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Why are jets important?
I In high-energy collider experiments detectors measure hadrons.
I In perturbation theory however we make calculations at the parton

level.
I Assuming local hadron-parton duality, the degrees of freedom that can

be used both in experiment and theory are jets.

Jets can be used to
I measure the strong coupling αS.
I test the standard model.
I search for new physics.

Most popular process to extract αS: three-jet
production in e+e− annihilation.

O =
αS

2π
A+O(α2

S)

The increasing precision of experiments
require accurate theoretical predictions!

Figure: e+e− annihilation into
three jets captured by the OPAL
experiment 1



Jet rates

Relative production rate of n-jets

Rn(~a) =
σe+e−→n jets(~a)

σe+e−→hadrons

where ~a is some set of jet resolution
parameters.

I Jets are defined according to jet
clustering algorithms.

I Two type of jet algorithms: cone
algorithms (usually infrared unsafe) and
sequential algorithms.

I Widely used algorithm at LEP/LHC:
k⊥/anti-k⊥ Figure: e+e− annihilation into

three jets captured by the OPAL
experiment

Fixed order calculations for k⊥ and anti-k⊥ are available at NNLO and
next-to-double logarithmic resummation is known as well but no matched
predictions for either at

√
Q2 = 91.2 GeV.

2



The general-k⊥ algorithm for e+e− colliders3

Originally developed for hadron collisions, but can be adapted to e+e−

colliders.
Two jet resolution parameters: ycut and Ecut

1. Calculate the following measures for every object i and j:

dij =
min(E2p

i , E
2p
j )(1− cos θij)

ycut

diB = E2p
i

Repeat until there are no objects in the list, then go to Step 4.
2. If dij is the smaller one, combine object i and j and go to Step 1.
3. If diB is the smaller one, object i becomes a protojet, remove it from

the clusterization list and go to Step 1.
4. Every protojet with Ei > Ecut is considered a resolved jet.

p = 1: k⊥ algorithm1, p = −1: anti-k⊥ algorithm2

1[Catani, Dokshitzer, Olsson, Turnock, Webber ’91]
2[Cacciari,Salam,Soyez ’08]
3[Cacciari,Salam,Soyez ’11]
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Fixed-order predictions for the three-jet rate

The three-jet rate is defined as

R3(~a, µ) =
σ3−jet(~a, µ)

σtot

In perturbation theory up to NNLO accuracy

RFO
3 (~a, µ) =

αS(µ)

2π
A3(~a, µ) +

(
αS(µ)

2π

)2

B3(~a, µ) +

(
αS(µ)

2π

)3

C3(~a, µ)

I ~a = ycut for k⊥ and ~a = (ycut, Ecut) for anti-k⊥
I
√
Q2 = 91.2 GeV and Ecut = [0.077, 0.0385]

√
Q2

I Previous NNLO results:
[Gehrmann-De Ridder, Gehrmann, Glover Heinrich ’08], [Weinzierl ’11]

I Results presented in this talk were obtained with the MCCSM [A. Kardos]
partonic Monte Carlo program based on the CoLoRFulNNLOmethod.
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The CoLoRFulNNLOmethod

CoLoRFulNNLO : Completely Local subtRactions for Fully differential
predictions at NNLO accuracy

I Local subtraction terms, based on the universal infrared factorization
properties of QCD squared matrix elements extended over the whole
phase space via phase space mappings.

I Integrated counterterms: partially analytic and numeric.
I Poles cancel analytically.
I General for any number of colored partons in the final state.
I Implemented in the MCCSM partonic Monte Carlo code [A.Kardos].

dσNNLO
m+2 =

{
dσRR
m+2J

(m)
m+2−dσRR,A2

m+2 J
(m)
m −

[
dσRR,A1
m+2 J

(m)
m+1−dσRR,A12

m+2 J
(m)
m

]}
d=4

dσNNLO
m+1 =

{[
dσRV
m+1+

∫
1
dσRR,A1
m+2

]
J
(m)
m+1−

[
dσRV,A1
m+1 +

(∫
1
dσRR,A1
m+2

)A1
]
J
(m)
m

}
d=4

dσNNLO
m =

{
dσVV
m +

∫
2

[
dσRR,A2
m+2 −dσ

RR,A12
m+2

]
+

∫
1

[
dσRV,A1
m+1 +

(∫
1
dσRR,A1
m+2

)A1

]}
d=4

J
(m)
m
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Fixed-order predictions for k⊥ three-jet rate
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Fixed order calculations using the CoLoRFulNNLOmethod compared with
previous prediction [Weinzierl ’11] and OPAL data. 6



