Interactions of particles and matter, from the detector point of view

NNV visit, September 26th 2017, CERN, Switzerland

Collisions

At CERN we make tiny particles such as protons, pions, ions and electrons, collide with each other;

we observe what emerges;

and thus get a glimpse of:

what is inside;how strong the particles were bound together.

Collisions

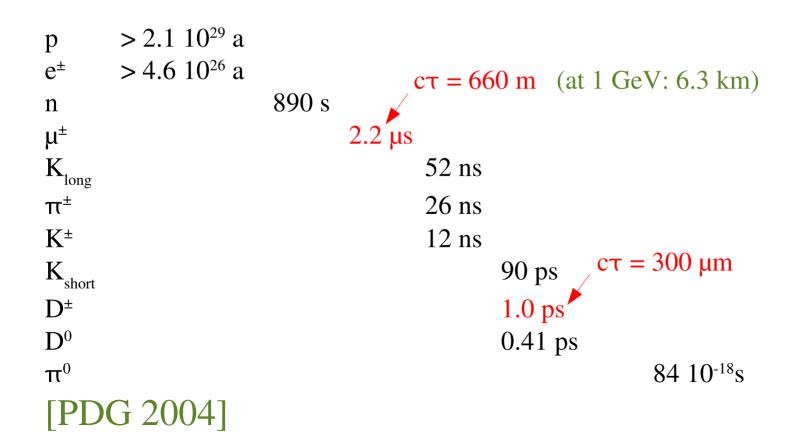
50 km/h: superficial damage, repairable

90 km/h: distortion, wheel detached, injury

180 km/h: car disintegrated, no survivors

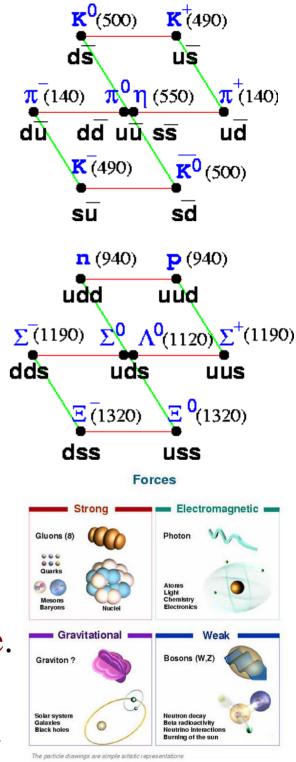
Energies that concern us

- The *physics* of current experiments may play in the TeV-EeV energy range,
- but the *particles* to be tracked typically have an energy of GeV to MeV,
- and *detection* relies on processes from the particle energy down to the eV, the energy of visible light.


[Top: LHC, 6.5+6.5 TeV, Bottom: Auger Observatory 10¹⁷-10²⁰ eV]

Lifetime vs detector size

Particle speed $\approx 3 \ 10^8$ m/s (c, speed of light). On average they travel before decay: lifetime $\times c \times$ energy/mass. Lorentz factor γ


cτ

Lifetime of a few common particles:

Particles HEP tries to see

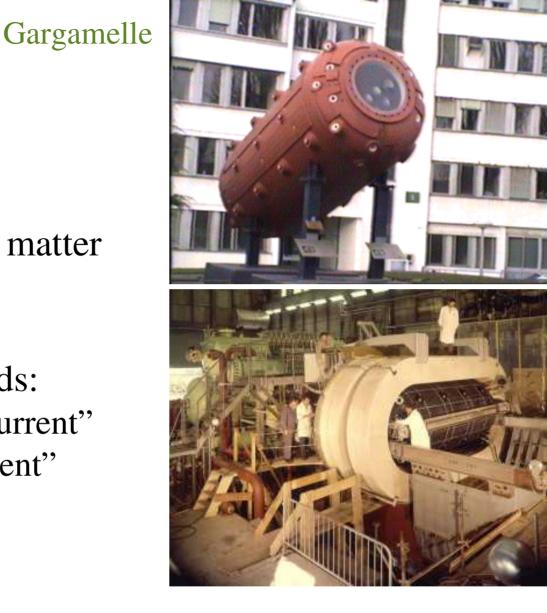
- Many decay before they can be detected.
- Remain a handful of long-lived particles:
 gauge bosons: y
 - ▶ leptons: e^{\pm} , μ^{\pm} , ν_{e} , ν_{μ}
 - hadrons: p, n, π, K, ...
- Most are subject to electro-magnetic interactions, some interact also through the strong force, a few only feel the weak force.
- The gravitational force is barely detectable.

[Drawings: Mark Alford (0⁻ mesons, ¹/2⁺ baryons), ETHZ (bottom)]

Tracking ↔ interactions

Particles interact with the detector material they traverse.

The interactions depend on the type and energy of the particle as well as on the matter traversed.

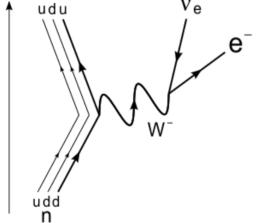

These interactions

- blur the trajectory and cause energy loss, but ...
- they are the basis for tracking and identification.

▶ In this presentation, we review a few of the mechanisms.

