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‣ Introduction: Top quark pair + Higgs/W/Z production at the LHC

‣ Factorization of the partonic cross section in the partonic threshold 
limit and resummation of soft gluon emission corrections

‣ Results: total cross sections and differential distributions at 
NLO+NNLL accuracy for tTH, tTW, tTZ processes at the LHC
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Top quark and Higgs boson

the two heaviest Standard Model (SM) particles
mt~173 GeV, mH~125 GeV
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Top quark and Higgs boson

‣ Top quark & Higgs boson

‣ according to the SM, the top quark is the elementary 
particle which couples most strongly to the Higgs boson

‣ gluon fusion channel provides the largest Higgs production 
cross section at the LHC, but tTH process allows direct 
access to top-quark Yukawa coupling

‣ measurement of the top-quark Yukawa coupling is one of the 
goals of the Run II of LHC
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Figure 3: The SM Higgs boson production
cross sections as a function of the center of mass
energy,

√
s, for pp collisions. The theoretical

uncertainties [39] are indicated as a band.

the quark and Higgs boson masses, the cross section has been

calculated at the next-to-leading order (NLO) in αs [42,43]. To

a very good approximation, the leading top-quark contribution

can be evaluated in the limit mt → ∞ by matching the Stan-

dard Model to an effective theory. The gluon-fusion amplitude

is then evaluated from an effective Lagrangian containing a local

HGa
µνG

a µν operator [19,20]. In this approximation the cross

section is known at NLO [44] and at next-to-next-to-leading

order (NNLO) [45], and a strong effort is under way to extend

the calculations to NNNLO. The validity of the large top-quark

mass approximation in NNLO calculations has been established

at the percent level by means of approximate calculations of

the mt dependence based on asymptotic expansions [46].

The NLO QCD corrections increase the leading-order pre-

diction for the cross section by about 80%, and the NNLO

corrections further enhance the cross section by approximately

20% (at µf = µr = mH). The convergence of the perturbation

series can be improved by lowering the factorization and renor-

malization scales. Electroweak radiative corrections have been

computed at NLO and increase the cross section by about 5%
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The peculiar behavior of the quartic coupling does not

exclude the possibility that the SM might be all what is there

up to the quantum gravity scale [29] or it could be the result

of a special dynamics or a new symmetry at high energies, such

as supersymmetry with possible flat directions. Still, physics at

lower energies is desirable to solve other mysteries of the universe

such as dark matter or the matter-antimatter asymmetry. The

Higgs boson discovery at the LHC leaves all these options open.

II.4. Higgs production and decay mechanisms

Reviews of the SM Higgs boson’s properties and phe-

nomenology, with an emphasis on the impact of loop corrections

to the Higgs boson decay rates and cross sections, can be found

in Refs. [32–38].

II.4.1. Production mechanisms at hadron colliders

The main production mechanisms at the Tevatron and the

LHC are gluon fusion, weak-boson fusion, associated production

with a gauge boson and associated production with top quarks.

Figure 2 depicts representative diagrams for these dominant

Higgs production processes.
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Figure 2: Generic Feynman diagrams con-
tributing to the Higgs production in (a) gluon
fusion, (b) weak-boson fusion, (c) Higgs-strahlung
(or associated production with a gauge boson)
and (d) associated production with top quarks.
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54.67 pb

LHC @ 14 TeV

4.18 pb
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0.88 pb (ZH)

0.61 pb

� / g2ttH

Expected to be seen at LHC 13 TeV, direct 
measurement of the top Yukawa coupling
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‣ Cross section and some distributions computed to NLO QCD  (Beenakker, 
Dittmaier, Kraemer, Plumper, Spira, Zerwas ’01-’02 and Dawson, Reina, Wackeroth, Orr, Jackson 
’01-’03)

‣ top pair + Higgs benchmark process to test automated NLO multileg codes 
(Frixione et al. ’11; Hirschi et al ’11; Garzelli et al ’11; Bevilacqua et al. ’11)

‣ EW corrections to the parton level cross section are known (Frixione, Hirshi, 
Pagani, Shao, Zaro ’14; Zhang, Ma, Chen, Guo ’14; Frixione, Hirshi, Pagani, Shao, Zaro ’15)

‣ NLO QCD corrections were interfaced with SHERPA and POWHEG BOX 
(Gleisberg, Hoeche, Krauss, Schonherr, Schaumann ’09; Hartanto, Jaeger, Reina, Wackeroth ’15)

‣ NLO QCD corrections to                                          (Denner, Feger ’15)

‣ NLO+NLL resummation of soft gluon emissions for the total cross section 
(production threshold limit) (Kulesza, Motyka,Stebel,Theeuwes ’15)

‣ nNLO in the “PIM” threshold limit from NNLL resummation formula (AB, A. 
Ferroglia, B. Pecjak, A. Signer, L. Yang ’15)

7

top pair + Higgs calculations

pp ! e+⌫eµ
�⌫̄µbb̄H
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and the list continues…

‣ NLO+NNLL resummation in “PIM” kinematics, RG-evolution in Mellin space 
(AB, A. Ferroglia, B. Pecjak, A. Signer, L. Yang ’16)                        

‣ NLO EW and QCD corrections with off-shell top-antitop pairs (A.Denner, J. Lang, 

M. Pellen, S. Uccirati ’16) 

‣ NLO+NNLL resummation in “PIM” kinematics with direct QCD approach 
(invariant mass distribution of the triplet) (Kulesza, Motyka,Stebel,Theeuwes ’17)

‣ Pseudoscalar couplings at NLO+NLL accuracy (AB, A. Ferroglia, M. Fiolhais, A. Onofre 

’17) 
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Top pair + W or Z boson

‣ tTW and tTZ are the two heaviest set of particles measured at the LHC with c.o.m. energy 
of 7,8,13 TeV

‣ 8 TeV

‣ 13 TeV

‣ Important to detect anomalies in the top couplings of the Z boson, and can be considered 
background processes in new physics searches

‣ Both processes were calculated to NLO QCD accuracy by several groups (A. Lazopoulos, T. 
McElmurry, K. Melnikov, F. Petriello ’07 - ’08, M.V. Garzelli, A. Kardos, C.G. Papadopoulos, Z. 
Trocsanyi ’12, J.M. Campbell, R.K. Ellis ’12, F. Maltoni, M.L. Mangano, I. Tsinikos, M. Zaro ‘14) 

‣ EW corrections are also known (Frixione, Hirshi, Pagani, Shao, Zaro ’15)

‣ NLO+NNLL for ttW in momentum space (Li, Li and Li ’14)

Top pair + W or Z boson Top pair + W or Z boson 

● Process measured by CMS and ATLAS at 8 TeV

● W production measurements are in  agreement with 
each other but  about 1.5 σ larger than the NLO 
prediction

● ATLAS  and CMS already released  preliminary 
measurements at 13 TeV 

Top pair + W or Z boson Top pair + W or Z boson 

● Process measured by CMS and ATLAS at 8 TeV

● W production measurements are in  agreement with 
each other but  about 1.5 σ larger than the NLO 
prediction

● ATLAS  and CMS already released  preliminary 
measurements at 13 TeV 

�tt̄W = 800+176.9
�162.8 (CMS)

�tt̄Z = 1000+150
�128 (CMS)
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from soft-gluon corrections derived in the PIM threshold limit. Obvious examples would

be the cross section differential in the invariant mass of the tt̄H final state at values far

away from the machine threshold, or the total cross section obtained by integrating this

distribution. Moreover, given that results in the PIM threshold limit are fully differential

in the Mandelstam variables characterizing the Born process, we can equally well use them

to estimate the NNLO corrections to any differential distribution which is non-vanishing

at Born level.

We take advantage of this fact in the present work by implementing our results in an

in-house parton level Monte Carlo, which can be used to calculate arbitrary tt̄H differential

distributions along with the total cross section. To illustrate its use, we study approximate

NNLO corrections to the pT of the Higgs, the pT of the top quark, the invariant mass of

the tt̄ pair, and the rapidities of the top quark or Higgs boson, in addition to the total cross

section and differential cross section with respect to the tt̄H final state. By matching our

NNLO approximation in the PIM threshold limit with the complete NLO calculation from

MadGraph5_aMC@NLO [33], we obtain the currently most complete result for QCD corrections

to differential tt̄H cross sections. Such a procedure is very much in the spirit of [34], and

as in that work could be extended to include the effects of top-quark decays by retaining

information on the spins of the final state particles.

The paper is organized as follows: in section 2 we review the factorization properties of

the partonic cross section in the soft emission limit. Furthermore, we discuss the evaluation

of the various components which contribute to the approximate NNLO formulas derived

in this work. In section 3 we illustrate the structure of the approximate NNLO formulas

obtained by considering the soft limit of the partonic cross section. Section 4 contains

numerical calculations of the total tt̄H production cross section and of some differential

distributions for the LHC operating at center of mass energy of 13TeV. The calculations

include the approximate NNLO formulas discussed in this work as well as the full set of

NLO QCD corrections. The residual perturbative uncertainty affecting these results is

discussed. Finally, we present our conclusions in section 5.

2 Soft-gluon resummation for tt̄H hadroproduction

We consider the partonic processes

i(p1) + j(p2) −→ t(p3) + t̄(p4) +H(p5) +X , (2.1)

where the incoming partons i, j ∈ {q, q̄, g} and X is a partonic final state. Furthermore,

we define the Mandelstam invariants

ŝ = (p1 + p2)
2 = 2p1 · p2 , s̃ij = 2pi · pj , (i = 1, 2 ; j = 3, 4) ,

s34 = (p3 + p4)
2 = s̃34 + 2m2

t . (2.2)

The invariant mass of the tt̄H final state,

M2 = (p3 + p4 + p5)
2 , (2.3)

– 3 –

Invariant mass of the ttH final 
state

“PIM” soft limit

q(p1) + q̄(p2) ! t(p3) + t̄(p4) +H(p5)

g(p1) + g(p2) ! t(p3) + t̄(p4) +H(p5)
Tree Level subprocesses
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Partonic center of 
mass energy squared 

z =
M2

ŝ
! 1When real radiation is 

present in the final state ŝ 6= M2

In the soft emission limit a scale hierarchy emerges

ŝ, M2, m2
t , mH � ŝ(1� z)2 � ⇤2

QCD

Soft scaleHard scales

2
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‣ The partonic cross section for top pair + H (or W or Z) 
production receives potentially large corrections from soft gluon 
emission diagrams

‣ The partonic cross section depends on logarithms of the ratio of 
two different scales

‣ It can be that 

‣ One needs to reorganise the perturbative series: Resummation

‣ This can be carried out using effective field theory methods (soft-
collinear effective theory)

11

Large logarithmic corrections

Large logarithmic correctionsLarge logarithmic corrections

● The partonic cross section for top pair (+Higgs,W or Z) 
production receives potentially large corrections from soft gluon 
emission diagrams

● Schematically, the partonic cross section depends on 
logarithms of the ratio of two different scales: 

● It can be that                 

● One needs to reorganize the perturbative series: Resummation

● The resummation of soft emission corrections can be carried 
out by means of effective field theory methods    

Large logarithmic correctionsLarge logarithmic corrections

● The partonic cross section for top pair (+Higgs,W or Z) 
production receives potentially large corrections from soft gluon 
emission diagrams

● Schematically, the partonic cross section depends on 
logarithms of the ratio of two different scales: 

● It can be that                 

● One needs to reorganize the perturbative series: Resummation

● The resummation of soft emission corrections can be carried 
out by means of effective field theory methods    
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Factorization and Resummation
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is of particular relevance to our work, since it enters in the definition of the soft parameter z

z =
M2

ŝ
. (2.4)

The PIM threshold limit (or, more simply, the soft limit) mentioned in the introduction is

defined as the limit where z → 1, such that the unobserved final state X consists of soft

partons only. Note that, in contrast to the production threshold limit, where the partonic

center-of-mass energy approaches 2mt + mH , the PIM threshold limit does not impose

constraints on the velocity of massive particles in the final state. It is therefore well suited

for the study of differential cross sections.

