

Top quark mass measurements at CMS

Fred Stober

on behalf of the CMS Collaboration

QCD@LHC 2017, Debrecen 2017-08-28

Motivation: Why measure m_₊?

- Heaviest measured Standard Model particle
- τ (top decay) $\approx 5 \times 10^{-25}$ s < τ (hadronisation)
 - ⇒ spin correlation conserved
- Check self-consistency of SM through radiative corrections to M_w constraining M_h
 (EPJC 74 (2014) 3046, arXiv:1407.3792)
- M_t is related to the vacuum stability of the SM / our universe (arXiv:1307.3536)
- The top mass is very close to the EWSB scale, so the top might play a special role...

The Top Quark at the LHC

Large cross section + huge integrated lumi Top Pair Decay Channels

⇒ LHC is a Top Factory

- Top Pair Production:
 - 172 pb @ 7 TeV
 - 249 pb @ 8 TeV
 - 832 pb @ 13 TeV
- Characterized by W decay mode
 - all-jets: large yield, also large background
 - dilepton: low yield, high S/B
 - lepton+jet: good yield, good S/B, golden

- Important to measure in all channels, since some uncertainties are uncorrelated and can cancel in a combination.
- Single Top Production (σ₊ ~ σ₊/3)
- Many interesting different ways to study the top quark mass...

Uncertainties

- Statistical uncertainties become negligible due to high luminosity of the LHC and larger cross sections at higher energies
- Systematic uncertainties
 - Experimental sources: eg. (b-)JES, MET scale, PU, trigger, ...
 - Signal: eg. MC, hadronization, ISR/FSR, PDF, UE, CR, b quark modelling ...
 - Background: either data-driven or MC: normalization and shape
 - Methodology: eg. regularization through parameterization, calibration
- Im most cases, the systematic uncertainties are evaluated using pseudo experiments, where the change of M_t is studied for different well (?) defined input parameter sets

Measurements of m_t by CMS

Comprehensive set of top quark mass measurements by CMS

Top Physics Publications			Mass Measurements	
74	TOP-15-008	Measurement of the top quark mass in the dileptonic ${ m t}^{ar t}$ decay channel using the mass observables $M_{{ m b}\ell},M_{{ m T}2}$, and $M_{{ m b}\ell\nu}$ in pp collisions at $\sqrt{s}=$ 8 TeV	PRD 96 (2017) 032002	20 April 2017
73	TOP-15-015	Measurement of the jet mass in highly boosted $\mathrm{t}ar{\mathrm{t}}$ events from pp collisions at $\sqrt{s}=$ 8 TeV	EPJC 77 (2017) 467	18 March 2017
72	TOP-15-001	Measurement of the top quark mass using single top quark events in proton-proton collisions at $\sqrt{s}=$ 8 TeV	EPJC 77 (2017) 354	7 March 2017
68	TOP-16-006	Measurement of the $tar t$ production cross section using events with one lepton and at least one jet in pp collisions at $\sqrt s=$ 13 TeV	Submitted to JHEP	22 January 2017
60	TOP-15-014	Measurement of the mass of the top quark in decays with a ${ m J}/\psi$ meson in pp collisions at 8 TeV	JHEP 12 (2016) 123	11 August 2016
56	TOP-12-030	Measurement of the top quark mass using charged particles in pp collisions at $\sqrt{s}=$ 8 TeV	PRD 93 (2016) 092006	21 March 2016
53	TOP-13-004	Measurement of the ${ m tar t}$ production cross section in the ${ m e}\mu$ channel in proton-proton collisions at $\sqrt s=$ 7 and 8 TeV	JHEP 08 (2016) 029	7 March 2016
43	TOP-14-022	Measurement of the top quark mass using proton-proton data at $\sqrt{s}=$ 7 and 8 TeV	PRD 93 (2016) 072004	15 September 2015
36	TOP-12-022	Determination of the top-quark pole mass and strong coupling constant from the $t\bar{t}$ production cross section in pp collisions at \sqrt{s} = 7 TeV	PLB 728 (2014) 496 [Corr PLB 738 (2014) 526]	21 August 2014
24	TOP-11-017	Measurement of the top-quark mass in all-jets $t \bar t$ events in pp collisions at $\sqrt s$ = 7 TeV	EPJC 74 (2014) 2758	17 July 2013
23	TOP-11-027	Measurement of masses in the $\mathrm{t}ar{\mathrm{t}}$ system by kinematic endpoints in pp collisions at \sqrt{s} = 7 TeV	EPJC 73 (2013) 2494	21 April 2013
13	TOP-11-016	Measurement of the top-quark mass in $t \bar t$ events with dilepton final states in pp collisions at $\sqrt s$ = 7 TeV	EPJC 72 (2012) 2202	12 September 2012
12	TOP-11-015	Measurement of the top-quark mass in $tar t$ events with lepton+jets final states in pp collisions at $\sqrt s$ = 7 TeV	JHEP 12 (2012) 105	12 September 2012
2	TOP-11-002	Measurement of the ${ m tar t}$ production cross section and the top quark mass in the dilepton channel in pp collisions at \sqrt{s} = 7 TeV	JHEP 07 (2011) 049	31 May 2011