Neutrinos

- Neutrino interactions with matter are exceedingly rare.
- Interactions come in 2 kinds:
 W[±] exchange: "charged current"
 Z exchange: "neutral current"

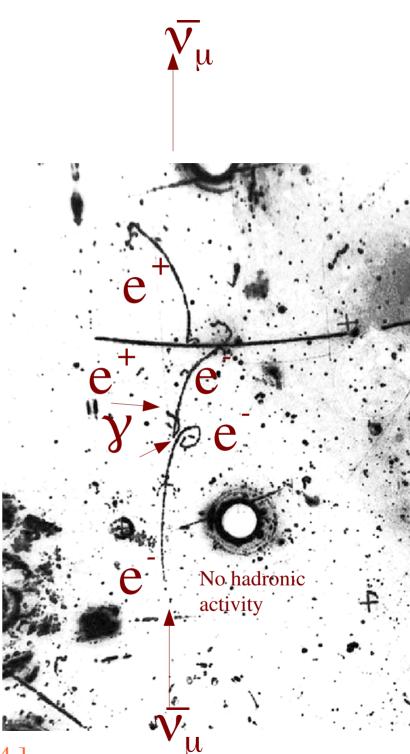

Typical reactions:

 $v_e n \rightarrow p e^{-1}$

 $\overline{v_e} p \rightarrow n e^+$ (ν proof of existence: Reines and Cowan, 1956) $v_\mu \rightarrow v_\mu \mu^- \mu^+$ (in the vicinity of a nucleus, W[±] or Z) $\overline{v_\mu} e^- \rightarrow \overline{v_\mu} e^-$ (neutral current discovery channel, 1973)

β^- decay

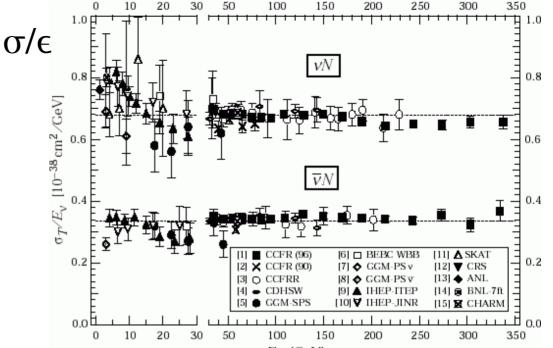
How to transform a neutron into a proton ?
charges d: -1/3, u: 2/3, v:0
W mediates the weak force
t p ve


- Check the charge balance and other conservation laws.
- Which particles can you easily detect ?
- ► How do you know a neutrino was there ?

Gargamelle

Neutral current search with the Gargamelle bubble chamber:

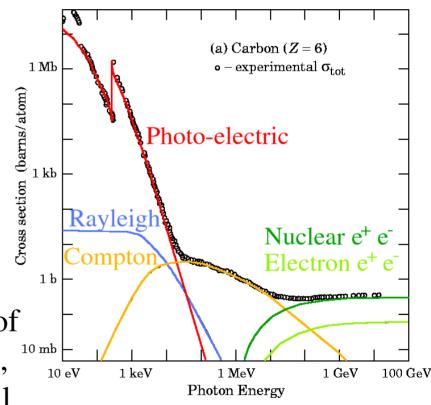
NC: $\nu_{\mu}/\bar{\nu_{\mu}} + N \rightarrow \nu_{\mu}/\bar{\nu_{\mu}} + hadrons$ CC: $\nu_{\mu}/\bar{\nu_{\mu}} + N \rightarrow \mu^{-}/\mu^{+} + hadrons$


- Shown is a v-e scattering event: $\bar{v}_{\mu} + e \rightarrow \bar{v}_{\mu} + e$
- One candidate found in 360,000 anti-neutrino events.

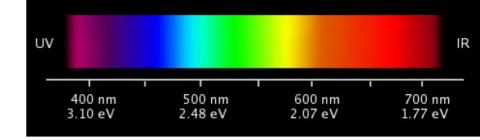
[F.J. Hasert et al., Phys. Lett. 46B (1973) 121-124.]

Cross sections ...

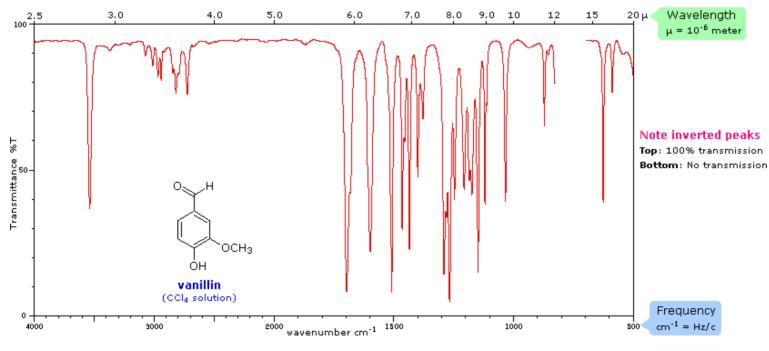
Quantifies how easily particles hit a target.



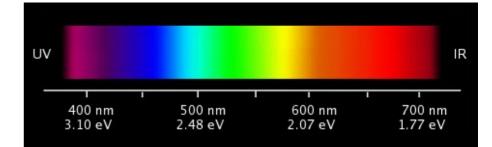
- Example: cross section of v_{μ} with nuclear matter: $\sigma \sim \epsilon \times 0.7 \cdot 10^{-38} \text{ cm}^2$ (energy ϵ in GeV).
- For a v_{μ} with energy $\varepsilon = 100$ GeV, a nucleon has an equivalent surface of $0.7 \cdot 10^{-36}$ cm²,
- Only ~0.3 % of these neutrinos is expected to scatter when going through the centre of the Earth. It takes PeV energies to make the Earth opaque.


Photons

Many photon interaction mechanisms:
ε < few eV: molecular interactions;
ε < 1 MeV: photo-electric effect;
ε < 1 MeV: Rayleigh scattering;
ε ~ 1 MeV: Compton scattering;
ε > 1 MeV: pair production;
ε > 1 MeV: nuclear interactions.