The starting point for soft-gluon resummation is the factorization of the partonic cross

section in the soft limit. One then obtains the hadronic cross section for the collision

process involving nucleons N1 and N2 at center-of-mass energy
√
s by the usual convolution

integral with parton distribution functions (PDFs). The form of the factorization of QCD

corrections in the soft limit in the tt̄H case is identical to the tt̄ one, so we can simply quote

the result for the cross section in the soft limit by adapting that obtained for tt̄ production

using SCET methods in [15]. We write the result for the total cross section as

σ(s,mt,mH) =
1

2s

∫ 1

τmin

dτ

τ

∫ 1

τ

dz√
z

∑

ij

ffij
(τ
z
, µ
)

∫
dPStt̄HTr

[
Hij({pi}, µ)Sij

(
M(1− z)√

z
, {pi}, µ

)]
+O(1− z) , (2.5)

where

τ =
M2

s
, τmin =

(2mt +mH)2

s
. (2.6)

The content and notation of (2.5) is as follows. First, the object Tr[HijSij ] is proportional

to the spin and color averaged squared matrix element for tt̄H+Xs production through two

initial-state partons with flavors i and j, where Xs is an unobserved final state consisting

of any number of soft gluons. The (matrix valued) hard functions Hij are related to color

decomposed virtual corrections to the underlying 2 → 3 scattering process, and the (matrix

valued) soft functions Sij are related to color-decomposed real emission corrections in the

soft limit. To leading order in the soft limit, these soft real emission corrections receive

contributions from initial-state partons with flavor indices ij ∈ {qq̄, q̄q, gg}; throughout

this work we will refer to the channels involving quarks with the generic term “quark

annihilation” channel, and the one involving gluons as the “gluon fusion” channel. Channels

involving initial-state partons such as qg and q̄g are subleading in the soft limit, and shall be

referred to generically as the “qg” channel. While the hard functions are simple functions

of their arguments, the soft functions depend on singular (logarithmic) plus distributions

of the form

P ′
n(z) ≡

[
1

1− z
lnn
(
M2(1− z)2

µ2z

)]

+

, (2.7)

as well as the Dirac delta function δ(1− z).

– 4 –

parton luminosity

Hard function (color matrix), 
obtained using self-modified versions 

of Openloops and Gosam

Soft function (color matrix)
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distributions up to a given power of αs in fixed-order perturbation theory. To be specific,

one can write

C(z, µ) = α2
s

[
C(0)(µ) +

αs

4π
C(1)(z, µ) +

(αs

4π

)2
C(2)(z, µ) +O

(
α3
s

)]
, (3.3)

where we have set µf = µr = µ, with µr the renormalization scale.5 The NNLO term

in (3.3) has the following structure

C(2) (z, µ) =
3∑

i=0

Di(µ)Pi(z) + C0(µ)δ(1− z) +R(z, µ) , (3.4)

where the Pn distributions are defined as

Pn(z) ≡
[
lnn(1− z)

1− z

]

+

. (3.5)

In (3.3), (3.4) we dropped all arguments with the exception of µ and z. The approximate

NNLO formulas for the partonic cross sections which we obtain in this work include the

complete set of functions Di, some of the scale dependent terms in the function C0 as well

as partial information on the function R(z) which is non singular in the z → 1 limit. In

particular, here we follow exactly the same procedure employed in [17, 46]. That is, the

terms included in R(z) arise from the transformation of logarithms in Laplace space back

to momentum space. A complete list of those transformations for PIM kinematics can be

found for example in eq. (33) of [46]. As pointed out in [17], the C0 term is ambiguous; in

fact, in order to completely determine the coefficients multiplying the delta functions in the

NNLO hard-scattering kernels, one would need to know the complete NNLO hard and soft

matrices. Only the scale-dependent part of C0 can be exactly determined, and one needs

to specify which contributions are included there. One contribution to C0 comes from the

conversion of powers of Laplace-space logarithms according to eq. (33) of [46]. Since these

formula are exact, they are not a source of ambiguity for C0 and those terms are included.

Further contributions to C0 arise from i) the product of the one-loop hard function with

the one-loop soft function in Laplace space, ii) the product of the tree-level hard function

with the two-loop soft function in Laplace space, and iii) the product of the two-loop

hard function with the tree-level soft function in Laplace space. The contribution in i)

is known exactly and therefore included while the term in ii) is unknown and dropped.

One can reconstruct the scale dependent part of the contribution iii). However, it was

observed in [15, 17, 46] that by including these extra µ-dependent terms one runs the risk

of artificially reducing the scale dependence, rendering it an ineffective means of estimating

theoretical uncertainties. Therefore, here again we follow [17, 46] and drop completely the

contributions of the two-loop hard function.

The information obtained from approximate NNLO formulas can be added to the

complete NLO calculation of a given observable in order to obtain what we refer to as

approximate NNLO predictions for a physical quantity. The matching of the approximate

5Note that it is possible to keep these two scales separate using the RG equations for αs.

– 10 –
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partons only. Note that, in contrast to the production threshold limit, where the partonic

center-of-mass energy approaches 2mt + mH , the PIM threshold limit does not impose

constraints on the velocity of massive particles in the final state. It is therefore well suited

for the study of differential cross sections.

The starting point for soft-gluon resummation is the factorization of the partonic cross

section in the soft limit. One then obtains the hadronic cross section for the collision

process involving nucleons N1 and N2 at center-of-mass energy
√
s by the usual convolution

integral with parton distribution functions (PDFs). The form of the factorization of QCD

corrections in the soft limit in the tt̄H case is identical to the tt̄ one, so we can simply quote

the result for the cross section in the soft limit by adapting that obtained for tt̄ production

using SCET methods in [15]. We write the result for the total cross section as

σ(s,mt,mH) =
1

2s

∫ 1

τmin

dτ

τ

∫ 1

τ

dz√
z

∑

ij

ffij
(τ
z
, µ
)

∫
dPStt̄HTr

[
Hij({pi}, µ)Sij

(
M(1− z)√

z
, {pi}, µ

)]
+O(1− z) , (2.5)

where

τ =
M2

s
, τmin =

(2mt +mH)2

s
. (2.6)

The content and notation of (2.5) is as follows. First, the object Tr[HijSij ] is proportional

to the spin and color averaged squared matrix element for tt̄H+Xs production through two

initial-state partons with flavors i and j, where Xs is an unobserved final state consisting

of any number of soft gluons. The (matrix valued) hard functions Hij are related to color

decomposed virtual corrections to the underlying 2 → 3 scattering process, and the (matrix

valued) soft functions Sij are related to color-decomposed real emission corrections in the

soft limit. To leading order in the soft limit, these soft real emission corrections receive

contributions from initial-state partons with flavor indices ij ∈ {qq̄, q̄q, gg}; throughout

this work we will refer to the channels involving quarks with the generic term “quark

annihilation” channel, and the one involving gluons as the “gluon fusion” channel. Channels

involving initial-state partons such as qg and q̄g are subleading in the soft limit, and shall be

referred to generically as the “qg” channel. While the hard functions are simple functions

of their arguments, the soft functions depend on singular (logarithmic) plus distributions

of the form

P ′
n(z) ≡

[
1

1− z
lnn
(
M2(1− z)2

µ2z

)]

+

, (2.7)

as well as the Dirac delta function δ(1− z).
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Collier [10–14]. Results have been cross-checked by means of GoSam in combination

with Ninja [20, 30, 31].

3 Resummation in Mellin moment space

By combining the information encoded in the NLO hard function and soft function

with the solution of the renormalization group (RG) equations that they satisfy, it is

possible to resum logarithms of the ratio between the hard scale µh (which characterizes

the hard function) and the soft scale µs (which is characteristic of the soft emission)

up to NNLL accuracy. When this is done, the di↵erential hard-scattering kernels

Cij(z, µ) ⌘ Tr
h
Hij ({p}, µ)S0

ij

⇣p
ŝ(1� z), {p}, µ

⌘i
, (3.1)

(where we dropped {p} from the list of arguments of Cij) can be expressed in resummed

form as

Cij (z, µf ) = exp
⇥
4a��(µs, µf )

⇤
Tr


Uij ({p}, µh, µs)Hij({p}, µh)

⇥U†
ij ({p}, µh, µs) s̃ij

✓
ln

M2

µs

+ @⌘, {p}, µs

◆�
e�2�E⌘

� (2⌘)

z1/2�⌘

(1� z)1�2⌘
. (3.2)

The anomalous dimensions and evolution matrices appearing in (3.2), as well as the

Laplace transformed soft function s̃ are the same as in [8, 25]. If the hard function

and soft function are evaluated at their characteristic scales µh and µs, they are free

from large logarithmic corrections and can be safely evaluated at a given fixed order

in perturbation theory. Large logarithmic corrections depending on the ratio µh/µs

are resummed in the evolution matrices U. When the resummation is carried out in

momentum space, one should carefully and judiciously choose the value assigned to µh

and especially to µs.

While, in some instances, the logarithmic corrections depending on the ratio µh/µs

are not so large that they spoil the convergence of a fixed order expansion in ↵s, soft

gluon emission e↵ects still provide the bulk of the corrections at a given perturbative

order. In those cases, it makes sense to employ the resummed hard scattering kernels

in order to obtain approximate formulas which include all of the terms proportional to

plus distributions up to a given power of ↵s in fixed-order perturbation theory. This was

the approach followed for example in [8] for the study of tt̄H production. Also in this

work approximate NNLO formulas including all of the plus distributions proportional

to ↵2
s are obtained and evaluated numerically. The results are matched to complete

NLO calculations obtained by means of MadGraph5_aMC@NLO (indicated by MG5 aMC in

– 6 –
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resummed hard-scattering kernels
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is of particular relevance to our work, since it enters in the definition of the soft parameter z

z =
M2

ŝ
. (2.4)

The PIM threshold limit (or, more simply, the soft limit) mentioned in the introduction is

defined as the limit where z → 1, such that the unobserved final state X consists of soft

partons only. Note that, in contrast to the production threshold limit, where the partonic

center-of-mass energy approaches 2mt + mH , the PIM threshold limit does not impose

constraints on the velocity of massive particles in the final state. It is therefore well suited

for the study of differential cross sections.

The starting point for soft-gluon resummation is the factorization of the partonic cross

section in the soft limit. One then obtains the hadronic cross section for the collision

process involving nucleons N1 and N2 at center-of-mass energy
√
s by the usual convolution

integral with parton distribution functions (PDFs). The form of the factorization of QCD

corrections in the soft limit in the tt̄H case is identical to the tt̄ one, so we can simply quote

the result for the cross section in the soft limit by adapting that obtained for tt̄ production

using SCET methods in [15]. We write the result for the total cross section as

σ(s,mt,mH) =
1

2s

∫ 1

τmin

dτ

τ

∫ 1

τ

dz√
z

∑

ij

ffij
(τ
z
, µ
)

∫
dPStt̄HTr

[
Hij({pi}, µ)Sij

(
M(1− z)√

z
, {pi}, µ

)]
+O(1− z) , (2.5)

where

τ =
M2

s
, τmin =

(2mt +mH)2

s
. (2.6)

The content and notation of (2.5) is as follows. First, the object Tr[HijSij ] is proportional

to the spin and color averaged squared matrix element for tt̄H+Xs production through two

initial-state partons with flavors i and j, where Xs is an unobserved final state consisting

of any number of soft gluons. The (matrix valued) hard functions Hij are related to color

decomposed virtual corrections to the underlying 2 → 3 scattering process, and the (matrix

valued) soft functions Sij are related to color-decomposed real emission corrections in the

soft limit. To leading order in the soft limit, these soft real emission corrections receive

contributions from initial-state partons with flavor indices ij ∈ {qq̄, q̄q, gg}; throughout

this work we will refer to the channels involving quarks with the generic term “quark

annihilation” channel, and the one involving gluons as the “gluon fusion” channel. Channels

involving initial-state partons such as qg and q̄g are subleading in the soft limit, and shall be

referred to generically as the “qg” channel. While the hard functions are simple functions

of their arguments, the soft functions depend on singular (logarithmic) plus distributions

of the form

P ′
n(z) ≡

[
1

1− z
lnn
(
M2(1− z)2

µ2z

)]