Fixed-order predictions for anti-k⊥ three-jet rate
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Fixed order predictions using the anti-k⊥ algorithm with Ecut = 0.077
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Q2

and Ecut = 0.0385
√
Q2.
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Fixed-order predictions for anti-k⊥ three-jet rate
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Fixed order predictions using the anti-k⊥ algorithm with Ecut = 0.077
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Q2

and Ecut = 0.0385
√
Q2.

In the rest of the talk we will focus on the k⊥-algorithm only, however the
same steps can be repeated for anti-k⊥.
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Resummation of logarithmic terms

In small ycut regions logarithmic terms become dominant and spoil the
perturbative convergence, hence all order resummation of leading and
next-to-leading logarithms is needed!

αS(MZ) log2(1/ycut) = 2.5 for αS(MZ) = 0.118 and ycut = 0.01

αS(MZ) log(1/ycut) = 1.09 for αS(MZ) = 0.118 and ycut = 0.0001

Next-to-leading logarithmic accuracy (NLL)

RNLL(L) = exp(Lg1(αSL) + g2(αSL) + . . . )FNLL(L) , L = log(1/ycut)

Next-to-double logarithmic accuracy (NDL)

RNDL(L) =

∞∑
n=1

αnS

(
Gn,2nL

2n +Gn,2n−1L
2n−1 +O(L2n−2)

)
For jet rates FNLL is not known, only NDL resummation is available both
for k⊥4 and anti-k⊥5.

4[Catani, Dokshitzer, Olsson, Turnock, Webber ’91]
5[Gerwick, Gripaios, Schumann, Webber ’13]
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Resummation of logarithmic terms
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Resummation provides physical behavior in the small ycut limit, but does
not describe the data. We need to combine the two kind of predictions!
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The R-matching scheme

Combine predictions in a simple way:

RFO+NDL = RNDL −RNDL
exp +RFO ,

where

RNDL
exp =

αS

2π
Aexp +

(
αS

2π

)2

Bexp +

(
αS

2π

)3

Cexp

Unknown subleading logs can spoil the expected physical behavior due to
the remaining logaritmic singularities.

One can try to fit the coefficients of these subleading logs from fixed order
predictions, however too many coefficients for jet rates.

10



R-matching: NNLO vs. NNLO+NDL accuracy
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Unphysical for ycut < 10−4 due to sensitivity of the R-scheme to
uncontrolled subleading logarithms. 11



R-matching: (N)NLO+NDL accuracy
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R-matching: NNLO+NDL+K accuracy
Include the cusp anomalous dimension to the resummation
[Nagy, Trócsányi ’98]

RNDL+K
3 (ycut) =

∞∑
n=1

αnS

(
Gn,2n log2n ycut+Gn,2n−1 logn−1 ycut+O(log2n−2 ycut)

)
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Note that the improvement of the NLO+NDL+K prediction is only
accidental below ycut < 10−3.
NNLO+NDL+K is still unphysical for ycut < 10−4. 13



The logR-matching scheme
Combine the logarithm of the predictions, such as

logRFO+NDL = logRNDL − (logRNDL)exp + R̃FO

where

(logRNDL)exp = log
αS

2π
+ logAexp +

αS

2π

Bexp
Aexp

+

(
αS

2π

)2 2AexpCexp −B2
exp

2A2
exp

+

(
αS

2π

)3B3
exp − 3AexpBexpCexp + 2A2

expDexp

3A3
exp

and

R̃FO = log
αS

2π
+ logAFO +

αS

2π

BFO
AFO

+

(
αS

2π

)2
2AFOCFO −B2

FO

2A2
FO

+

(
αS

2π

)3
B3
FO − 3AFOBFOCFO

3A3
FO

with

eR̃
FO

→ αS

2π
AFO +

(
αS

2π

)2

BFO +

(
αS

2π

)3

CFO .