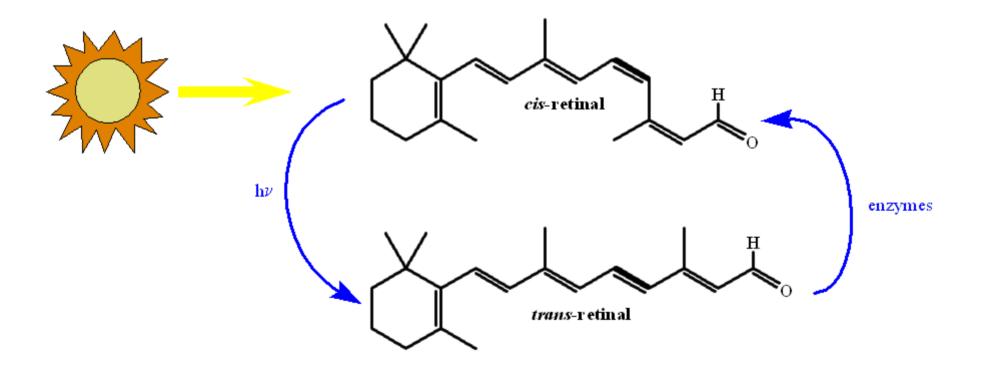

Photons play a key role in the tracking of charged particles, even if in many cases, eventually e⁻ and ions produce the signal.

[Adapted from the PDG, 2004 edition]



ε < 1 meV: Microwaves, molecular rotations of substances with a dipole moment (e.g. water), in a microwave oven ε < 1.8 eV: Infrared, molecular vibrations are excited

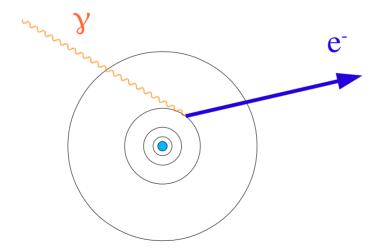
[From William Reusch, MSU]


Sub-eV γ 's

$eV \gamma's$

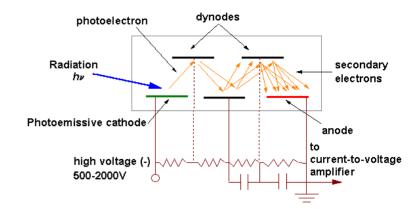
▶ $1.8 < \epsilon < 3 \text{ eV}$: Visible light

 $ightarrow \epsilon > 3 \text{ eV}$: Ultraviolet: approaching excitations & ionisations



[[]From Kevin A. Boudreaux]

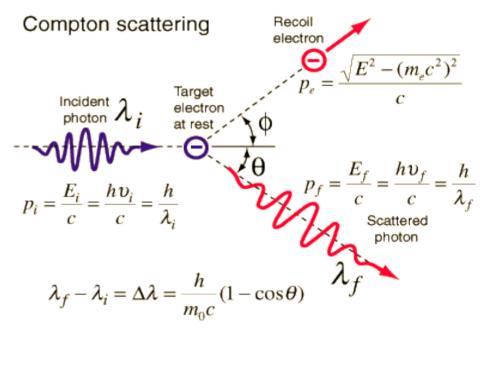
Photo-electric effect


The reactions up to here are of limited use for HEP purposes.

 \triangleright A γ is absorbed and a photo-electron is ejected.

▶ Dominant process for $\epsilon_{y} < 10$ keV.

Photo-multipliers



- Photo-multipliers rely on the photo-electric effect. The cathode could be any metal, but would more likely be an alkali coating or perhaps a "p-doped GaAs with negative electron affinity through adsorption of Cs/O".
- Such layers can have a work-function as low as 1.1 eV for multi-alkali, and 1 eV for GaAs. To be compared with Pt: 6.35 eV, Al: 4.1 eV, Cs: 2.1 eV (alkali).

Arthur Holly Compton (1892-1962)

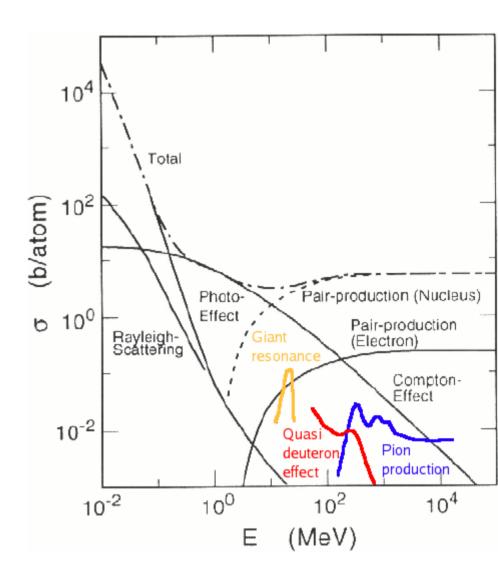
Compton scattering

- Scattering of a γ on an e⁻ with transfer of *part* of the energy from the γ to the e⁻.
- Sometimes called "incoherent scattering".
- **b** Dominant around $\epsilon_v \approx 1 \text{ MeV}$
- Ref: Arthur H. Compton, Phys. Rev. 21 (1923)
 483 and 22 (1923) 409.