+

, (2.7)

as well as the Dirac delta function δ(1− z).
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distributions up to a given power of αs in fixed-order perturbation theory. To be specific,

one can write

C(z, µ) = α2
s

[
C(0)(µ) +

αs

4π
C(1)(z, µ) +

(αs

4π

)2
C(2)(z, µ) +O

(
α3
s

)]
, (3.3)

where we have set µf = µr = µ, with µr the renormalization scale.5 The NNLO term

in (3.3) has the following structure

C(2) (z, µ) =
3∑

i=0

Di(µ)Pi(z) + C0(µ)δ(1− z) +R(z, µ) , (3.4)

where the Pn distributions are defined as

Pn(z) ≡
[
lnn(1− z)

1− z

]

+

. (3.5)

In (3.3), (3.4) we dropped all arguments with the exception of µ and z. The approximate

NNLO formulas for the partonic cross sections which we obtain in this work include the

complete set of functions Di, some of the scale dependent terms in the function C0 as well

as partial information on the function R(z) which is non singular in the z → 1 limit. In

particular, here we follow exactly the same procedure employed in [17, 46]. That is, the

terms included in R(z) arise from the transformation of logarithms in Laplace space back

to momentum space. A complete list of those transformations for PIM kinematics can be

found for example in eq. (33) of [46]. As pointed out in [17], the C0 term is ambiguous; in

fact, in order to completely determine the coefficients multiplying the delta functions in the

NNLO hard-scattering kernels, one would need to know the complete NNLO hard and soft

matrices. Only the scale-dependent part of C0 can be exactly determined, and one needs

to specify which contributions are included there. One contribution to C0 comes from the

conversion of powers of Laplace-space logarithms according to eq. (33) of [46]. Since these

formula are exact, they are not a source of ambiguity for C0 and those terms are included.

Further contributions to C0 arise from i) the product of the one-loop hard function with

the one-loop soft function in Laplace space, ii) the product of the tree-level hard function

with the two-loop soft function in Laplace space, and iii) the product of the two-loop

hard function with the tree-level soft function in Laplace space. The contribution in i)

is known exactly and therefore included while the term in ii) is unknown and dropped.

One can reconstruct the scale dependent part of the contribution iii). However, it was

observed in [15, 17, 46] that by including these extra µ-dependent terms one runs the risk

of artificially reducing the scale dependence, rendering it an ineffective means of estimating

theoretical uncertainties. Therefore, here again we follow [17, 46] and drop completely the

contributions of the two-loop hard function.

The information obtained from approximate NNLO formulas can be added to the

complete NLO calculation of a given observable in order to obtain what we refer to as

approximate NNLO predictions for a physical quantity. The matching of the approximate

5Note that it is possible to keep these two scales separate using the RG equations for αs.
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is of particular relevance to our work, since it enters in the definition of the soft parameter z

z =
M2

ŝ
. (2.4)

The PIM threshold limit (or, more simply, the soft limit) mentioned in the introduction is

defined as the limit where z → 1, such that the unobserved final state X consists of soft

partons only. Note that, in contrast to the production threshold limit, where the partonic

center-of-mass energy approaches 2mt + mH , the PIM threshold limit does not impose

constraints on the velocity of massive particles in the final state. It is therefore well suited

for the study of differential cross sections.

The starting point for soft-gluon resummation is the factorization of the partonic cross

section in the soft limit. One then obtains the hadronic cross section for the collision

process involving nucleons N1 and N2 at center-of-mass energy
√
s by the usual convolution

integral with parton distribution functions (PDFs). The form of the factorization of QCD

corrections in the soft limit in the tt̄H case is identical to the tt̄ one, so we can simply quote

the result for the cross section in the soft limit by adapting that obtained for tt̄ production

using SCET methods in [15]. We write the result for the total cross section as

σ(s,mt,mH) =
1

2s

∫ 1

τmin

dτ

τ

∫ 1

τ

dz√
z

∑

ij

ffij
(τ
z
, µ
)

∫
dPStt̄HTr

[
Hij({pi}, µ)Sij

(
M(1− z)√

z
, {pi}, µ

)]
+O(1− z) , (2.5)

where

τ =
M2

s
, τmin =

(2mt +mH)2

s
. (2.6)

The content and notation of (2.5) is as follows. First, the object Tr[HijSij ] is proportional

to the spin and color averaged squared matrix element for tt̄H+Xs production through two

initial-state partons with flavors i and j, where Xs is an unobserved final state consisting

of any number of soft gluons. The (matrix valued) hard functions Hij are related to color

decomposed virtual corrections to the underlying 2 → 3 scattering process, and the (matrix

valued) soft functions Sij are related to color-decomposed real emission corrections in the

soft limit. To leading order in the soft limit, these soft real emission corrections receive

contributions from initial-state partons with flavor indices ij ∈ {qq̄, q̄q, gg}; throughout

this work we will refer to the channels involving quarks with the generic term “quark

annihilation” channel, and the one involving gluons as the “gluon fusion” channel. Channels

involving initial-state partons such as qg and q̄g are subleading in the soft limit, and shall be

referred to generically as the “qg” channel. While the hard functions are simple functions

of their arguments, the soft functions depend on singular (logarithmic) plus distributions

of the form

P ′
n(z) ≡

[
1

1− z
lnn
(
M2(1− z)2

µ2z

)]

+

, (2.7)

as well as the Dirac delta function δ(1− z).
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Collier [10–14]. Results have been cross-checked by means of GoSam in combination

with Ninja [20, 30, 31].

3 Resummation in Mellin moment space

By combining the information encoded in the NLO hard function and soft function

with the solution of the renormalization group (RG) equations that they satisfy, it is

possible to resum logarithms of the ratio between the hard scale µh (which characterizes

the hard function) and the soft scale µs (which is characteristic of the soft emission)

up to NNLL accuracy. When this is done, the di↵erential hard-scattering kernels

Cij(z, µ) ⌘ Tr
h
Hij ({p}, µ)S0

ij

⇣p
ŝ(1� z), {p}, µ

⌘i
, (3.1)

(where we dropped {p} from the list of arguments of Cij) can be expressed in resummed

form as

Cij (z, µf ) = exp
⇥
4a��(µs, µf )

⇤
Tr


Uij ({p}, µh, µs)Hij({p}, µh)

⇥U†
ij ({p}, µh, µs) s̃ij

✓
ln

M2

µs

+ @⌘, {p}, µs

◆�
e�2�E⌘

� (2⌘)

z1/2�⌘

(1� z)1�2⌘
. (3.2)

The anomalous dimensions and evolution matrices appearing in (3.2), as well as the

Laplace transformed soft function s̃ are the same as in [8, 25]. If the hard function

and soft function are evaluated at their characteristic scales µh and µs, they are free

from large logarithmic corrections and can be safely evaluated at a given fixed order

in perturbation theory. Large logarithmic corrections depending on the ratio µh/µs

are resummed in the evolution matrices U. When the resummation is carried out in

momentum space, one should carefully and judiciously choose the value assigned to µh

and especially to µs.

While, in some instances, the logarithmic corrections depending on the ratio µh/µs

are not so large that they spoil the convergence of a fixed order expansion in ↵s, soft

gluon emission e↵ects still provide the bulk of the corrections at a given perturbative

order. In those cases, it makes sense to employ the resummed hard scattering kernels

in order to obtain approximate formulas which include all of the terms proportional to

plus distributions up to a given power of ↵s in fixed-order perturbation theory. This was

the approach followed for example in [8] for the study of tt̄H production. Also in this

work approximate NNLO formulas including all of the plus distributions proportional

to ↵2
s are obtained and evaluated numerically. The results are matched to complete

NLO calculations obtained by means of MadGraph5_aMC@NLO (indicated by MG5 aMC in

– 6 –

The hard and soft functions satisfy RG equations

More details on factorization and
resummation methods using

effective field theory in this book
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Mellin space

‣ Resummation can also be carried out in Mellin space by taking the Mellin transform of 
the factorized cross section, more similar to “direct QCD” resummation

‣ The total cross section can be recovered with an inverse Mellin transform

‣ Hard and soft functions are evaluated at values of the scale where the large corrections 
are absent

‣ RG evolution to obtain the hard-scattering kernels at the factorization scale
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Xs production in the process initiated by the two partons i and j, where Xs indicates the

unobserved soft gluons in the final state. The hard functions Hij , which are matrices

in color space, are obtained from the color decomposed virtual corrections to the 2 → 3

tree-level process. The soft functions Sij (which are also matrices in color space) are

related to color-decomposed real emission corrections in the soft limit; they depend on plus

distributions of the form

P ′
n(z) ≡

[
1

(1− z)
lnn

(
M2(1− z)2

µ2z

)]

+

, (2.6)

as well as on the Dirac delta function of argument (1−z). The parton luminosity functions

ff ij are defined as the convolutions of the parton distribution functions (PDFs) for the

partons i and j in the protons N1 and N2:

ff ij (y, µ) =

∫ 1

y

dx

x
fi/N1

(x, µ) fj/N2

(y
x
, µ

)
. (2.7)

In the soft limit the indices ij ∈ {qq̄, q̄q, gg}, as at LO. The hard and soft functions

are two-by-two matrices for qq̄-initiated (quark annihilation) processes, and three-by-three

matrices for gg-initiated (gluon fusion) processes. Contributions from other production

channels such as q̄g and qg are subleading in the soft limit. We shall refer to such processes

collectively as the “quark-gluon” or the “qg” channel in what follows.

The hard functions satisfy renormalization group equations governed by the soft anom-

alous dimension matrices Γij
H , which depend on the partonic channel considered. These

anomalous dimension matrices, which are needed to carry out the resummation of soft

gluon corrections, were derived in [22, 23]. The hard functions, soft functions, and soft

anomalous dimensions must be computed in fixed-order perturbation theory up to a given

order in αs. In this work we study the resummation up to NNLL accuracy. For this task

we need to evaluate the hard functions, soft functions and soft anomalous dimensions to

NLO. All of these elements were already evaluated to the order needed here [16, 22–24].

In particular, the NLO hard functions were evaluated by customizing two of the one-

loop provider programs available on the market, GoSam [25–29] and Openloops [30]. The

numerical evaluation of the hard functions for this work has been performed by using a

modified version of Openloops in combination with Collier [31–35]. GoSam in combination

with Ninja [29, 36, 37] was used to cross-check our results.

The resummation formula for the associated production of a tt̄H final state in Mellin

space is similar to the one which was derived for the production of a tt̄W final state in [19]

and reads

σ(s,mt,mH) =
1

2s

∫ 1

τmin

dτ

τ

1

2πi

∫ c+i∞

c−i∞
dNτ−N

∑

ij

ff̃ ij (N,µ)

∫
dPStt̄H c̃ij (N,µ) , (2.8)

where we introduced the Mellin transform of the luminosity functions ff̃ ij , and

c̃ij (N,µ) ≡ Tr

[
Hij ({p}, µ) s̃ij

(
ln

M2

N̄µ2
, {p}, µ

)]
. (2.9)
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Since the soft limit z → 1 corresponds to the limit N → ∞ in Mellin space, we neglected

terms suppressed by powers of 1/N in (2.8). Furthermore, in (2.9) we employed the notation

N̄ = NeγE . The function s̃ij is the Mellin transform of the soft function Sij found in (2.4).

