Integrate over D-meson p_T bins

Unfolding for detector effects and underlying event fluctuations in p-Pb collisions
D-jets in pp collisions

D-jet spectrum measured from $p_T=5$ GeV/c to 30 GeV/c
Main syst. uncertainties: yield extraction, feed-down subtraction, unfolding
Described by POWHEG+PYTHIA6 (Perugia 2011 tune) simulation within uncertainty
ATLAS D^+-jet measurement in pp collisions

$R(\rho, z) = \frac{[D^+\text{-jet } (p_T, z) \text{ yield}]}{[\text{inclusive-jet yield } (p_T)]}$

$z = \frac{D^+ \text{ momentum along the jet direction}}{\text{jet energy}}$

$R(D^+\text{-jet/inclusive jets}) = 0.025 \pm 0.001^{(\text{stat.})} \pm 0.004^{(\text{syst.})}$ (for $0.3 < z < 1$, $|\eta| < 2.5$, $25 < p_T < 70 \text{ GeV/c}$)

- D^+-jet production w.r.t. inclusive jet production underestimated by models at low z
- Larger discrepancy at lower p_T
Positive v_2 of HF electrons in semi-central 20-40% Pb-Pb collisions at 2.76 TeV. v_2 tends to increase from central to semi-central collisions.

Similar v_2 at mid-rapidity [electrons] and forward rapidity [muons].

Similar v_2 at $\sqrt{s_{NN}}=2.76$ and 5 TeV
QGP tomography with heavy quarks

- Early production in hard-scattering processes with high Q^2
- Production cross sections calculable with pQCD
- Strongly interacting with the medium
- Hard fragmentation \Rightarrow measured meson properties closer to parton ones

$\text{“Calibrated probes” of the medium}$

Study parton interaction with the medium
- energy loss via radiative ("gluon Bremsstrahlung") collisional processes
 - path length and medium density
 - color charge (Casimir factor)
 - quark mass (e.g. from dead-cone effect)

Figure from A. Andronic et al., EPJC C76 (2016)

QGP tomography with heavy quarks

- Early production in hard-scattering processes with high Q^2
- Production cross sections calculable with pQCD
- Strongly interacting with the medium
- Hard fragmentation \Rightarrow measured meson properties closer to parton ones

\Rightarrow **“Calibrated probes” of the medium**

Study parton interaction with the medium

- **energy loss via radiative** ("gluon Bremsstrahlung")
- **collisional processes**
 - path length and medium density
 - **color charge** (Casimir factor)
 - **quark mass** (e.g. from dead-cone effect)

\[\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b \]
QGP tomography with heavy quarks

- Early production in hard-scattering processes with high Q^2
- Production cross sections calculable with pQCD
- Strongly interacting with the medium
- Hard fragmentation \rightarrow measured meson properties closer to parton ones

市场营销 probes” of the medium

Study parton interaction with the medium
- **energy loss via radiative** ("gluon Bremsstrahlung") collisional processes
 - path length and medium density
 - color charge (Casimir factor)
- quark mass (e.g. from dead-cone effect)

- medium modification to HF hadron formation
 - hadronization via quark coalescence

\[\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b \]
QGP tomography with heavy quarks

- Early production in hard-scattering processes with high Q^2
- Production cross sections calculable with pQCD
- Strongly interacting with the medium
- Hard fragmentation \Rightarrow measured meson properties closer to parton ones

\Rightarrow “Calibrated probes” of the medium

Study parton interaction with the medium
- energy loss via radiative (“gluon Bremsstrahlung”)
 - collisional processes
 - path length and medium density
 - color charge (Casimir factor)
 - quark mass (e.g. from dead-cone effect)

$\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$

- medium modification to HF hadron formation
 - hadronization via quark coalescence

- participation in collective motion \Rightarrow azimuthal anisotropy of produced particle

at all p_T for charm and beauty (large masses $>> \Lambda_{QCD}$)
D^+_s/D$^+$ ratio vs. multiplicity

In pp and p-Pb no evidence of modification of D^+_s/D$^+$ ratio