Exclusive physics results from CMS

Olivér Surányi

on behalf of CMS Collaboration

Wigner RCP Eötvös Loránd University Budapest, Hungary

28th August 2017 Debrecen, QCD@LHC

Exclusive physics processes

- Colliding particles remain intact.
- Low multiplicity central system is produced.
- Classification by exchanged object:
 - Photon-photon
 - Photon-pomeron
 - Pomeron-pomeron
 - • •
- Advantage: central system with fixed quantum numbers.

```
Photon: I(J^{PC}) = 0, 1(1^{--})
Pomeron: I^{G}(J^{PC}) = 0^{+}(0^{++})
```


Exclusive $\pi\pi$ production (MC simulation)

- Exclusive ππ production in pp collisions: arXiv:1706.08310 [hep-ex]
- Exclusive photoproduction of ↑ in pPb collisions: *CMS-PAS-FSQ-13-009*
- Search for γγ → W⁺W⁻ processes and limits on anomalous quartic gauge couplings: arXiv:1604.04464 [hep-ex]

Exclusive $\pi\pi$ production in pp collisions

Motivation

- Restricted quantum numbers.
- Filter certain low mass resonances.
- Gluon-rich environment in DPE \rightarrow glueball search.

Double pomeron exchange (DPE) $I^{G}(J^{PC}) = 0^{+}(J^{++}), J$ is even Vector meson photoproduction $l(J^{PC}) = 0, 1(1^{--})$

Dataset, trigger, event selections

Dataset: low-pileup data at $\sqrt{s} = 7$ TeV, 450 μ b⁻¹

Trigger: random bunch-crossings (zero bias).

Event selection:

- Two tracks, passing high purity criteria.
- Single interaction vertex.
- No activity in calorimeters, except Δ*R* < 0.1 cone around track hits.
- $p_T(\pi) > 0.2 \text{ GeV}, |y(\pi)| < 2.$
- Inclusive background estimation: control sample with extra calorimeter activity.

Background estimation

- Using a sample with extra calorimeter hits.
- Background shape from the region of 2 – 10 extra calorimeter hits.
- Normalization: fit with negative binomial distribution.
- Systematic uncertainties are calculated from varying the fit range of the background control region.

Results

- Cross-sections are unfolded by iterative Bayesian method.
- Monte Carlo simulations:
 - STARLIGHT: exclusive $\rho(770)$ photoproduction.
 - DIME MC: DPE continuum contribution.
- No simulation describes certain low mass resonances (f₀ and f₂).
- Total exclusive $\pi^+\pi^-$ cross section in $p_T(\pi) > 0.2$ GeV, |y| < 2 region:

 $\sigma = 26.5 \pm 0.3$ (stat.) ± 5.0 (syst.) ± 1.1 (lumi) μb

Results - invariant mass distribution

- Slightly larger cross section measured in the region of ρ(770)
 → semi-exclusive processes are not modelled by MC.
- Sharp drop at around 1 GeV.
 - Indication of $f_0(980)$ resonance.
 - Interference between resonance and continuum.
- Significant peak at $f_2(1270)$.
- *f*₀(980) and *f*₂(1270) parameters are consistent with PDG values.

Exclusive photoproduction of Υ in pPb collisions

Motivation

- · First observation of this process in pPb collisions
- Enchanced photoproduction cross-section due to high photon flux ($\propto Z^2$).
- Production cross-section is related to gluon PDF of proton:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t}\propto (x\,G(x,Q^2))^2$$

• Probing gluon density in unexplored $x \approx 10^{-2} - 10^{-4}$ region.

Trigger, event selection

Trigger: single muon + $N_{tracks} \leq 6$.

Event selection:

- *p*_T(μ) > 3.3 GeV, |y| < 2.2
- *p*_T(μμ) ∈ [0.1, 1] GeV
 - Low- p_T : reduce $\gamma\gamma \rightarrow \mu\mu$
 - High- p_T : reduce inclusive and semi-exclusive Υ production

Fit of three Gaussians to $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$. Parameters: linear background, amplitudes and $\Upsilon(1S)$ width.

Simulation results

- STARLIGHT MC simulation is used.
- Cross-section is re-weighted to data, according to:

$$rac{{\mathsf d}\sigma}{{\mathsf d}|t|} \propto {\mathsf e}^{-b|t|}
onumber \ {\mathsf T}({\mathcal W}_{\gamma p}) \propto ({\mathcal W}_{\gamma p})^{\delta}$$

Good agreement between data and MC:

Results

- Cross-section is unfolded by iterative Bayesian method.
- $p_T^2(\mu\mu) \approx |t|$ used to get $d\sigma/d|t|$.
- Exponential fit for $d\sigma/d|t|$ and power law fit for $\sigma(W_{\gamma p})$

$d\sigma/d|t|$ fit results

Compatible with HERA measurements:

- H1: 4.73 ± 0.25 (stat.) GeV⁻² (arXiv:hep-ex/0003020)
- Zeus: 4.3^{+2.0}_{-1.3}, (stat.) GeV⁻² (arXiv:1111.2133)

$\sigma(W_{\gamma p})$ fit results

Calculated from dσ/dy:

$$\sigma_{\gamma
ho} = rac{1}{\phi} rac{{
m d}\sigma_{\Upsilon(1S)}}{{
m d}y} \propto \left(W_{\gamma
ho}
ight)^2,$$

where ϕ is photon flux – from STARLIGHT.

- Combined fit to HERA and LHC results.
- Disfavours LO pQCD results.
- Consistent with NLO pQCD calculations.
- Consistent with color dipole predictions.
- Color glass condensate models systematically underestimates underestimates cross-section, but still consistent within uncertainties.