The hard and soft functions in (2.8) can be evaluated in fixed order perturbation theory

at scales at which they are free from large logarithms. We indicate these scales with µh

and µs, respectively. Subsequently, by solving the renormalization group (RG) equations

for the hard and soft functions one can evolve the hard scattering kernels in (2.9) to the

factorization scale µf . One obtains

c̃ij(N,µf ) = Tr

[
Ũij(N̄ , {p}, µf , µh, µs)Hij({p}, µh) Ũ

†
ij(N̄ , {p}, µf , µh, µs)

× s̃ij

(
ln

M2

N̄2µ2
s
, {p}, µs

)]
. (2.10)

Large logarithmic corrections depending on the ratio of the scales µh and µs are resummed

in the channel-dependent matrix-valued evolution factors Ũ. The expression for the evo-

lution factors is

Ũ
(
N̄ , {p}, µf , µh, µs

)
= exp

{
2SΓcusp(µh, µs)− aΓcusp(µh, µs) ln

M2

µ2
h

+ aΓcusp(µf , µs) ln N̄
2

+ 2aγφ(µs, µf )

}
× u ({p}, µh, µs) , (2.11)

which is formally identical to the expression found for the corresponding quantity in carry-

ing out the resummation for tt̄W production. For the definition of the various RG factors

appearing in (2.11) we refer the reader to [19]. However, while for tt̄W production one

needs to consider the evolution factor in the quark-annihilation channel only, for tt̄H pro-

duction one also needs to evaluate the appropriate anomalous dimensions and evolution

factor for the gluon fusion channel.

The functions U in (2.11) depend on αs evaluated at three different scales: µh, µs

and µf . In practice, it is convenient to rewrite the evolution factors in terms of αs(µh)

only. This can be done by employing the running of αs at three loops [38]. By doing this,

logarithms such as ln(µh/µs) appear explicitly in the formula for the evolution matrix,

which becomes [19]

Ũ
(
N̄ , {p}, µf , µh, µs

)
= exp

{
4π

αs(µh)
g1 (λ,λf ) + g2 (λ,λf ) +

αs(µh)

4π
g3 (λ,λf ) + · · ·

}

× u({p}, µh, µs) , (2.12)

with

λ =
αs(µh)

2π
β0 ln

µh

µs
, λf =

αs(µh)

2π
β0 ln

µh

µf
. (2.13)
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Since the soft limit z → 1 corresponds to the limit N → ∞ in Mellin space, we neglected

terms suppressed by powers of 1/N in (2.8). Furthermore, in (2.9) we employed the notation

N̄ = NeγE . The function s̃ij is the Mellin transform of the soft function Sij found in (2.4).

The hard and soft functions in (2.8) can be evaluated in fixed order perturbation theory

at scales at which they are free from large logarithms. We indicate these scales with µh

and µs, respectively. Subsequently, by solving the renormalization group (RG) equations

for the hard and soft functions one can evolve the hard scattering kernels in (2.9) to the

factorization scale µf . One obtains

c̃ij(N,µf ) = Tr

[
Ũij(N̄ , {p}, µf , µh, µs)Hij({p}, µh) Ũ

†
ij(N̄ , {p}, µf , µh, µs)

× s̃ij

(
ln

M2

N̄2µ2
s
, {p}, µs

)]
. (2.10)

Large logarithmic corrections depending on the ratio of the scales µh and µs are resummed

in the channel-dependent matrix-valued evolution factors Ũ. The expression for the evo-

lution factors is

Ũ
(
N̄ , {p}, µf , µh, µs

)
= exp

{
2SΓcusp(µh, µs)− aΓcusp(µh, µs) ln

M2

µ2
h

+ aΓcusp(µf , µs) ln N̄
2

+ 2aγφ(µs, µf )

}
× u ({p}, µh, µs) , (2.11)

which is formally identical to the expression found for the corresponding quantity in carry-

ing out the resummation for tt̄W production. For the definition of the various RG factors

appearing in (2.11) we refer the reader to [19]. However, while for tt̄W production one

needs to consider the evolution factor in the quark-annihilation channel only, for tt̄H pro-

duction one also needs to evaluate the appropriate anomalous dimensions and evolution

factor for the gluon fusion channel.

The functions U in (2.11) depend on αs evaluated at three different scales: µh, µs

and µf . In practice, it is convenient to rewrite the evolution factors in terms of αs(µh)

only. This can be done by employing the running of αs at three loops [38]. By doing this,

logarithms such as ln(µh/µs) appear explicitly in the formula for the evolution matrix,

which becomes [19]

Ũ
(
N̄ , {p}, µf , µh, µs

)
= exp

{
4π

αs(µh)
g1 (λ,λf ) + g2 (λ,λf ) +

αs(µh)

4π
g3 (λ,λf ) + · · ·

}

× u({p}, µh, µs) , (2.12)

with

λ =
αs(µh)

2π
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µh

µs
, λf =

αs(µh)

2π
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µh

µf
. (2.13)
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Since the soft limit z → 1 corresponds to the limit N → ∞ in Mellin space, we neglected

terms suppressed by powers of 1/N in (2.8). Furthermore, in (2.9) we employed the notation

N̄ = NeγE . The function s̃ij is the Mellin transform of the soft function Sij found in (2.4).
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Ũij(N̄ , {p}, µf , µh, µs)Hij({p}, µh) Ũ
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N̄2µ2
s
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. (2.10)
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M2

µ2
h

+ aΓcusp(µf , µs) ln N̄
2

+ 2aγφ(µs, µf )

}
× u ({p}, µh, µs) , (2.11)

which is formally identical to the expression found for the corresponding quantity in carry-

ing out the resummation for tt̄W production. For the definition of the various RG factors
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Ũ
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αs(µh)

4π
g3 (λ,λf ) + · · ·
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Figure 1. Factorization-scale dependence of the total tt̄H production cross section at the LHC
with

√
s = 13TeV. The NLO and NLO+NLL curves are obtained using MMHT 2014 NLO PDFs,

while the NLO+NNLL and nNLO curves are obtained using MMHT 2014 NNLO PDFs.

the ratio µf/M at the LHC with
√
s = 13TeV. One can observe that the NLO, NLO+NLL

and NLO+NNLL curves intersect each other in the vicinity of µf/M = 0.5, while the three

curves have a very different behavior for small values of µf . In addition, figure 1 shows

that beyond-NLO corrections are quite significant for µf/M ≫ 0.5, as the NLO result falls

rather steeply away to smaller values in that region, while the other three curves remain

reasonably stable.

Because of these considerations, in the following we employ two different default choices

for the factorization scale, namely µf,0 = M/2 and µf,0 = M . The choice µf,0 = M/2 may

be advantageous because the lower-order perturbative results are larger at lower µf , so

that the apparent convergence of the perturbative series is improved, but other than this

numerical fact there is no obvious reason to exclude the natural hard scale M as a default

choice so we study this as well. In both cases, the uncertainty associated to the choice of

a default value for the scale is estimated by varying each scale in the interval [µi,0/2, 2µi,0]

(i ∈ {s, f, h}). The scale uncertainty above the central value of an observable O (the total

cross section, or the value of a differential cross section in a given bin) is then evaluated

by combining in quadrature the quantities

∆O+
i = max{O (κi = 1/2) , O (κi = 1) , O (κi = 2)}− Ō , (3.5)

for i = f, h, s. In (3.5) κi = µi/µi,0 and Ō is the value of O evaluated by setting all scales

to their default values (κi = 1 for i = f, h, s). The scale uncertainty below the central

value can be obtained in the same way by combining in quadrature the quantities ∆O−
i ,

defined as in (3.5) but with “max” replaced by “min”. We use this procedure to obtain

the perturbative uncertainties given in all of the tables and figures that follow.

3.2 Total cross section

We begin our analysis by considering the total cross section for the associated production

of a top pair and a Higgs boson at the LHC operating at a center-of-mass energy of 13TeV.
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order PDF order code σ [fb]

LO LO MG5 aMC 378.7+120.5
−85.2

app. NLO NLO in-house MC 473.3+0.0
−28.6

NLO no qg NLO MG5 aMC 482.1+10.9
−35.1

NLO NLO MG5 aMC 474.8+47.2
−51.9

NLO+NLL NLO in-house MC +MG5 aMC 480.1+57.7
−15.7

NLO+NNLL NNLO in-house MC +MG5 aMC 486.4+29.9
−24.5

nNLO (Mellin) NNLO in-house MC +MG5 aMC 497.9+18.5
−9.4

(NLO+NNLL)NNLOexp. NNLO in-house MC +MG5 aMC 482.7+10.7
−21.1

Table 2. Total cross section for tt̄H production at the LHC with
√
s = 13TeV and MMHT

2014 PDFs. The default value of the factorization scale is µf,0 = M/2, and the uncertainties are
estimated through scale variations of this (and the resummation scales µs and µh when applicable)
as explained in the text, see the discussion around (3.5).

The NLO approximation mentioned above is easily obtained by setting µs = µh = µf

in the NNLL resummation formula (2.10). For this reason, the matched NLO+NNLL cross

section is given by

σNLO+NNLL =σNLO +
[
σNNLL − σapprox. NLO

]
. (3.1)

The difference of terms in the square brackets contributes at NNLO and beyond, adding

NNLL resummation onto the NLO result. In order to study the convergence of resummed

perturbation theory, we will also calculate NLO+NLL results, defined as

σNLO+NLL =σNLO +
[
σNLL − σNLL expanded to NLO

]
. (3.2)

The difference of terms in the square brackets contributes at NNLO and beyond, adding

NLL resummation onto the NLO result. However, in contrast to the approximate NLO

result, the constant piece of the NLO expansion of the NLL resummation formula contains

explicit dependence on the matching scales µh and µs, in addition to that on µf . The

numerical dependence on these scales is formally of NNLL order (and is indeed canceled

through µs and µh dependence in the NLO hard and soft functions in the NNLL result),

and provides an additional handle on estimating the size of NNLL corrections using the

NLL resummation formula.

While we are mainly interested in NNLL resummation effects, it is also interesting

to study to what extent these all-orders corrections are approximated by their NNLO

truncation. To this end, we consider “approximate NNLO” calculations based on the

NNLL resummation formula (2.10). Approximate NNLO calculations include all powers of

lnN and part of the constant terms from a complete NNLO calculation, but neglect terms

which vanish as N → ∞. Since the constant terms are not fully determined by an NNLL
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explicit dependence on the matching scales µh and µs, in addition to that on µf . The
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through µs and µh dependence in the NLO hard and soft functions in the NNLL result),

and provides an additional handle on estimating the size of NNLL corrections using the
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to study to what extent these all-orders corrections are approximated by their NNLO
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results is estimated by varying separately all the three scales around their default values

in the interval µi ∈ [µi,0/2, 2µi,0] for i ∈ {s, f, h}. The scale uncertainty above (below) the

central value of a resummed observable O, which can be the total cross section or the value

of the differential cross section in a given bin, is determined as follows. First one evaluates

the quantities

∆O+
i = max{O (κi = 1/2) , O (κi = 1) , O (κi = 2)}− Ō ,

∆O−
i = min{O (κi = 1/2) , O (κi = 1) , O (κi = 2)}− Ō , (3.5)

for i ∈ {s, f, h}. In (3.5) we defined κi = µi/µi,0, and Ō indicates the observable evaluated

at κi = 1 for all i-s. The scale uncertainty above (below) Ō is then obtained by combining

in quadrature ∆O+
i (∆O−

i ) for i ∈ {s, f, h}.

3.2 Total cross section

In this section we analyze the total cross section for the associated production of a top

quark pair and a Z boson at the LHC operating at a center-of-mass energy of 13TeV.

The relevant results are collected in table 2. We first compare the approximate NLO

cross section, obtained by expanding the resummation formula to NLO (second row of

table 2) with the complete NLO cross section (fourth row) and the NLO cross section

without the contribution of the quark-gluon channel (third row). The difference between

the approximate NLO result and the NLO result without the qg channel is due to terms

in the quark annihilation and gluon fusion channels which are subleading in the partonic

threshold limit. We see that the impact of these terms is around 1%. The difference

between these two results is therefore small in spite of the fact that the NLO corrections

are large, as can be seen by comparing them with the LO result. However, we see that

the approximate NLO result shows a smaller scale uncertainty than the NLO result with

the contribution of the qg channel. We conclude that the soft emission corrections provide

the bulk of the NLO corrections for this choice of the factorization scale. This motivates

us to study the effect of the resummation of these corrections, keeping in mind that by

matching the resummed results to NLO calculations we consider both power corrections

and the contribution of the qg channel to that order.