Pair production

Beppo Occhialini (1907-1993)

> Patrick Maynard Stuart Blackett, baron Blackett (1897-1974)



- Production of an e^+e^- pair by a γ in the nuclear or electronic field of an atom.
- ► Only possible if $\epsilon_y > 2 \text{ m}_e \approx 1 \text{ MeV}.$
- Dominant at high energy, when the photo-electric effect and Compton scattering are small.
- ▶ Of major importance to calorimetry.

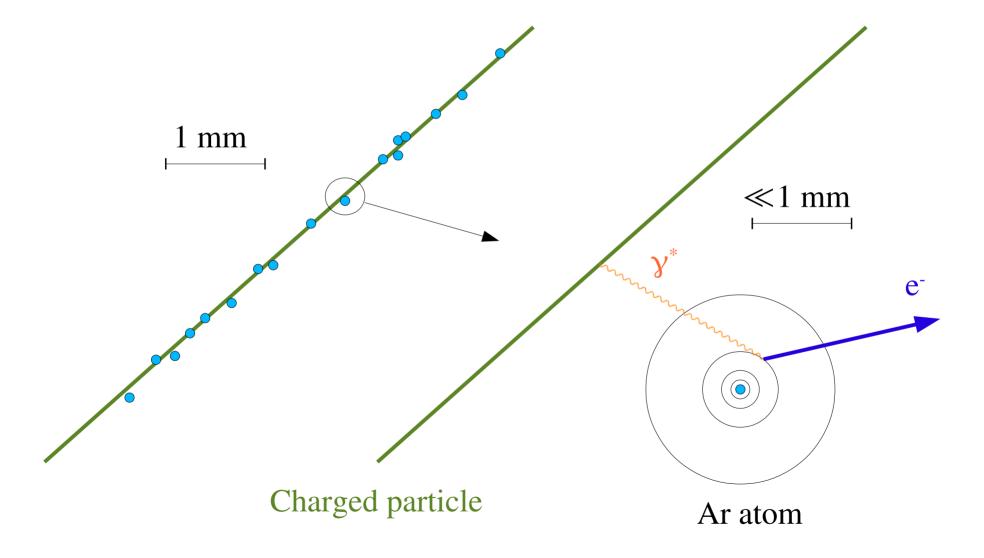
Photo-nuclear interactions

Main nuclear terms in Cu: ▶ $10 < \epsilon_{v} < 30$ MeV: giant dipole resonance \triangleright fission, n and γ emission ▶ $30 < \epsilon_{v} < 150$ MeV: quasi-deuteron process, emission of 2 nucleons $\epsilon_{v} > 150 \text{ MeV}$: production of e.g. pions

▶ Detection not based on e⁻.

[Diagram: ANL/APS]

Charged particles

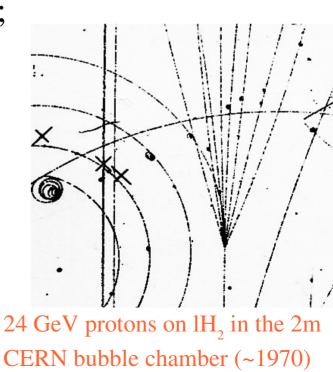

Measured by tracking detectors.

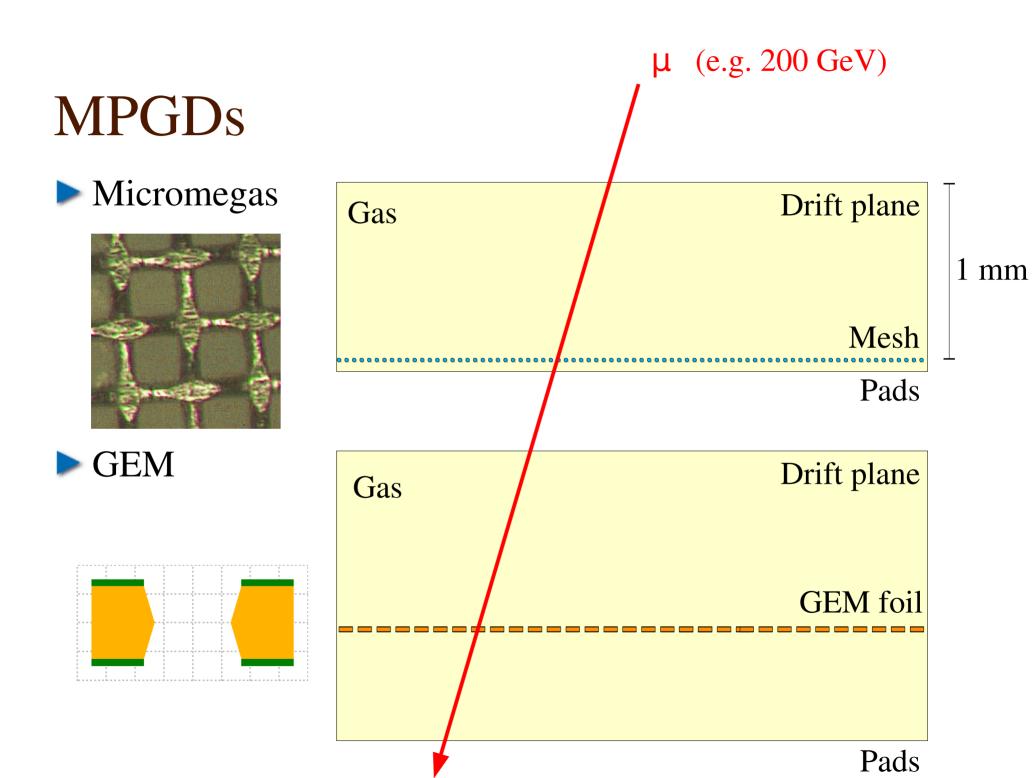
We'll discuss peculiarities of e[±] and µ[±] separately.
 Most of the mechanisms listed here apply to µ[±], less often to e[±].