Multiplicative matching instead of additive, it is less sensitive to
uncontrolled subleading logarithms.
Becomes unphysical in the LO kinematic limit. 14



R-matching vs. logR-matching
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Both the R-matching and the logR-matching provides consitent prediction
for ycut ∈ (10−3, 3× 10−2) 15



R-matching vs. logR-matching
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Still both the R-matching and the logR-matching provides consitent
prediction for ycut ∈ (10−3, 3× 10−2) 16



Summary

I We calculated the three-jet rate at
√
Q2 = 91.2 GeV using the k⊥

algorithm and the anti-k⊥ clustering algorithm.
I We matched our fixed-order calculations with resummation at NDL

accuracy in the R-scheme.
I We found that including the cusp anomalous dimension into the

splitting kernels improves the prediction up to ycut = 10−3 with NNLO
predictions as well.

I We presented a way to match fixed-order predictions with
resummation for jet rates in the logR-matching scheme, which
provides good description for the data over a wide range.

To improve further resummation for jet rates at higher accuracy would be
necessary!
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Thank you for your attention!

18



Backup slides
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Resummation of next-to-double logarithms: k⊥ algorithm

The resummed three-jet rate is

RNDL
3 = 2[∆q(Q)]2

∫ Q

Q0

dqΓq(Q, q)∆g(q) , Q0 =
√
Q2

[Catani, Dokshitzer, Olsson, Turnock, Webber ’91]

Decay rates up to NDL:

Γq(Q
′′, Q′) =

2CF

π

αS(Q′)

Q′

[
log

Q′′

Q′
− 3

4

]
Γg(Q

′′, Q′) =
2CA

π

αS(Q′)

Q′

[
log

Q′′

Q′
− 11

12

]
Γf (Q′) =

nf

3π

αS(Q′)

Q′
.

Sudakov-factors:

∆q(Q
′′) = exp

(
−
∫ Q′′

Q0

dQ′Γq(Q
′′, Q′)

)
∆g(Q

′′) = exp

(
−
∫ Q′′

Q0

dQ′
[
Γg(Q

′′, Q′) + Γf (Q′)
])

.
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Resummation of next-to-double logarithms: k⊥ algorithm

The resummed three-jet rate is

RNDL
3 = 2[∆q(Q)]2

∫ Q

Q0

dqΓq(Q, q)∆g(q) , Q0 =
√
Q2

[Catani, Dokshitzer, Olsson, Turnock, Webber ’91]

At NDL accuracy it is sufficent to use the one-loop running formula for αS

αS(Q′) =
αS(Q)

1− b0αS(Q) log Q
Q′

where b0 = β0/(2π). To include renormalization scale variation.

αS(Q′) =
αS(µ)

1− b0αS(µ) log µ
Q′

=
αS(µ)

1− b0αS(µ)(log Q
Q′ + log ξR)

,

with ξR = µ/Q.
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Resummation of next-to-double logarithms: anti-k⊥ algorithm
The resummed three-jet rate is given by

RNDL
3 = 2[∆q(κ, λ)]2

∫ κ

0

dκ′
∫ λ

0

dλ′Γq(κ
′, λ′, κ)∆g(κ

′, λ′) ,

[Gerwick, Gripaios, Schumann, Webber ’13]

with
κ = log

Q

Ecut
, λ = log

1

ycut
.

One-loop running similarly to the k⊥ case, but expressed with κ and λ

αS(κ′, λ′) =
αS(µ)

1− b0
2
αS(µ)[2(κ− κ′ + log ξR) + λ− λ′]

.

The decay rates up to NDL accuracy:

Γq(κ
′, λ′, κ′′) =

CF

π
αS(κ′, λ′)

(
1− 3

4
eκ
′−κ′′

)
Γg(κ

′, λ′, κ′′) =
CA

π
αS(κ′, λ′)

(
1− 11

12
eκ
′−κ′′

)
Γf (κ′, κ′′) =

nf

6π
αS(κ′, λ′)eκ

′−κ′′

The Sudakov-factors defined in the same manner as in the case of k⊥
resummation.
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R-matching - anti-k⊥ algorithm
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Figure: Matched predictions with NLO
fixed order calculations using the anti-k⊥
algorithm with Ecut = 0.0385
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logR-matching: anti-k⊥ algorithm
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