The NLO+NLL and NLO+NNLL cross sections, shown in the sixth and seventh line

of table 2 are main results of this paper. By looking at the NLO, NLO+NLL, NLO+NNLL

results we see that the cross section is progressively increased, but the central value of each

prediction falls in the scale uncertainty band of the predictions of lower accuracy. One

might also want to evaluate the NLO+NNLL total cross section by employing NLO PDFs;

this leads to a total cross section of σ = 787.3+63.4
−67.4 fb. This result has a central value which

is ∼ 10 fb larger than the NLO+NNLL calculation carried out with NNLO PDFs and a

scale uncertainty interval which is almost identical to the one obtained by using NNLO

PDFs. A comparison of the of the NLO+NNLL total cross section evaluated with NLO

PDFs with the NLO total cross section in table 2 allows one to assess directly the numerical

impact of the higher-order logarithms which are included in the resummed calculation.

One can then look at the NNLO expansions of the NNLL resummation formula, which

are shown in the last two lines of table 2. By comparing these results to the NLO+NNLL

– 7 –



Alessandro Broggio    29/08/2017 17

Total cross section tTH

J
H
E
P
0
2
(
2
0
1
7
)
1
2
6

LHC 13 TeV

μf ,0=M

2
μf ,0=M

NLO NLL NNLL nNLO NLO NLL NNLL nNLO
350

400

450

500

550

600
σ

[pb]

Figure 2. Comparison between different perturbative approximations to the total cross section
carried out with the default factorization scale choices µf,0 = M/2 (left) and µf,0 = M (right).
The labels “NLL” and “NNLL” on the horizontal axis indicate NLO+NLL and NLO+NNLL cal-
culations.

The results obtained are summarized in table 2, where we set µf,0 = M/2, in table 3, where

we set µf,0 = M , and in figure 2, which presents a visual comparison between the main

results at the two different scales.

We first compare the approximate NLO corrections generated from NNLL soft-gluon

resummation (second row of each table), with the full NLO corrections without (third row

of each table) and with (fourth row of each table) the qg channel. Since the approximate

NLO results include only the leading-power contributions from the gluon fusion and quark-

annihilation channels in the soft limit, the difference between these results and the NLO

corrections without the qg channel gives a measure of the importance of power corrections

away from this limit. The two results are seen to differ by no more than a few percent, even

though the NLO corrections are large. This shows that at NLO the power corrections away

from the soft limit for these channels are quite small. Comparing the NLO results with

and without the qg channel reveals that this channel contributes significantly to the scale

uncertainty, in particular when one chooses µf,0 = M/2. The fact that the leading terms

in the soft limit make up the bulk of the NLO correction provides a strong motivation to

resum them to all orders. No information is lost by doing this, as both sources of power

corrections are taken into account by matching with NLO as discussed above. Since the

power corrections are treated in fixed order, the perturbative uncertainties associated with

them are estimated through the standard approach of scale variations.

We next turn to the NLO+NLL and NLO+NNLL cross sections, which are the main

results of this section. The exact numbers are given in tables 2 and 3, and a pictorial

representation is given in figure 2. The results for the default scale choice µf,0 = M/2

converge quite nicely. The scale uncertainties get progressively smaller when moving from

NLO to NLO+NLL to NLO+NNLL, and the higher-order results are roughly within the

range predicted by the uncertainty bands of the lower-order ones. For µf,0 = M the con-

vergence is still reasonable but not quite as good, mainly because the NLO and NLO+NLL

results are noticeably smaller than at µf,0 = M/2. Interestingly, the NLO+NLL result has

– 10 –
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Distributions tTH: NLO vs NLO+NNLL
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Figure 5. Differential distributions with µf,0 = M/2 at NLO+NNLL (blue band) compared to the
NLO calculation (red band). The uncertainty bands are generated through scale variations of µf ,
µs and µh as explained in the text.

We want at this point to study results for a different choice of the default factor-

ization scale, namely µf,0 = M . As discussed for the case of the total cross section in

section 3.2, the numerical impact of the soft emission corrections with the choice µf,0 = M

is significantly larger than the impact of the same corrections with the choice µf,0 = M/2.

However, NLO+NNLL predictions obtained with the two choices are in good agreement.

For what concerns the differential distributions studied here this can be seen by comparing

NLO+NLL calculations carried out with the choice µf,0 = M or µf,0 = M/2 (figure 8),

and NLO+NNLL calculations with µf,0 = M or µf,0 = M/2 (figure 9). Figure 8 shows

that at NLO+NLL the overlap between the distributions evaluated at µf,0 = M and

µf,0 = M/2 is not particularly good, with the band at µf,0 = M/2 slightly larger than the

one at µf,0 = M in all bins. Figure 9 shows instead that the NLO+NNLL distributions
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Distributions tTH: NLL vs NNLL
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Figure 6. Differential distributions µf,0 = M/2 at NLO+NNLL (blue band) compared to the
NLO+NLL calculation (red band). The uncertainty bands are generated through scale variations.

at µf,0 = M and µf,0 = M/2 have a large overlap in all bins. The scale uncertainty at

NLO+NNLL with µf,0 = M is larger than the scale uncertainty at µf,0 = M/2 in all bins.

The good agreement between the two bands shown in each panel of figure 9 indicates that

NLO+NNLL predictions are quite stable with respect to different (but reasonable) choices

of the standard value for the factorization scale.

4 Conclusions

In this paper we evaluated the resummation of the soft emission corrections to the as-

sociated production of a top-quark pair and a Higgs boson at the LHC in the partonic

threshold limit z → 1. The calculation is carried out to NNLL accuracy and it is matched
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Distributions tTH: NNLL vs expansions
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Figure 7. Differential distributions ratios for µf,0 = M/2, where the uncertainties are generated
through scale variations.

to the complete NLO cross section in QCD. The numerical evaluation of observables at

NLO+NNLL was carried out by means of an in-house parton level Monte Carlo code devel-

oped for this work, based on the resummation formula derived in [16]. The resummation

procedure is however carried out in Mellin space, following the same approach employed

in [43, 44] for the calculation of the (boosted) top-quark pair production cross section and

in [19] for the calculation of the cross section for the associated production of a top-quark

pair and a W boson.

In the previous sections we presented predictions for the total cross section for this pro-

duction process at the LHC operating at a center-of-mass energy of 13TeV. In addition, we

showed results for four different differential distributions depending on the four-momenta

of the massive particles in the final state: the differential distributions in the invariant

mass of the tt̄H particles, in the invariant mass of the tt̄ pair, in the transverse momentum

of the Higgs boson, and in the transverse momentum of the top quark. We found that

the relative size of the NNLL corrections with respect to the NLO cross section is rather

sensitive to the choice of the factorization scale µf . In particular, for the two choices which

we analyzed in detail, namely µf,0 = M/2 and µf,0 = M , it was found that the NNLL cor-

rections enhance the total cross section and differential distributions in all bins considered.

The NNLL soft emission corrections expressed as a percentage of the NLO observables are

larger at µf,0 = M than they are at µf,0 = M/2. However, by comparing NLO+NNLL

– 17 –
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Pseudoscalar couplings in tTH

b) We show that it is relatively straightforward to
obtain precise, beyond NLO predictions for differ-
ential distributions which are sensitive to a pseu-
doscalar component in the top quark Yukawa cou-
pling.

For this purpose, we consider the benchmark scenario
described in Table 3 of [24], in which the coupling of the
top-quark current to a “Higgs Boson” X0 is described by
the effective Lagrangian

Lt
0 = �mt

v
 (cos↵+ i sin↵�5) X0 , (1)

where the angle ↵ parameterizes the relative weight of
the scalar and pseudoscalar couplings. In Eq. (1), mt in-
dicates the mass of the the top quark and v the vacuum
expectation value. In the following we will identify X0

with the SM Higgs boson H when we consider a purely
scalar coupling (↵ = 0) while we will use the notation
X0 ! A when we consider a purely pseudoscalar cou-
pling (↵ = ⇡/2). The part of the Lagrangian in Eq. (1)
which is proportional to �5 is odd under a CP transfor-
mation. While Eq. (1) is not the most generic effective
Lagrangian for this sector of the SM, it allows us to study
in particular the effect of mixed scalar-pseudoscalr cou-
pling on the shape of several differential distributions.

Experimentally, a full reconstruction of the momenta
of the t¯tX0 final state is possible, and this allows one
to measure distributions which are differential with re-
spect to the momenta of the final state massive particles.
Four of these distributions play an important role in this
work: the differential distribution with respect i) to the
invariant mass of the three massive particles in the fi-
nal state, ii) to the transverse momentum of the X0 bo-
son, iii) to the invariant mass of the top pair, and iv) to
the transverse momentum of the top quark. The shapes
of these distributions, with the exception of the trans-
verse momentum of the top quark, show significant dif-
ferences between the pure scalar and pseudoscalar cases
at generator level. Consequently they can be used to ex-
perimentally probe the pseudoscalar component. Even
though parton showering, detector acceptance, event se-
lection and reconstruction are expected to considerably
degrade these specific distributions and their discrimi-
nant power [24], several studies strongly suggest that sim-
ilar distributions involving full kinematic reconstruction
can be measured [26, 27]. In addition, these same studies
indicate that new interesting angular distributions and
asymmetries can be defined from the reconstructed top
quarks and Higgs boson in order to discriminate the sig-
nal from the main irreducible backgrounds in dileptonic
decays in an extremely efficient way, even after event re-
construction. Besides the fact that the full kinematic
reconstruction of t¯tX0 events is extremely challenging,
due to the presence of two undetected neutrinos in the
dilepton channel, results show that angular distributions
involving the reconstructed top quarks and Higgs boson
and/or their decaying products are significantly different
for the signal and the main irreducible backgrounds. A

similar strategy can be implemented to probe the pseu-
doscalar component of the top quark Yukawa coupling,
by exploring new distributions, highly sensitive to the
mixing angle.

In order to obtain precise predictions for the associ-
ated production of a top pair and a X0 boson we write
a parton level Monte Carlo which includes the resumma-
tion of soft emission corrections in the partonic threshold
limit defined by z = M2/ŝ ! 1, where M is the invari-
ant mass of the t¯tX0 final state and ŝ is the partonic
center of mass energy. The resummation of these correc-
tions is carried to next-to-leading logarithmic (NLL) ac-
curacy. Predictions to NLO+NLL accuracy for the total
cross section and the four differential distributions listed
above are obtained by matching the output of the parton
level Monte Carlo with the NLO calculations obtained by
using MG5_aMC.

The paper is structured as follows. In Section II we
present predictions for the total cross section and differ-
ential distributions for t¯tX0 production considering the
cases in which X0 couples to the top quark as a scalar
(x0 ! H), pseudoscalar (X0 ! A) and as a mixture of
the two. In Section III we discuss how the measurement
of these quantities can be employed to extract informa-
tion about the coupling of X0 with the top. Section IV
contains our conclusions.

II. CALCULATION AND RESULTS

The process of interest in this work is the associated
production of a top pair and a boson X0 which cou-
ples to the top quark according to the Lagrangian in
Eq. (1). From the calculational point of view, this pro-
cess is equivalent to the associated production of a top
pair and a Higgs boson in the SM. The resummation
of the latter process in the partonic threshold limit was
studied in detail in [15, 16]. In particular, in [16] predic-
tions for t¯tH production were obtained to NLO+NNLL
accuracy. That calculation was carried out by means of
an in-house parton level Monte Carlo code that was em-
ployed for the numerical evaluation of the resummation
formula to NNLL accuracy. The NNLL calculations were
then matched to NLO results obtained by using MG5_aMC.
Our goal in this paper is to calculate to NLL accuracy
the t¯tX0 production process of an arbitrary mixture of
scalar and pseudoscalar coupling of X0. We then match
the results obtained to NLO calculations carried out by
using the the model package for MG5_aMC developed for
the work published in [24].