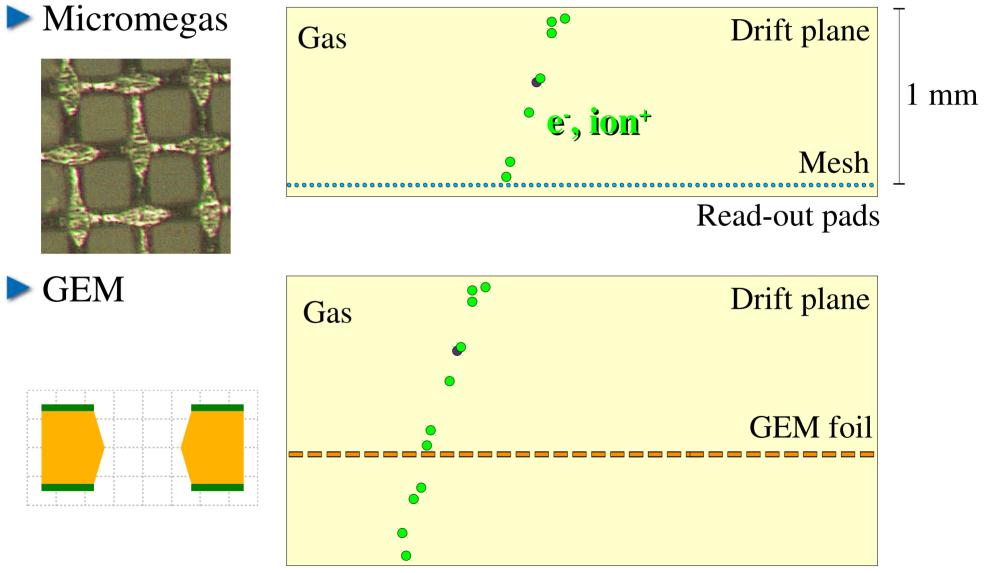
Principal reactions:

low energy: nuclear scattering effects
 all energy: ionisations and excitations
 β > 1/n: Черенков radiation
 ε > 1 GeV: inelastic nuclear interactions

Ionisation by photon exchange (gas)


Ionisation traces


- One of the beauties of ionisation is the high density of ionising interactions – which is excellent for tracking.
- Detectors that rely on ionisation losses:
 gas-based detectors: ~70 e⁻/ion⁺ pairs/cm;


Ar 93 % CO_2 7 %, 3 atm, 10 GeV μ , 1 mm of track

semiconductors: ~70 e⁻/hole⁺ pairs / µm;
 IH₂ bubble chamber: ~100 bubbles/cm.

Ionisation trace

Read-out pads

Semiconductors

Differences between semiconductors and gases:

- electrons jump from the valence band (bound to an individual atom) to the conduction band (not attached to any individual atom, but still in the semiconductor);
- energy consumed per e⁻/ion⁺ pair is larger in a gas;

much higher ionisation density;

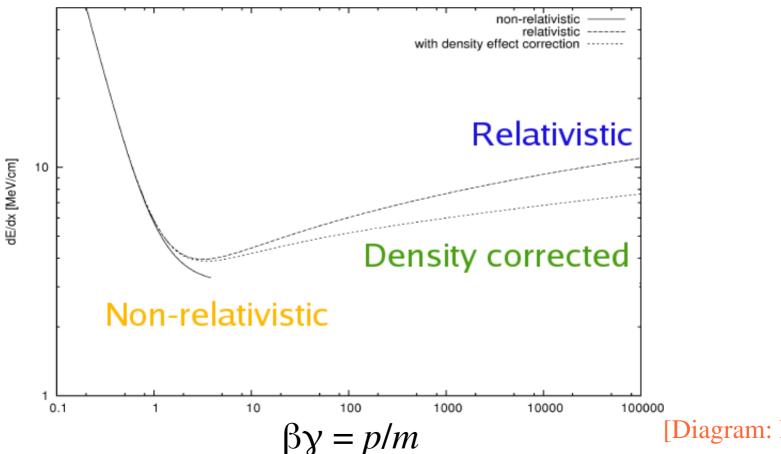
more compact and higher resolution.

Hans Bethe (1906-2005)

Ionisation losses: Bethe formula

▶ If we make the assumptions:

- ▶ projectile mass $M \gg m$, the e⁻ mass,
- only Coulomb energy transfer to free e⁻, not to the nuclei;
- *effective* ionisation energy *I* < energy transfer < kinematics.
- The ionisation losses are given by (Hans Bethe formula):


$$\frac{\mathrm{d}E}{\mathrm{d}x} \propto -\frac{Z^2}{m\beta^2} \frac{z}{A} \left| \log\left(\frac{2m\beta^2\gamma^2 T_{\mathrm{max}}}{I}\right) - \beta^2 - \text{corrections} \right|$$

- > β, γ: velocity of projectile;
- > Z²: projectile charge squared (i.e. independent of sign);
- no dependence of projectile mass;
- > *z* and *A* of target (linear: number of e^- encountered);
 - > T_{max} : highest energy that can be transferred to the target.

The Bethe formula

Example for Si

[Diagram: Heinrich Schindler]

Features of ionisation: small losses

- A good thing with ionisation is that losses are small for high-energy particles.
 - The energy loss at the $\gamma \approx 3$ dip can be approximated by $dE/dx \approx 1.5$ [MeV cm²/g] ρ [g/cm³]
 - > At higher energies, losses can be up to 50 % larger.