Top Mass from decays with a J/ψ meson at 8 TeV

• In leptonic final states that contain a J/ ψ meson from a b hadron decay, the mass of the J/ ψ + I system is correlated with M,

 Low BR (1.5× 10⁻⁴) but clear, nearly background free signal due to three leptons in the event (JHEP 12 (2016) 123)

Top Mass from decays with a J/ψ meson at 8 TeV

- Fit of M_r with template method
 - PDFs are derived from MC with different input parameters M_{tMC} and parametrized as a function of M_t
 - The outcome is calibrated for biases (using the pull distributions in pseudo experiments)
 - Likelihood fit of PDFs to data gives the top quark mass
 - Method allows to include additional templates for in-situ calibrations
 - Simple and fast, but can be improved further (see later)
- Result of the fit:

$$M_t = 173.5 \pm 3.0 \pm 0.9 \text{ GeV}$$

• Also studied the dependence of the extracted mass on the average bottom fragmentation ratio

Source	Value (GeV)			
Experimental uncertainties				
Limited size of the simulation samples	± 0.22			
Muon momentum scale	± 0.09			
Electron momentum scale	± 0.11			
Modeling of the J/ ψ meson candidate mass distribution	+0.09			
Jet energy scale	< 0.01			
Jet energy resolution	< 0.01			
Trigger efficiencies	± 0.02			
Pileup	± 0.07			
Theoretical uncertainties				
Background normalization	± 0.01			
Matrix-element generator	-0.37			
Factorization and renormalization scales	+0.12, -0.46			
Matching of matrix element and parton shower	+0.12, -0.58			
Top quark transverse momentum	+0.64			
b quark fragmentation	± 0.30			
Underlying event	± 0.13			
Modeling of color reconnection	+0.12			
Parton distribution functions	+0.39, -0.11			
Total (in quadrature)	+0.89, -0.94			

Mass Measurement in the dilepton channel

PRD 96 (2017) 032002

- In the dilepton channel, neutrinos prevent a full reconstruction.
- Latest analysis by CMS uses three kinematic observables, that are sensitive to the value of M_{\uparrow} and the jet energy scale M_{T2}^{bb} M_{T2}^{bb}
 - the invariant mass M_{bl} of a b system
 - the stransverse mass variable, M^{bb}_{T2}, constructed with the b and b daughters of the tt system
 - the M_{T2} -assisted on-shell (MAOS) reconstructed M_{blv}

Mass Measurement in the dilepton channel

 To model the three observables, the nonparametric and thus largely model independent Gaussian process (GP) regression technique is used

- Several different fits are performed:
 - the 1D fit uses M_{bl} and M^{bb}_{T2} ; JSF is constrained to be unity
 - the 2D fit also uses M_{bl} and M^{bb}_{T2} ; determines M_{t} and JSF simultaneously
 - the MAOS fit uses M_{T2}^{bb} and M_{blv} ; JSF is constrained to be unity
 - The hybrid fit is a linear combination of the 1D and 2D fit to minimize the uncertainties

Top Mass from boosted top-pair events

- In the lepton+jets channel where the semi-leptonic decay is used as a tag, the products of the fully hadronic decay are reconstructed using a single Cambridge-Aachen jet with distance parameter R = 1.2, and pT > 400 GeV.
- The m_{jet} distribution is unfolded at the particle level and is used to test the modelling of highly boosted top quark production
- The peak position of the m_{jet} distribution is sensitive to the top quark mass M_r. The data are used to extract M_r and assess this sensitivity.