The resummation formula which we employ is derived
along the lines of the one discussed in [16] for the SM case
and of the ones obtained in [28, 29] for t¯tW and t¯tZ pro-
duction, respectively. For this reason, we do not repeat
a detailed description of the resummation formula and
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FIG. 3: Differential distributions evaluated at NLO+NLL. The uncertainty bands are generated through scale variations as
explained in the text.
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uncertainty on the cross-sections in Table II due to scales
variations.

The theoretical uncertainty on the t¯tX signal cross
section, in particular the scale dependence, comprises
one of the components of the full systematic error taken
into account in experimental measurements at the LHC.
The observed improvement on the scale uncertainty at
NLO+NLL is expected to significantly decrease the im-
pact of the scale dependences on the Monte Carlo signal
estimation, and therefore, on the overall systematic er-
ror [33]. Moreover, the k-factors associated with the ratio
of the NLO+NLL cross section with respect to the NLO
calculation,

k = �NLO+NLL/�NLO , (6)

range from 1.010 to 1.012 (1.048 to 1.025) for the trans-
verse momentum of the top quark in the pure scalar
(pseudoscalar) scenario, as can be seen in Figure 8. This
information is useful to reweight the simulated transverse
momenta of the top quark and X0 boson in the exper-
imental measurement analyses, for any specific mixture
of the two components.

While the cross section measurement does not require
an experimental full event kinematic reconstruction, the
implementation of the differential distributions evaluated
in Section II, and eventual new angular asymmetries, nat-
urally demands complete kinematic information about
the top quarks and the X0 boson. The different behav-
ior of these observables for the scalar and pseudoscalar
cases are expected to significantly improve the sensitiv-
ity to the mixing angle ↵, when combined with the cross
section result. In particular, the two dimensional distri-
bution between the top-X0 and the anti-top-X0 angles in
the t¯tX0 rest frame, recently presented in [27], is a po-
tential candidate to provide an angular asymmetry which
would allow to probe the top quark Yukawa coupling with
further precision.

The theoretical understanding of the shapes of the
transverse momentum and invariant mass distributions
is also extremely important for the full kinematic recon-
struction of t¯tX0 dilepton events. The event reconstruc-
tion is based on six kinematic equations with quadratic
dependences, and therefore, gives rise to more than one
possible solution [26, 34]. As such, these variables can be
used as inputs to calculate the likelihood of a given so-
lution to be consistent with the event. For example, the
reconstruction of the t¯tX0 system performed in [27], with
two opposite charged leptons in the final state, makes
use of a likelihood function calculated as the product
of one-dimensional probability density functions (p.d.f.).
These p.d.f.s are built from pT distributions of the neu-
trino, anti-neutrino, top quark, anti-top quark, and t¯t
system, respectively P (pT ⌫), P (pT ⌫̄), P (pT t), P (pT t̄)

and P (pT tt̄), at parton level:

Ltt̄X0
⇠ 1

pT ⌫pT ⌫̄

P (pT ⌫)P (pT ⌫̄)P (pT t)P (pT t̄)

⇥ P (pT tt̄)P (mt,mt̄)P (mX0) . (7)

The two-dimensional p.d.f. of the top quark masses,
P (mt,mt̄), and the one-dimensional p.d.f. of the X0 can-
didate mass, P (mX0), are also included. In addition, the
kinematic distributions presented in this paper might also
be used as input variables in similar multivariate meth-
ods to determine the right pairing of jets in the recon-
struction process. These distributions can also be used
to repair the distortion caused by the detector response,
kinematic cuts applied in the trigger and in the offline
event reconstruction and selection.

IV. CONCLUSIONS

In this work we studied the associated production of a
top-antitop pair and a scalar X0 which is allowed to cou-
ple to the top quark current with a mixture of scalar and
pseudoscalar couplings. The scalar coupling is the SM
Yukawa coupling modulated by a factor cos↵, where ↵
is the angle which parameterizes the relative strength of
the scalar and pseudoscalar components of the coupling.
We evaluated the total cross section for this process for
the special cases ↵ = 0 (SM Higgs) and ↵ = ⇡/2 (pure
pseudoscalar coupling) to NLO+NLL accuracy, where
the NLL resummation was carried out in the soft gluon
emission limit. We showed that it is straightforward to
use this information in order to evaluate the total cross
section for arbitrary values of ↵.

Recent studies point to the possibility of a reliable
kinematic reconstruction of the top, antitop and X0 mo-
menta. For this reason, we studied differential distribu-
tions with respect to the final state invariant mass, X0

transverse momentum, top-pair invariant mass and top-
quark transverse momentum to NLO+NLL accuracy. By
comparing the ↵ = 0 and ↵ = ⇡/2 cases, we showed that
the shapes of the first three distributions listed above de-
pend quite strongly on the scalar or pseudoscalar nature
of the coupling between the top quark and the Higgs bo-
son. In addition, these shapes are stable with respect
to the inclusion of higher-order soft emission corrections.
Results for the distributions at arbitrary values of ↵ can
be easily obtained by considering an appropriate bin-by-
bin combination of the results at ↵ = 0 and ↵ = ⇡/2.

It is shown that a possible future observation of the
associated production of a top quark pair with a Higgs
boson in the SM hypothesis could immediately estab-
lish a limit on the pseudoscalar component of the top
quark Yukawa coupling of | cos↵| > 0.83+0.01

�0.02, at 68.3%
CL. Moreover, a full kinematic reconstruction of the fi-
nal state momenta for this process could provide valu-
able information by means of angular distributions and
asymmetries, which can be combined with the cross sec-
tion result. The theoretical understanding of the afore-
mentioned differential kinematic distributions is also ex-
tremely useful for the experimental measurement itself,
as they can provide k-factors for transverse momentum
reweighting, and probability density functions for neu-
trino reconstruction in dilepton events.

6

5 sigmas observation of this 
channel (on the SM hypothesis) 

would set the limit
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Total cross section tTZ

J
H
E
P
0
4
(
2
0
1
7
)
1
0
5

order PDF order code σ [fb]

LO LO MG5 aMC 521.4+165.4
−116.9

app. NLO NLO in-house MC 737.7+38.5
−64.5

NLO no qg NLO MG5 aMC 730.4+41.8
−64.9

NLO NLO MG5 aMC 728.3+93.8
−90.3

NLO+NLL NLO in-house MC +MG5 aMC 742.0+90.1
−30.3

NLO+NNLL NNLO in-house MC +MG5 aMC 777.8+61.3
−65.2

nNLO NNLO in-house MC +MG5 aMC 798.7+36.2
−23.6

(NLO+NNLL)NNLOexp. NNLO in-house MC +MG5 aMC 766.2+17.2
−50.1

Table 2. Total cross section for tt̄Z production at the LHC with
√
s = 13TeV and MMHT

2014 PDFs. The default value of the factorization scale is µf,0 = M/2, and the uncertainties
are estimated through variations of this scale (and of the hard and soft scales µs and µh when
applicable), as explained in the text.

cross section, one sees that the effect of the resummation corrections beyond NNLO are

relatively small. As it was observed in the case of the tt̄H and tt̄W processes in [16–18], the

scale uncertainty affecting the nNLO result is very small compared to the NLO+NNLL scale

uncertainty, and most likely underestimates the residual perturbative uncertainty at NNLO.

Experimental collaborations reported measurements of the tt̄Z total cross section in

combination with measurements of the tt̄W cross section [1–4], where the latter is the sum

of the cross sections for tt̄W+ and tt̄W− production. We conclude this section by compar-

ing our predictions for tt̄W and tt̄Z with experimental data. The tt̄W production cross

section was evaluated by running the code developed in [18] with the scale choices and

input parameters employed in the present work for tt̄Z production and described above.

The results for tt̄Z and tt̄W production cross section at 8 and 13TeV are summarized in

table 3. In figure 2 we follow the structure of figure 12 in [4] in order to compare graph-

ically calculations with the corresponding experimental measurements. The experimental

measurements at 8TeV are taken from [2], while the experimental measurements at 13TeV

are taken from [4]. The green dots and cross-shaped “error bars” correspond to NLO calcu-

lations carried out with µf,0 = M/2 and their scale uncertainty. The red dots and crosses

correspond instead to NLO+NNLL calculations.

It is interesting to observe that, while predictions for the tt̄Z production cross section

are in perfect agreement with the measurements at both 8 and 13TeV, the predictions for

the tt̄W cross section are slightly smaller than measurements for both collider energies. This

observation holds for NLO and NLO+NNLL calculations alike. Of course this discrepancy

should be taken with a grain of salt, and requires a more detailed discussion with the

experimental collaborations. Moreover, we would like to stress that a fully exhaustive

comparison between predictions and measurements should also account for the uncertainty

associated to the choice of the PDFs and to the value of αs. These two sources of uncertainty

are not reflected in the error bars of figure 2.
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NLO obtained from MadGraph5_aMC@NLO

J
H
E
P
0
2
(
2
0
1
7
)
1
2
6

order PDF order code σ [fb]

LO LO MG5 aMC 378.7+120.5
−85.2

app. NLO NLO in-house MC 473.3+0.0
−28.6

NLO no qg NLO MG5 aMC 482.1+10.9
−35.1

NLO NLO MG5 aMC 474.8+47.2
−51.9

NLO+NLL NLO in-house MC +MG5 aMC 480.1+57.7
−15.7

NLO+NNLL NNLO in-house MC +MG5 aMC 486.4+29.9
−24.5

nNLO (Mellin) NNLO in-house MC +MG5 aMC 497.9+18.5
−9.4

(NLO+NNLL)NNLOexp. NNLO in-house MC +MG5 aMC 482.7+10.7
−21.1

Table 2. Total cross section for tt̄H production at the LHC with
√
s = 13TeV and MMHT

2014 PDFs. The default value of the factorization scale is µf,0 = M/2, and the uncertainties are
estimated through scale variations of this (and the resummation scales µs and µh when applicable)
as explained in the text, see the discussion around (3.5).

The NLO approximation mentioned above is easily obtained by setting µs = µh = µf

in the NNLL resummation formula (2.10). For this reason, the matched NLO+NNLL cross

section is given by

σNLO+NNLL =σNLO +
[
σNNLL − σapprox. NLO

]
. (3.1)

The difference of terms in the square brackets contributes at NNLO and beyond, adding

NNLL resummation onto the NLO result. In order to study the convergence of resummed

perturbation theory, we will also calculate NLO+NLL results, defined as

σNLO+NLL =σNLO +
[
σNLL − σNLL expanded to NLO

]
. (3.2)

The difference of terms in the square brackets contributes at NNLO and beyond, adding

NLL resummation onto the NLO result. However, in contrast to the approximate NLO

result, the constant piece of the NLO expansion of the NLL resummation formula contains

explicit dependence on the matching scales µh and µs, in addition to that on µf . The

numerical dependence on these scales is formally of NNLL order (and is indeed canceled

through µs and µh dependence in the NLO hard and soft functions in the NNLL result),

and provides an additional handle on estimating the size of NNLL corrections using the

NLL resummation formula.

While we are mainly interested in NNLL resummation effects, it is also interesting

to study to what extent these all-orders corrections are approximated by their NNLO

truncation. To this end, we consider “approximate NNLO” calculations based on the

NNLL resummation formula (2.10). Approximate NNLO calculations include all powers of

lnN and part of the constant terms from a complete NNLO calculation, but neglect terms

which vanish as N → ∞. Since the constant terms are not fully determined by an NNLL
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Table 2. Total cross section for tt̄H production at the LHC with
√
s = 13TeV and MMHT

2014 PDFs. The default value of the factorization scale is µf,0 = M/2, and the uncertainties are
estimated through scale variations of this (and the resummation scales µs and µh when applicable)
as explained in the text, see the discussion around (3.5).
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section is given by
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σNLL − σNLL expanded to NLO

]
. (3.2)

The difference of terms in the square brackets contributes at NNLO and beyond, adding

NLL resummation onto the NLO result. However, in contrast to the approximate NLO

result, the constant piece of the NLO expansion of the NLL resummation formula contains

explicit dependence on the matching scales µh and µs, in addition to that on µf . The

numerical dependence on these scales is formally of NNLL order (and is indeed canceled

through µs and µh dependence in the NLO hard and soft functions in the NNLL result),

and provides an additional handle on estimating the size of NNLL corrections using the

NLL resummation formula.