Examples:

- > TPC filled with Ne gas:
- semi-conductor:

 $dE/dx \approx 145 \text{ keV/m}$ $dE/dx \approx 25 \text{ keV/100 } \mu\text{m}$

De-excitation

Ralph de Laer Kronig Lise Meitner Dirk Coster (1904-1995)(1889-1950)(1878 - 1968)e Μ $+\gamma$ $+\gamma$ K Fluorescence Coster-Kronig Auger

Pierre Victor Auger (1899-1993)

References:

L

D. Coster and R. de L. Kronig, Physica 2 (1935) 13-24.

Lise Meitner, Über die β -Strahl-Spektra und ihren Zusammenhang mit der γ -Strahlung, Z. Phys. **11** (1922) 35-54.

L. Meitner, Das β -Strahlenspektrum von UX, und seine Deutung, Z. Phys. 17 (1923) 54-66.

P. Auger, J. Phys. Radium 6 (1925) 205.

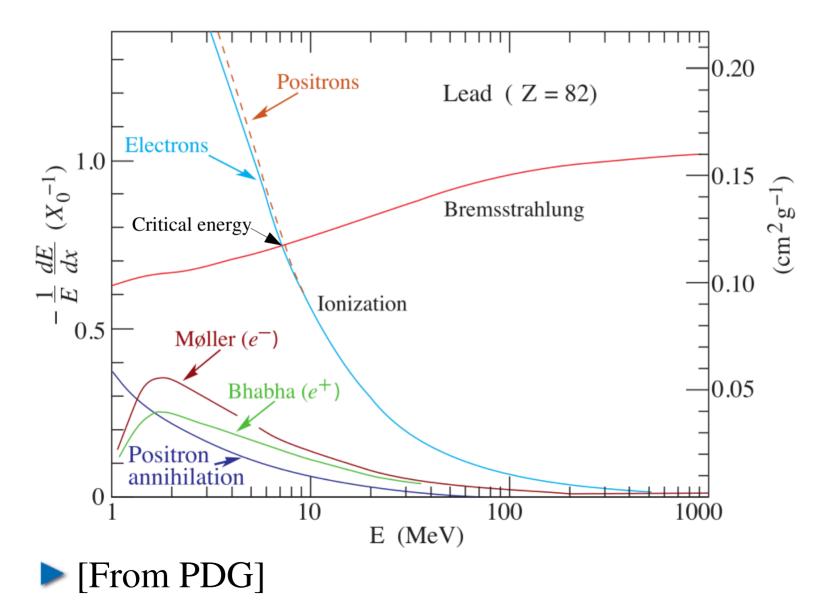
Павел Алексеевич Черенков (1904 - 1990)

Черенков radiation

- Photon emission by charged particles exceeding the local phase velocity of light: $\beta n > 1$.
- Velocity threshold: suitable for particle identification purposes. pad cathode
- Peaks at $cos(\theta) = \beta n$, light in the Covered with Cost film blue/UV.
- \blacktriangleright A few 100 y's/cm, energy loss is minor, smaller than ionisation, larger than transition radiation.

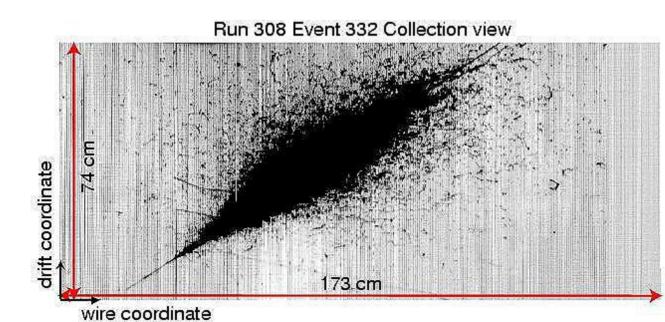
Electrons and muons

Electrons:


- $ightarrow \epsilon < 5 \text{ eV}$: elastic scattering;
- 5 10 eV: elastic + inelastic scattering, excitations;
- 10 eV-10 MeV: attachment, excitation, ionisation;
- > > 10-100 MeV: Bremsstrahlung dominates (showers !);
- from ~1 GeV: transition radiation becomes practical.

Muons:

- > all ϵ : multiple scattering;
- $ightarrow \epsilon < 400 \text{ GeV}$: muons easily traverse material;
- ► $\epsilon > 400$ GeV: Bremsstrahlung and e^+e^- pair production, EM showers, nuclear interactions.


Note: also some generic charged particle processes apply.

Electron (positron) energy loss

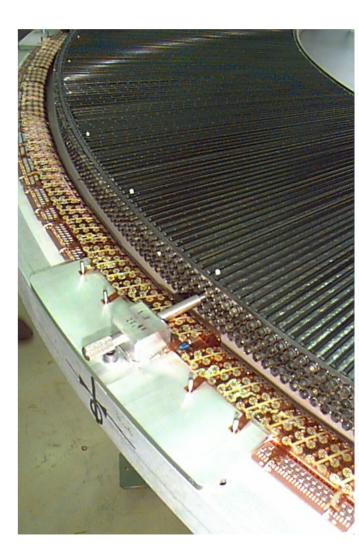
Electromagnetic showers

- At energies where Bremsstrahlung and pair production have become important, and in thick layers of material, secondary e⁻'s and y's re-interact, thus leading to the production of showers.
- This is a destructive detection mechanism.