Search for $\gamma\gamma \rightarrow W^+W^-$ processes and limits on anomalous quartic gauge couplings

Exclusive WW production

$$\mathsf{pp} \longrightarrow \mathsf{p}(*) + \mathsf{WW} + \mathsf{p}(*) \longrightarrow \mathsf{p}(*) + \ell^+ \ell'^-
u ar{
u} + \mathsf{p}(*)$$

Leading order processes at LHC energy:

Datasets, trigger and event selection

Datasets:

- 7 TeV: 5.5 fb⁻¹
- 8 TeV: 19.7 fb⁻¹

Trigger: two leptons with $p_T(\ell) > 17$ GeV for the leading and $p_T(\ell) > 8$ GeV for the subleading lepton.

Event selection:

- Opposite charged $e^{\pm}\mu^{\mp}$ pair.
- *p*_T(μ), *E*_T(*e*) > 20 GeV and |η(μ, *e*)| < 2.4.
- Common vertex with no other tracks.
- *M*(*e*µ) > 20 GeV.
- $\ell^+\ell^-$ samples used as control samples.

Signal region: $p_T(e\mu) > 30$ GeV.

Results

Selection step	7 TeV	8 TeV
Trigger	9086	19406
$m(e\mu) > 20 \text{ GeV}$	8200	19406
Leptons ID	1222	6541
No extra tracks	6	24
$p_T(e\mu)>$ 30 GeV	2	13

Observed cross-section for process $pp \rightarrow p^{(*)}(\gamma \gamma \rightarrow W^+ W^- \rightarrow e^{\pm} \mu^{\mp} \nu \bar{\nu}) p^{(*)}$:

• at 7 TeV: $\sigma_{\rm obs} = 2.2^{+3.3}_{-2.0}$ fb, $\sigma_{SM} = 4.0 \pm 0.7$ fb

• at 8 TeV:
$$\sigma_{\rm obs} = 11.9^{+5.6}_{-4.5}$$
 fb,
 $\sigma_{SM} = 6.9 \pm 0.6$ fb

Consistent with SM Combined significance: 3.4 σ

One of the lowest cross-section process observed at LHC:

Anomalous gauge couplings

- SM allows gauge couplings obeying gauge invariance.
- Effective models can have other gauge couplings → signs of new physics beyond SM (SUSY, extra dimensions, additional gauge bosons...).
- Extra terms in effective Lagrangian:
 - 6-dimensional, 'LEP-legacy' model:

$$\mathcal{L}_{6}^{c} = -\frac{e^{2}}{16} \frac{a_{c}^{W}}{\Lambda} F_{\mu\alpha} F^{\nu\beta} (W^{+\alpha} W_{\beta}^{-} - W^{-\alpha} W_{\beta}^{+}) + \dots$$
$$\mathcal{L}_{6}^{0} = -\frac{e^{2}}{8} \frac{a_{0}^{W}}{\Lambda} F_{\mu\nu} F^{\mu\nu} (W^{+\alpha} W_{\alpha}^{-}) + \dots$$

• Λ is the energy scale of new physics.

Anomalous gauge couplings

• 8-dimensional operators $(f_{M,0-3})$, expressed with 6-dimensionals:

$$\frac{a_0^W}{\Lambda^2} = -\frac{4M_W^2}{g^2}\frac{f_{M,0}}{\Lambda^4} - \frac{8M_W^2}{g'^2}\frac{f_{M,2}}{\Lambda^4}$$
$$\frac{a_C^W}{\Lambda^2} = -\frac{4M_W^2}{g^2}\frac{f_{M,1}}{\Lambda^4} - \frac{8M_W^2}{g'^2}\frac{f_{M,3}}{\Lambda^4}$$

$$(g = e / \sin \theta_W \text{ and } g' = e / \cos \theta_W)$$

• Assuming that $WWZ\gamma$ vanishes:

$$f_{M,0} = 2f_{M,2}$$

 $f_{M,1} = 2f_{M,3}$

6-dimensional operators were ruled out by LEP.

Limits on AQGCs

Assuming unitarity restoring form factor with $\Lambda_{cutoff}=$ 500 GeV:

$$a^{W}_{0,C} \longrightarrow rac{a^{W}_{0,C}}{1+rac{W_{\gamma\gamma}}{\Lambda_{ ext{cutoff}}}}$$

7+8 TeV combined limits:

•
$$a_C^W/\Lambda^2$$
: [-3.6, 3.0] $imes$ 10⁻⁴ GeV⁻²

Most stringent limit on $f_{0,M}$ operator, two magnitudes lower than LEP results.

Comparison with other results

Summary

Summary

- Exclusive $\pi\pi$ production in pp collisions:
 - ρ_0 , $f_0(980)$ and $f_2(1270)$ are observed in the invariant mass distribution.
 - Total exclusive $\pi^+\pi^-$ cross section in $p_T(\pi) > 0.2$ GeV, |y| < 2 region:

 $\sigma =$ 26.5 \pm 0.3 (stat.) \pm 5.0 (syst.) \pm 1.1 (lumi) μb

- - First observation of this process in hadron-nucleus collisions.
 - Differential cross sections as a function of |t| and y are measured.
 - Better picture of gluon density evolution at low-x.
- Search for γγ → W⁺W⁻ processes and limits on anomalous quartic gauge couplings:
 - Evidence set for this process $(3.7\sigma \text{ observed significance})$.
 - Most stringent limits on $f_{0,M}$ operator.

Thank you for your attention!