While we are mainly interested in NNLL resummation effects, it is also interesting

to study to what extent these all-orders corrections are approximated by their NNLO

truncation. To this end, we consider “approximate NNLO” calculations based on the

NNLL resummation formula (2.10). Approximate NNLO calculations include all powers of

lnN and part of the constant terms from a complete NNLO calculation, but neglect terms

which vanish as N → ∞. Since the constant terms are not fully determined by an NNLL
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Figure 5. Differential distributions with µf,0 = M/2 at NLO+NNLL (blue band) compared to the
NLO calculation (red band). The uncertainty bands are generated through scale variations of µf ,
µs and µh as explained in the text.

the NLO+NNLL accuracy calculation, which is obtained by varying µs, µf , and µh as

described above, is smaller than the NLO scale uncertainty band obtained by varying µf .

Results at NLO+NLL and NLO+NNLL accuracy are compared in figure 6. The main

effect of the NNLL correction with respect to the NLL ones is an increase of the central

value of the bins in the tail of the M and Mtt̄ distributions. The scale uncertainty bands

turn out to be of similar size at NLO+NLL and NLO+NNLL in almost all bins shown.

Figure 7 shows the ratio of distributions at various level of precision to the central

value of the NLO+NNLL calculation in each bin. In particular, the blue band refers to

NLO+NNLL distributions, the dashed red band to nNLO distributions and the dashed

black band to distributions obtained from the NNLO expansion of the NLO+NNLL re-

summation. The NLO+NNLL expanded distributions differ from the NLO+NNLL distri-
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Top pair + W or Z production
J
H
E
P
0
4
(
2
0
1
7
)
1
0
5

√
s and pert. order process σ [fb]

8 TeV NLO tt̄W+ 136.7+15.6
−15.2

8 TeV NLO tt̄W− 60.5+7.1
−6.8

8 TeV NLO tt̄Z 189.8+24.5
−24.8

8 TeV NLO+NNLL tt̄W+ 130.7+6.9
−4.9

8 TeV NLO+NNLL tt̄W− 59.1+3.1
−2.2

8 TeV NLO+NNLL tt̄Z 203.9+13.5
−15.8

13 TeV NLO tt̄W+ 356.3+43.7
−39.5

13 TeV NLO tt̄W− 182.2+23.1
−20.4

13 TeV NLO tt̄Z 728.3+93.8
−90.3

13 TeV NLO+NNLL tt̄W+ 341.0+23.1
−13.6

13 TeV NLO+NNLL tt̄W− 177.1+12.0
−6.9

13 TeV NLO+NNLL tt̄Z 777.8+61.3
−65.2

Table 3. Total cross section for tt̄Z and tt̄W production at the LHC with
√
s = 8 and 13TeV

and MMHT 2014 PDFs. The default value of the factorization scale is µf,0 = M/2, and the
uncertainties are estimated through variations of this scale (and of the resummation scales µs and
µh when applicable).
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Figure 2. Left panel: total cross section at NLO (green cross) and NLO+NNLL (red cross)
compared to the ATLAS measurements at 8TeV [2] (data are represented by the light blue and
pink bands). Right panel: total cross section at NLO (green cross) and NLO+NNLL (red cross)
compared to the CMS measurements at 13TeV [4] (light blue and pink bands).

3.3 Differential distributions

In this section we obtain predictions for four differential distributions which depend on

the momenta of the final state massive particles. The distributions are i) the distribution

differential with respect to the tt̄Z invariant mass, M , ii) the distribution differential with

respect to the tt̄ invariant mass, Mtt̄, iii) the distribution differential with respect to the
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Summary & Outlook

‣ Predictions for the total cross sections together with several differential 
distributions were obtained at NLO+NNLL for tTH, tTW, tTZ production at LHC

‣ Reduction of the theoretical uncertainty

‣ In principle cuts on the momenta of the final-state particles can be easily applied

‣ State-of-the-art: combine QCD predictions (NLO+NNLL) with EW corrections

‣ top pair + photon

‣ Implement the decay of the final state particles in the NWA
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Distributions tTH: nLO vs NLO

nLO vs full NLO
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Figure 3. Differential distributions at approximate NLO (blue band) compared to the complete
NLO (red band). The default factorization scale is chosen as µf,0 = M/2, and the uncertainty
bands are generated through scale variations as explained in the text.

Figure 6 shows a comparison between NLO+NLL and NLO+NNLL results. The cen-

tral value of these two calculations is quite close in all bins. The main effect of the correc-

tions at NLO+NNLL is to shrink slightly the scale uncertainty bands with respect to the

NLO+NLL results everywhere with the exception of the bins in the far tail of the M and

Mtt̄ distributions.

We conclude our discussion of the results obtained with the choice µf,0 = M/2 by

comparing in figure 7 the NLO+NNLL, nNLO and NLO+NNLL expanded predictions

for the various distributions. The figure shows the ratio, separately for each bin, of the

distribution to the NLO+NNLL prediction evaluated with µi = µi,0 for i = s, f, h. The blue

band refers to NLO+NNLL calculations, the dashed red band to nNLO calculations and the
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Figure 3. Differential distributions at approximate NLO (blue band) compared to the complete
NLO (red band). The default factorization scale is chosen as µf,0 = M/2, and the uncertainty
bands are generated through scale variations as explained in the text.

Figure 6 shows a comparison between NLO+NLL and NLO+NNLL results. The cen-

tral value of these two calculations is quite close in all bins. The main effect of the correc-

tions at NLO+NNLL is to shrink slightly the scale uncertainty bands with respect to the

NLO+NLL results everywhere with the exception of the bins in the far tail of the M and

Mtt̄ distributions.

We conclude our discussion of the results obtained with the choice µf,0 = M/2 by

comparing in figure 7 the NLO+NNLL, nNLO and NLO+NNLL expanded predictions

for the various distributions. The figure shows the ratio, separately for each bin, of the

distribution to the NLO+NNLL prediction evaluated with µi = µi,0 for i = s, f, h. The blue

band refers to NLO+NNLL calculations, the dashed red band to nNLO calculations and the
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Figure 4. Differential distributions at approximate NLO (blue band) compared to the NLO dis-
tributions without the quark-gluon channel contribution (red band). All settings are as in figure 3.

dashed black band to the NNLO expansion of the NLO+NNLL resummation. The dashed

black band and the blue band thus differ by NNLL resummation effects of order N3LO

and higher. Numerically, these effects contribute roughly at the 5% level, and as for the

total cross section the NNLO truncation of the NLO+NNLL resummation formula tends to

underestimate the uncertainty of the all-orders resummation. The difference between the

dashed red band and the dashed black band is due to constant NNLO corrections, which

are of N3LL order. Taking the envelope of the two NNLO approximations (i.e. the black

and red bands) gives a more realistic estimate of the scale uncertainty, which is generally

contained within the NLO+NNLL result (the exception is the high-pHT bins).
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Figure 4. Differential distributions at approximate NLO (blue band) compared to the NLO dis-
tributions without the quark-gluon channel contribution (red band). All settings are as in figure 3.

dashed black band to the NNLO expansion of the NLO+NNLL resummation. The dashed

black band and the blue band thus differ by NNLL resummation effects of order N3LO

and higher. Numerically, these effects contribute roughly at the 5% level, and as for the

total cross section the NNLO truncation of the NLO+NNLL resummation formula tends to

underestimate the uncertainty of the all-orders resummation. The difference between the

dashed red band and the dashed black band is due to constant NNLO corrections, which

are of N3LL order. Taking the envelope of the two NNLO approximations (i.e. the black

and red bands) gives a more realistic estimate of the scale uncertainty, which is generally

contained within the NLO+NNLL result (the exception is the high-pHT bins).
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Distributions tTZ: nLO vs NLO

nLO vs full NLO

nLO vs NLO 
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Figure 3. Differential distributions at approximate NLO (blue band) compared to the complete
NLO (red band). The default factorization scale is chosen as µf,0 = M/2, and the uncertainty
bands are generated through scale variations as explained in the text.

transverse momentum of the top quark,2 ptT , and iv) the distribution differential with

respect to the transverse momentum of the Z boson, pZT .

Figure 3 compares the approximate NLO calculations, carried out with our in-house

code, with the complete NLO calculations, carried out with MG5 aMC. We see that the

approximate NLO calculations reproduce well the full NLO calculations. The lower part of

each panel shows the ratio between the approximate NLO or complete NLO calculations

and the central value of the NLO calculation. One can see that the approximate NLO scale

uncertainty band is included in the NLO scale uncertainty band. Figure 4 repeats the same

2In this context we refer to top quark in a strict sense, and we evaluate this distribution by considering

exclusively the transverse momentum of the particle of charge +2/3 in the final state.
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Figure 3. Differential distributions at approximate NLO (blue band) compared to the complete
NLO (red band). The default factorization scale is chosen as µf,0 = M/2, and the uncertainty
bands are generated through scale variations as explained in the text.

transverse momentum of the top quark,2 ptT , and iv) the distribution differential with

respect to the transverse momentum of the Z boson, pZT .

Figure 3 compares the approximate NLO calculations, carried out with our in-house

code, with the complete NLO calculations, carried out with MG5 aMC. We see that the

approximate NLO calculations reproduce well the full NLO calculations. The lower part of

each panel shows the ratio between the approximate NLO or complete NLO calculations

and the central value of the NLO calculation. One can see that the approximate NLO scale

uncertainty band is included in the NLO scale uncertainty band. Figure 4 repeats the same

2In this context we refer to top quark in a strict sense, and we evaluate this distribution by considering

exclusively the transverse momentum of the particle of charge +2/3 in the final state.
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Figure 4. Differential distributions at approximate NLO (blue band) compared to the NLO dis-
tributions without the quark-gluon channel contribution (red band). All settings are as in figure 3.

analysis but it compares approximate NLO calculations to NLO calculations without the

quark-gluon channel contribution. As expected approximate NLO distributions and NLO

distributions without the qg channel have the same shape and scale uncertainty bands of

similar size. These two figures show that, for this choice of the factorization scale at least,

soft emission corrections provide the bulk of the NLO corrections.

Figure 5 provides the main result of this section. This figure compares NLO calcula-

tions to the distributions evaluated to NLO+NNLL accuracy. Roughly, one can say that

the NLO+NNLL results fall in the upper part of the NLO scale uncertainty interval in

each bin. The central value of the NLO+NNLL calculations is slightly larger than the

central value of the NLO calculations in all bins shown. The scale uncertainty affecting
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Figure 4. Differential distributions at approximate NLO (blue band) compared to the NLO dis-
tributions without the quark-gluon channel contribution (red band). All settings are as in figure 3.

analysis but it compares approximate NLO calculations to NLO calculations without the

quark-gluon channel contribution. As expected approximate NLO distributions and NLO

distributions without the qg channel have the same shape and scale uncertainty bands of

similar size. These two figures show that, for this choice of the factorization scale at least,

soft emission corrections provide the bulk of the NLO corrections.

Figure 5 provides the main result of this section. This figure compares NLO calcula-

tions to the distributions evaluated to NLO+NNLL accuracy. Roughly, one can say that

the NLO+NNLL results fall in the upper part of the NLO scale uncertainty interval in

each bin. The central value of the NLO+NNLL calculations is slightly larger than the

central value of the NLO calculations in all bins shown. The scale uncertainty affecting
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Distributions tTZ: nLO vs NLO
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Figure 7. Differential distributions ratios for µf,0 = M/2, where the uncertainties are generated
through scale variations.

4 Conclusions

In the present work we carried out the resummation of soft gluon emission corrections to

the associated production of a top-antitop quark pair and a Z boson. The resummation was

studied in the partonic threshold limit z → 1 and was implemented to NNLL accuracy.