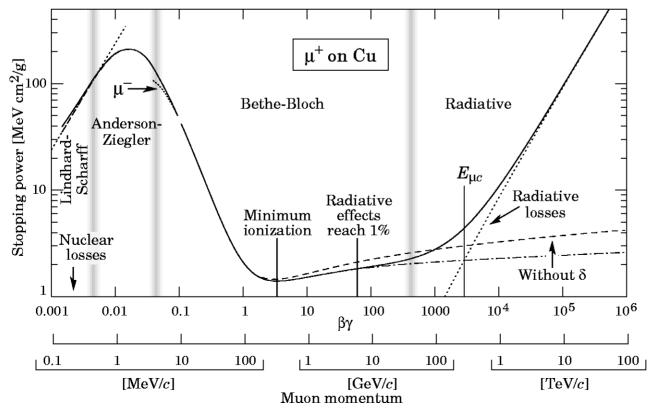
Electromagnetic shower from a cosmic. Absorber: liquid Ar, $X_0 = 14$ cm. (Icarus, 2001)

Transition radiation

1946: Effect predicted [Ginzburg and Frank, Zh. Eksp. Teor. Fiz. 16 (1946) 15]
1956: First observed in visible light [P. Goldsmith and J.V. Jelley, Philos. Mag. 4 (1959) 836]
1957: X-ray TR predicted for high-γ particles [G.M. Garibian, Zh. Eksp. Teor. Fiz. 33 (1957) 1043]
1960s and 1970s: X-ray TR observed with e⁻
1970s: First practical use [e.g. J. Cobb *et al.*, NIM 140 (1977) 413-427]


Mikael Leonovich Ter-Mikaelian (1923–2004)

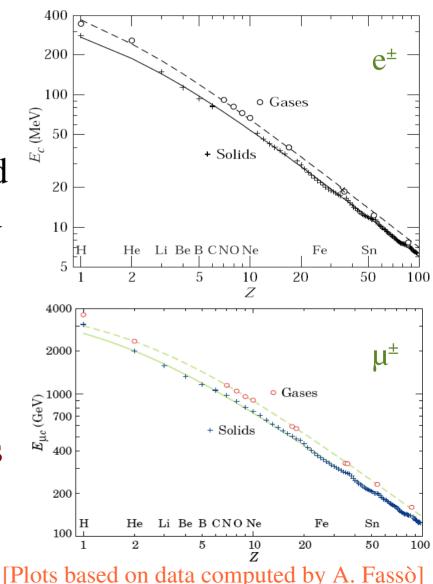
Борис Долгошеин (1930 – 2010)


Transition radiation: e⁻ identification

- Transition radiation is emitted by charged particles crossing boundaries between materials with different ε.
- A particularly subtle effect: very low photon yield, which moreover tends to be concentrated at low (keV) energies.
- The energy loss is ∝ γ = log E/m,
 e⁻ are distinguished from hadrons at equal E, up to ~100 GeV.

μ^{\pm} energy losses

- Muons behave like other charged particles, except that they do not like hadronic interactions.
- We're usually concerned with MeV-GeV energies for which ionisation losses dominate.



[Reproduced from the PDG, 2004 edition]

Why do μ^{\pm} penetrate so easily ?

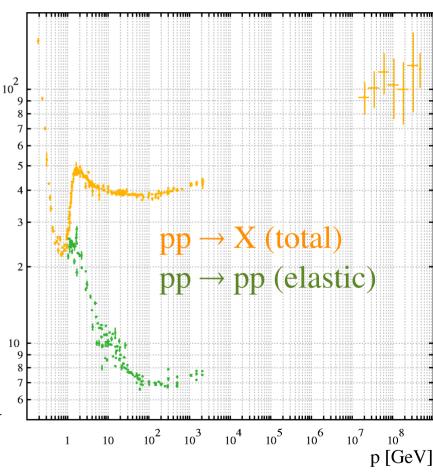
Few nuclear interactions (*cf.* π^{\pm}).

- ► μ^{\pm} Bremsstrahlung starts at a few 100 GeV, much higher than e^{\pm} and losses proportional to ~~ $1/m^4$ and $m_{\mu} \sim 200 m_{e}$;
- observed in cosmic showers; until recently, of minor importance for laboratory generated µ[±] but occurs at LHC.

Identifying μ^{\pm}

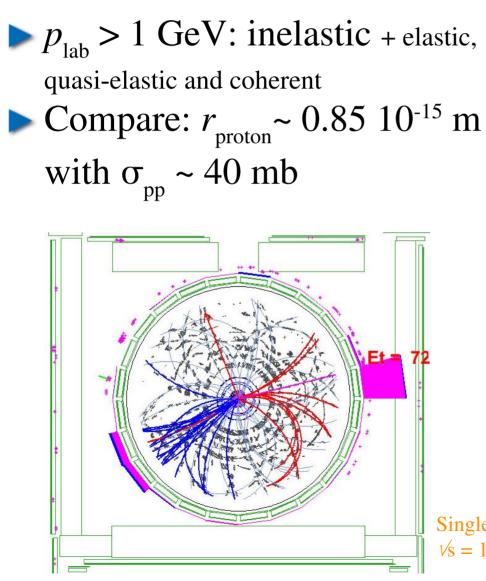
- Thick walls of material are used to separate π[±] and μ[±].
- At the LHC, the highest energy µ[±] no longer penetrate as easily !