 $m_{\rm t} = 170.8 \pm 6.0 \, ({\rm stat}) \pm 2.8 \, ({\rm syst}) \pm 4.6 \, ({\rm model}) \pm 4.0 \, ({\rm theo}) \, {\rm GeV}$

Measurement using single top events

EPJC 77 (2017) 354

- Single top event selection:
 - 1 positively charged muon (S/B improved due to ~twice the higher cross section)
 - 2 jets (1 b jet, 1 forward jet || > 2.4)
- Reconstructed with the template method using the invariant mass of the muon, MET and b jet to estimate the top quark mass

Measurement using single top events

• Fit of the combined top-, top-pair-, and background contributions yields a top quark mass of $172.95 \pm 0.77 \, (\mathrm{stat})^{+0.97}_{-0.93} \, (\mathrm{syst})$

Source	Subcategory	Uncertainty (GeV)	
	In-situ correlation group	+0.20, -0.21	
	Inter-calibration group	± 0.05	
Tot on anory and a	Flavour-correlation group	± 0.40	
Jet energy scale	Pileup $p_{\rm T}$ uncertainty	+0.18, -0.10	
	Uncorrelated group	+0.48, -0.40	
	Total	+0.68, -0.61	
b quark JES and hadronisation model		± 0.15	
Jet energy resolution		± 0.05	
Muon momentum scale		± 0.05	
$p_{ m T}^{ m miss}$		± 0.15	
Pileup		± 0.10	
b tagging efficiency		± 0.10	
Fit calibration		± 0.39	
	Shape	± 0.10	
	Normalisation	$\pm 0.10 \\ \pm 0.14$	
Rackground actimate	$\mu_{\rm R}$ and $\mu_{\rm F}$ scales	$\pm 0.14 \\ \pm 0.18$	
Background estimate	Matching scales	± 0.30	
	Total	± 0.39	
	Iotai		
Generator model		± 0.10	
Signal μ_R and μ_F scales	± 0.23		
Underlying event		± 0.20	
Colour reconnection	± 0.05		
Parton distribution functions	± 0.05		
Total	+0.97, -0.93		

Combination of measurements using alternative techniques

- The combination of the alternative top quark mass measurements results in m_t = 172.58 ± 0.21 (stat) ± 0.72 (syst) Ge\ with a precision of 0.4%
- This is in very good agreement with the published CMS Run I combination and gives an independent confirmation (CMS-PAS-TOP-15-012)

Top quark mass from muon+jets at 13 TeV

Preliminary 13 TeV result: CMS-PAS-TOP-16-022

 Kinematic fit to the top-quark-pair hypothesis Permutations are weighted according to P_{gof}

Ideogram Method

$$\begin{split} \mathcal{L}(\mathrm{event}|m_t, \mathrm{JSF}) &= \sum_{j=1}^n \mathrm{P_{gof}(j)P(m_{t,j}^{fit}, m_{W,j}^{reco}|m_t, \mathrm{JSF})}, \ \textit{j} \ \mathsf{permutation} \\ \hline \mathcal{L}(\mathrm{sample}|m_t, \mathrm{JSF}) &\sim \prod_{\mathrm{events}} \mathcal{L}(\mathrm{event}|m_t, \mathrm{JSF}) \end{split}$$

Top quark mass from muon+jets at 13 TeV

Fit result is consistent with the Run I results.

Top pole mass measurement

- The precise measurement of the top-pair production cross section allows to determine the top-quark pole mass
- In final states with one isolated electron or muon and at least one jet are selected and categorized according jet multiplicity

From the invariant mass distribution of the isolated lepton and b jet,

the cross section is measured.

Using the expected dependence of the cross section on the pole mass of the top quark M, is found to be 170.6 GeV

Conclusions

- CMS top quark mass precision has reached an impressive level
- The 13 TeV data set will decrease the statistical uncertainties further
- Systematic effects need to be better understood
 - Correlations between different analysis methods
 - Improvements in the theoretical uncertainties are needed
- More work on mass calibration needed
- Interesting 13 TeV results are incoming for TOP 2017