Jet fragmentation in two-particle correlations in pp, p-Pb, and Pb-Pb collisions

Vargyas, Márton

University of Jyväskylä
For the ALICE Collaboration
Jet energy loss

- Strong jet quenching is observed in heavy-ion collisions

- Analyses based on fully reconstructed jets:
 - strong di-jet energy asymmetry
 [ATLAS PRL 105(2010) 252303, CMS, PRC 84, 024906 (2011)]
 - centrality dependence of jet fragmentation
 [CMS arXiv:1406.0932]
 - quenched energy reappears at low p_T, also outside the jet cone
 [CMS, PRC 84, 024906 (2011)]

Two-particle correlations provide additional information
Energy loss in di-hadron correlations

- I_{AA} measurements by ALICE for $8 < p_{T, trig} < 15 \text{ GeV/c} \ & \ 3 \text{ GeV/c} < p_{T, assoc} < p_{T, trig}$

near side parton is sensitive to medium

- modification of jet fragmentation (softening)?
- modification of quark/gluon jet ratio?
- bias of the parton p_T spectrum after energy loss due to trigger selection?

- Near side I_{AA} at lower $p_{T, assoc}$?

- Near side modification in longitudinal jet shape?
Jet fragmentation

"Wide" component: high virtuality, soft QCD radiation

"Narrow" component: hadronization as in vacuum
Pb-Pb

Medium-induced jet energy loss
Di-hadron correlations

- Studying lower energy jets on statistical basis
- Background is averaged over many events
- Basic quantities

\[\Delta \varphi = \varphi_{\text{assoc}} - \varphi_{\text{trig}} \]
\[\Delta \eta = \eta_{\text{assoc}} - \eta_{\text{trig}} \]

Near side (intra jet):
Single jet properties
- jet fragmentation

Away side (inter jet):
Di-jet properties
- accoplanarity + momentum imbalance due to \(k_T \)
- additional medium-induced modification of recoil jet
• Analyze per-trigger yield
 positive and negative
 $\Delta \eta$ symmeterized

\[
Y(|\Delta \eta|) = \frac{1}{N_{\text{trigg.}}} \frac{dN}{d|\Delta \eta|}
\]

• Correlation functions corrected for experimental effects:
 single-particle efficiency and pair acceptance (event mixing)

• Background level estimated by fit:

• Evaluate ratio:

\[
I_{AA}(|\Delta \eta|) = \frac{Y_{\text{Pb-Pb}}(|\Delta \eta|)}{Y_{\text{PP}}(|\Delta \eta|)}
\]
I_{AA} at low p_T

Near side I_{AA} in 0-10%: moderate enhancement by ~ 20-50%

60-90%: less enhancement, no p_T-dependence

Same with identified (π^0) trigger

Only AMPT describes data qualitatively
Interpreting I_{AA}

Cartoon showing possible scenarios of jet shape modification

- **broadening**
- **unmodified/scaled**
- **narrowing**

Ratio	$dN/d	\Delta\eta	$		
rising	$I_{AA}(\Delta\eta)$	flat	falling

2017-10-05
Vargyas - 12th International Workshop on High-pT Physics in the RHIC/LHC era
\(I_{AA} \) at intermediate \(p_T \)

Pb-Pb events at \(\sqrt{s_{NN}} = 2.76 \) TeV

Trend of \(I_{AA}(|\Delta \eta|) \) is consistent with being flat.

Gray band gives scaling uncertainty
Brown boxes show point-to-point variable systematic uncertainty
Trend of $I_{AA}(|\Delta \eta|)$ shows a possible onset of jet shape modification in $\Delta \eta$ (narrowing). Only at high p_T.

$Pb-Pb$ events at $\sqrt{s_{NN}} = 2.76$ TeV
Energy loss conclusions

Near side I_{AA} in 0-10% central Pb-Pb collisions exhibits enhancement of 20-50% down to $p_{T,assoc} = 0.7 \text{ GeV/c}$

Previous talk by Monika:
Lower p_T broadening (in both $\Delta \eta$ and $\Delta \phi$)

At high-p_T ($8 < p_{T,\text{trig}} < 15 \text{ GeV/c} + 4 \text{ GeV/c} < p_{T,\text{assoc}} < p_{T,\text{trig}}$)
we see a hint for narrowing along $\Delta \eta$

Energy loss of high-p_T partons?
p-Pb, pp

System- and energy-dependence of fragmentation
Jet fragmentation

“Wide” component: high virtuality, soft QCD radiation

“Narrow” component: Hadronization as in vacuum

Separate components with high-p_T trigger
Observables

Two-particle correlation of charged hadrons

Trigger: leading particle (~ jet axis)

\[j_T = \frac{|\vec{p}_t \times \vec{p}_a|}{|\vec{p}_t|} \quad x_\parallel = \frac{\vec{p}_t \cdot \vec{p}_a}{\vec{p}_t^2} \]

Near-side only

Definition of near-side:

\[\vec{p}_t \cdot \vec{p}_a > 0 \]
Simulation (two-component model)

No Final State Radiation (FSR) – nearly Gaussian shape

With FSR – long tail
In reality (3 components)

Additional background: randomized pairs

3 component fit

RMS and yield from fit

\[
\frac{1}{N_{\text{trigg}}} \frac{1}{j_T} \frac{dN}{dj_T} = B_0 \times \text{background} + \frac{B_2}{\sqrt{2\pi} B_1} e^{-\frac{j_T^2}{2B_1^2}} + \frac{B_3 B_5^{B_4}}{\Gamma(B_4)} \frac{e^{-\frac{B_5}{j_T}}}{j_T^{B_4+1}}
\]
Resonance decays

Any trigger

Stable trigger
Narrow component (RMS)

\[0.2 < x_{||} < 0.4 \]

\[0.4 < x_{||} < 0.6 \]

\[0.6 < x_{||} < 1.0 \]

Almost no \(p_T \)-dependence

Similar result for pp and p-Pb

No dependence on \(\sqrt{s} \)

Good agreement with PYTHIA8

Universal hadronization?
Narrow component (yield)

0.2 < x_∥ < 0.4

0.4 < x_∥ < 0.6

0.6 < x_∥ < 1.0

PYTHIA8 overestimates the yield
Wide component RMS

\[0.2 < x || < 0.4\]
\[0.4 < x || < 0.6\]
\[0.6 < x || < 1.0\]

Rising trend in \(p_T\)

Similar result for pp and p-Pb

Good agreement with PYTHIA8
Wide component (yield)

0.2 < x_∥ < 0.4

0.4 < x_∥ < 0.6

0.6 < x_∥ < 1.0

Agreement with PYTHIA8 (within uncertainties)
Universality of hadronization

No dependence on \sqrt{s}

Thank you for your attention!

- Narrowing in high-p_T along $\Delta \eta$
- Broadening and enhancement in low-p_T

Pb-Pb, pp

- Experimental separation between hadronization and showering
- No broadening in p-Pb (cold nuclear effects)
- Narrow: no p_T-dependence of hadronization
- Wide: increasing with p_T, more radiation with higher virtuality