Numerical calculations of the total cross section and differential distributions to NNLL

accuracy were carried out by means of an in-house partonic Monte Carlo code which we

developed for this work. The output of this code was matched with NLO calculations

obtained from MG5 aMC. The final outcome of this work is represented by the NLO+NNLL

calculations of the total cross section and differential distributions for the LHC operating

at a center-of-mass energy of 13TeV presented in the previous section. The code can be

easily adapted to carry out phenomenological studies which include cuts on the top, antitop

and/or Z boson momenta.

With the choice of the factorization scale made in this work, we can conclude that the

soft emission corrections to tt̄Z production evaluated to NNLL accuracy lead to a moderate

increase of the total cross section and differential distributions with respect to NLO cal-

culations of the same observables. The residual perturbative uncertainty at NLO+NNLL

accuracy, estimated by varying the soft, hard and factorization scales as explained in the

text, is smaller than the NLO scale uncertainty, thus making our evaluations of the cross
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Total cross section tTH
J
H
E
P
0
2
(
2
0
1
7
)
1
2
6

order PDF order code σ [fb]

LO LO MG5 aMC 293.5+85.2
−61.7

app. NLO NLO in-house MC 444.7+28.6
−39.2

NLO no qg NLO MG5 aMC 447.0+35.1
−40.4

NLO NLO MG5 aMC 423.0+51.9
−49.7

NLO+NLL NLO in-house MC +MG5 aMC 466.2+22.9
−26.8

NLO+NNLL NNLO in-house MC +MG5 aMC 514.3+42.9
−39.5

nNLO (Mellin) NNLO in-house MC +MG5 aMC 488.4+9.4
−8.3

(NLO+NNLL)NNLOexp. NNLO in-house MC +MG5 aMC 485.7+6.8
−15.0

Table 3. Total cross section for tt̄H at the LHC with
√
s = 13TeV and MMHT 2014 PDFs. The

results are obtained as in table 2, but with the default value of the factorization scale chosen instead
as µf,0 = M .

a smaller scale uncertainty than the NLO+NNLL one for µf,0 = M , a fact which looks

rather accidental considering its wider variation over a larger range of µf , as seen in fig-

ure 1. However, one should remember that the scales µh and µs are kept fixed at their

default values in the NLO+NLL and NLO+NNLL curves of figure 1, while they are varied

as explained above in order to obtain the scale uncertainty reported in the tables.

In analogy to the two different choices for the default factorization scale considered in

this work, one can wonder about the numerical impact of choosing the default hard scale

equal toM/2 rather thanM . We can retrieve this information by looking at the calculations

which we carried out in order to study the scale uncertainty associated to the NLO+NNLL

results. We find that the by setting the hard scale equal to M/2 rather than M , while

keeping all the other scales equal to their default values, the total cross section increases

by about 2%, irrespective of the choice of the default value of the factorization scale.

Finally, we discuss the NNLO approximations to the NNLL resummation formula. The

results in table 2 show that for µf,0 = M/2 the importance of resummation effects beyond

NNLO is rather small, roughly at or below the 5% level after taking scale uncertainties into

account. An examination of table 3 shows that the effects are noticeably larger at µf,0 = M ,

approximately at the 10% level. In either case, figure 2 shows very clearly that the nNLO

results display an artificially small scale dependence compared to the NLO+NNLL results,

confirming the cautionary statements made in [16] about the reliability of the nNLO scale

dependence in estimating higher-order perturbative corrections.

The results in this section highlight the importance of an NNLL calculation. Taken as

a whole, they show that both NLO+NLL and approximate NNLO calculations are a poor

proxy for the more complete NLO+NNLL calculation. We have considered two default

scale choices, µf,0 = M/2 and µf,0 = M . However, we should emphasize that in the end

the default scale choice is arbitrary, and it would not be unreasonable to combine the

envelope of results from the two choices into a single, larger perturbative uncertainty. The
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J
H
E
P
0
2
(
2
0
1
7
)
1
2
6

order PDF order code σ [fb]

LO LO MG5 aMC 378.7+120.5
−85.2

app. NLO NLO in-house MC 473.3+0.0
−28.6

NLO no qg NLO MG5 aMC 482.1+10.9
−35.1

NLO NLO MG5 aMC 474.8+47.2
−51.9

NLO+NLL NLO in-house MC +MG5 aMC 480.1+57.7
−15.7

NLO+NNLL NNLO in-house MC +MG5 aMC 486.4+29.9
−24.5

nNLO (Mellin) NNLO in-house MC +MG5 aMC 497.9+18.5
−9.4

(NLO+NNLL)NNLOexp. NNLO in-house MC +MG5 aMC 482.7+10.7
−21.1

Table 2. Total cross section for tt̄H production at the LHC with
√
s = 13TeV and MMHT

2014 PDFs. The default value of the factorization scale is µf,0 = M/2, and the uncertainties are
estimated through scale variations of this (and the resummation scales µs and µh when applicable)
as explained in the text, see the discussion around (3.5).

The NLO approximation mentioned above is easily obtained by setting µs = µh = µf

in the NNLL resummation formula (2.10). For this reason, the matched NLO+NNLL cross

section is given by

σNLO+NNLL =σNLO +
[
σNNLL − σapprox. NLO

]
. (3.1)

The difference of terms in the square brackets contributes at NNLO and beyond, adding

NNLL resummation onto the NLO result. In order to study the convergence of resummed

perturbation theory, we will also calculate NLO+NLL results, defined as

σNLO+NLL =σNLO +
[
σNLL − σNLL expanded to NLO

]
. (3.2)

The difference of terms in the square brackets contributes at NNLO and beyond, adding

NLL resummation onto the NLO result. However, in contrast to the approximate NLO

result, the constant piece of the NLO expansion of the NLL resummation formula contains

explicit dependence on the matching scales µh and µs, in addition to that on µf . The

numerical dependence on these scales is formally of NNLL order (and is indeed canceled

through µs and µh dependence in the NLO hard and soft functions in the NNLL result),

and provides an additional handle on estimating the size of NNLL corrections using the

NLL resummation formula.

While we are mainly interested in NNLL resummation effects, it is also interesting

to study to what extent these all-orders corrections are approximated by their NNLO

truncation. To this end, we consider “approximate NNLO” calculations based on the

NNLL resummation formula (2.10). Approximate NNLO calculations include all powers of

lnN and part of the constant terms from a complete NNLO calculation, but neglect terms

which vanish as N → ∞. Since the constant terms are not fully determined by an NNLL

– 7 –
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Dynamical threshold enhancement

Does the soft limit z→1 provide a good 
approximation to the exact result?

Two situations in which the threshold region is 
enhanced:

‣ the threshold contributions are enhanced near 
the kinematic limit               and                                                                 
is near 1

‣ the relevance of the threshold region arises 
dynamically due to the steeply falling behaviour 
of the parton luminosity function

⌧ ⇠ 1 z � �

We rewrite the DY cross section introducing the luminosity function
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Figure 12: Fall-off of the parton luminosity function ff(y, µf ) for µf = 8GeV. The dashed lines
show the asymptotic behavior for small and large y. Figure taken from [10].

cross section. The answers to these questions are related because the relevant quantity is

in both cases the typical energy of the soft radiation. The factorization formula Eq. (6.26)

is based on a leading-power expansion of the soft energy scale over the Drell-Yan mass M

and the corrections are thus suppressed by the ratio of these two scales. The same scale

ratio also governs the size of the logarithms. Our RG-improved result Eq. (6.75) resums

logarithms of µh/µs. To resum the logarithms in the cross section, these scales must be

chosen appropriately in order to avoid large logarithms in the perturbative expansion of

the hard and soft functions. For the hard function, it is obvious that this is achieved by

setting µh ∼M . We will now discuss in some detail what the appropriate choice for µs is.

A naive way to avoid large logarithms in the soft function appearing on the r.h.s. of

Eq. (6.75) would be to choose the soft scale so that µs ∼ M(1 − z) to avoid logarithms

inside the z-integral. However, as z → 1 the scale becomes arbitrarily small which would

lead to Landau singularities in the integrand and would spoil the scale separation upon

which the SCET approach is based. However, it is not necessary to avoid logarithms on

the level of the integrand in order to not have logarithms in the result. To avoid logarithms

in the cross section, one should choose µs as the average energy of the soft radiation. To

see what the typical soft energy is, and whether the partonic threshold indeed yields the

dominant contribution to the cross section, we need to analyze the convolution of the hard

scattering kernel with the PDFs. To do so, we use Eqs. (6.26) and Eq. (6.70) and rewrite

the threshold contribution to the pair invariant mass distribution as

dσthresh

dM2
=

4πα2

3NcM2s

∑

q

e2q

∫
dx1
x1

dx2
x2

C(z,M, µf )
[
fq/N1

(x1, µf ) fq̄/N2
(x2, µf ) + (q ↔ q̄)

]
,

(6.77)

where we introduced the quantity τ ≡ M2/s so that z = τ/(x1x2), and the integration is

restricted to the region where x1x2 ≥ τ . One can further rewrite this result by introducing
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the parton luminosity ff , defined as the Mellin convolution of the PDFs:9

ff(y, µf ) =
∑

q

e2q

∫ 1

y

dx

x

[
fq/N1

(x, µf ) fq̄/N2
(y/x, µf ) + (q ↔ q̄)

]
. (6.79)

In this way, the lepton-pair invariant mass distribution can be brought into the simple form

dσthresh

dM2
=

4πα2

3NcM2s

∫ 1

τ

dz

z
C(z,M, µf ) ff(τ/z, µf ) =

4πα2

3NcM2s
(C ⊗ ff) (τ) , (6.80)

Eq. (6.80) shows explicitly that the calculation of physical observables such as the invariant

mass distribution requires to evaluate an integral over z in the range z ∈ [τ, 1]. One might

therefore wonder if calculations of the function C in the z → 1 limit, such as the one which

we discussed in the previous section, are sufficient in order to obtain reliable predictions

for physical quantities such as the pair invariant mass distribution.

There are two situations in which the contribution of the threshold region to the

physical cross section is enhanced. The first is the strict threshold limit in which τ ≈ 1

so that the integration variable z is necessarily in the threshold region. This situation is

not relevant phenomenologically, because the partonic luminosity is extremely small in that

region. A second, more interesting situation in which the z → 1 region of the partonic cross

section provides the numerically dominant contribution to the physical quantity arises when

the partonic luminosity is a steeply falling function as z̄ = 1 − z increases. The behavior

of the partonic luminosity as a function of its argument is found in Fig. 12. The figure

refers to the case in which the factorization scale is set to 8 TeV. The partonic luminosity

is approximately equal to y−a, with a ≈ 1.8 for y → 0, and approximately proportional

to (1 − y)b with b ≈ 11 for y → 1. The figure shows that these two simple functions of y

describe the partonic luminosity well in the regions y < 0.05 and y > 0.3, respectively.

Using the approximate form of the parton luminosity in the region of large τ > 0.3,

we can approximate

dσthresh

dM2
≈ 4πα2

3NcM2s
ff(τ, µf )

∫ 1

τ

dz

z

(
1− τ/z
1− τ

)b

C(z,M, µf ) . (6.81)

If in Eq. (6.81) one expands the factor raised to the exponent b in powers of z̄ and treats

b as a large parameter, it is possible to see that the prefactor of the function C is large

(i.e. of order 1) if z̄ < (1 − τ)/b. Therefore, there is an enhancement of the partonic

threshold region even if τ is not close to 1 and one should choose µs ∼ M (1 − τ)/b to

avoid large logarithms in the convolution of the hard-scattering kernel with the luminosity.

This phenomenon goes under the name Dynamical Threshold Enhancement. In the region

of small τ < 0.05, the appropriate approximation is

dσthresh

dM2
≈ 4πα2

3NcM2s
ff(τ, µf )

∫ 1

τ

dz

z
zaC(z,M, µf ) , (6.82)

9We remind the reader that the Mellin convolution of two functions f and g is defined as

f ⊗ g(y) ≡

∫ 1

y

dx
x
f(x)g

( y
x

)

=

∫ 1

y

dx
x
g(x)f

( y
x

)

. (6.78)
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