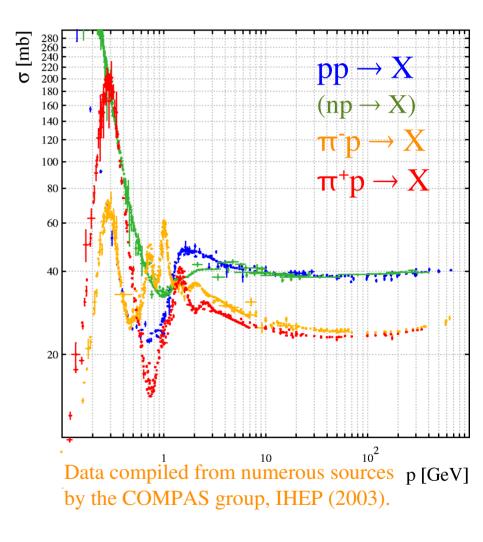
Dipole magnet



Muon wall

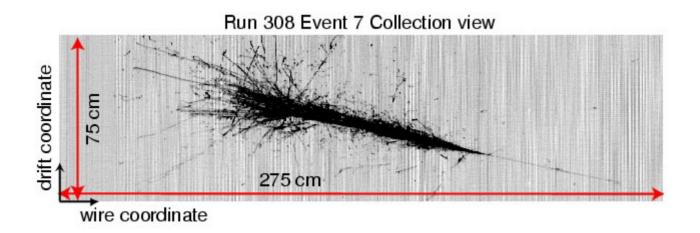
[Part of the Alice muon system]


Hadronic interactions


- *p*_{lab} < few MeV: Coulomb barrier preventing inelastic p collisions;
 *p*_{lab} ~ 1 GeV: pp cross section largely elastic;
- ► p_{lab} ~ few GeV: fragmentation and isotope production;
- higher momenta: inelastic with an elastic part ~10-20 % in pp;
- elastic scattering is not much used for tracking.

Data compiled from numerous sources by the COMPAS group, IHEP (2003).

Hadronic interactions: inelastic part



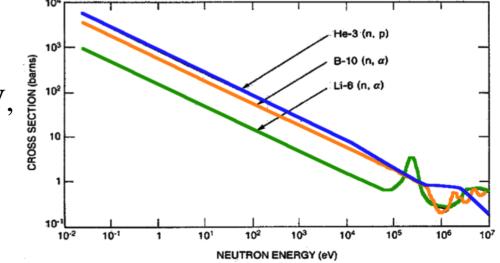
Single top quark event candidate v/s = 1.96 TeV (CDF, 2009)

Hadronic showers

Hadrons traversing a thick layer of material, may start a shower – the basis of hadronic calorimetry.
 Calorimetry is a prime example of a destructive tracking technique.

Hadronic shower from a cosmic observed in Icarus. Absorber: liquid Ar, $\lambda = 84$ cm (2001)

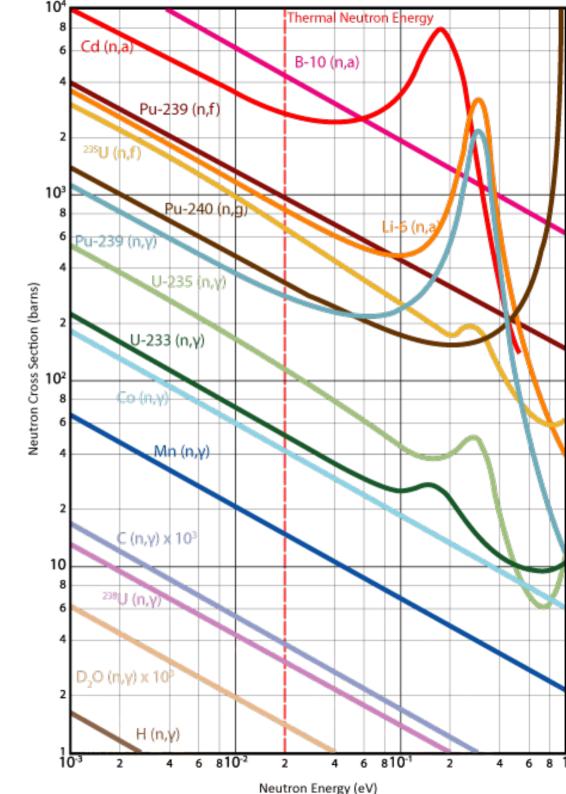
Neutrons


- $\epsilon < 0.1$ MeV: (n,p), (n, α), capture, fission in suitable materials; unlike p, no Coulomb barrier;
- ightarrow
 ightarro
- $ightarrow \epsilon > 1 \text{ GeV}$: mainly nuclear interactions.

Neutron detection – MeV range

Neutrons are neutral – only nuclear interactions.

- Penetrate deep into materials, excellent for diagnostics.
- Detection options use reactions producing charge. Reactions used up to the MeV energy range include:
 - detection of recoil protons
 - > n ³He \rightarrow ³H p + 765 keV
 - nuclear reaction
 - ▶ $n^{10}B \rightarrow {}^{7}Li^{*} {}^{4}He + 2310 \text{ keV},$


> ⁷Li^{*} \rightarrow ⁷Li + 480 keV

[Adapted from TW Crane and MP Baker, Neutron detectors]

Neutron capture

- ¹⁰⁸Cd: used in the Reines and Cowan experiment.
- This isotope reacts as ¹⁰⁸Cd (n,γ)¹⁰⁹Cd*

Summary

Neutrinos

Charged and Neutral current

Photons:

Photo-electric – Compton scattering – Pair production

Charged particles:

Ionisation – Čerenkov radiation – Nuclear interactions

Electrons

+ Bremsstrahlung – Transition radiation

Muons

+ Multiple scattering & Energy loss – Bremsstrahlung

Neutrons

> capture (n,p), (n, α), fission