Off-Shell *tīj* Production and Top Quark Mass Measurement

Heribertus Bayu Hartanto

with G. Bevilacqua, M. Kraus, M.Schulze and M. Worek

QCD@LHC2017 Debrecen August 28, 2017

Bayu Hartanto (IPPP Durham)

Outline

Next-to-Leading Order QCD predictions for:

$$pp
ightarrow e^+
u_e \mu^- ar
u_\mu b ar b j + X$$

Outline:

- Introduction
- Results for LHC 13 TeV
- Comparison with Narrow Width Approximation (NWA)
- Top-quark mass extraction
- Conclusions

$t\bar{t}j$ production at the LHC

- At LHC, tops are produced with large energies and high p_T
- Increase probability to radiate gluons
- How big is the *tt̃j* contribution in the *tt̃* inclusive sample?

 \Rightarrow NLO $t\bar{t}$ cross section for $m_t = 173.2$ GeV at LHC 13 TeV with CT14 PDF

 $\sigma(t\bar{t}) = 715.58 \text{ pb}$

Jet p_T cut [GeV]	$\sigma(t\bar{t}j)$ [pb]	$\sigma(t\bar{t}j)/\sigma(t\bar{t})$ [%]
40	296.97 ± 0.29	41
60	207.88 ± 0.19	29
80	152.89 ± 0.13	21
100	115.60 ± 0.14	16
120	89.05 ± 0.10	12

$t\bar{t}j$ as background

• Background for SM Higgs production in VBF: $qq \rightarrow Hqq \rightarrow WWqq$

• VBF cut requires 2 tagging jets: $\Delta y_{jj} = |y_{j_1} - y_{j_2}| > 4$ and $y_{j_1} \times y_{j_2} < 0$

• In $t\bar{t}$ (+jets), b jets from tops are central, with VBF cut:

 \Downarrow $t\bar{t}$ background: $t\bar{t} \rightarrow WWb\bar{b}$, $\uparrow t\bar{t}j$ background: $t\bar{t}j \rightarrow WWb\bar{b}j$

also background for SUSY or BSM searches with $\ell_1^+ \ell_2^- + \text{MET} + \text{jets}$ signature

Bayu Hartanto (IPPP Durham)

$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} j + X$: full calculation

 $t\bar{t}j$ production at NLO QCD with tops decay leptonically $\mathcal{O}(\alpha_s^4 \alpha^4)$

Calculation with HELAC-NLO framework

- Virtual corrections: HELAC 1-LOOP + CutTools + OneLoop
- Real corrections: HELAC-DIPOLES (Catani Seymour & Nagy Soper schemes)

Functionality extended to produce NTuple \rightarrow scale variations, PDF errors, ...

Bayu Hartanto (IPPP Durham)

Melnikov, Schulze, Scharf '12

6 / 20

$$pp
ightarrow e^+
u_e \mu^- ar
u_\mu b ar b j + X$$
: NWA

Inclusive $\sigma_{\text{NLO}}(t\bar{t}j)$ in NWA \rightarrow convolution of $\sigma(t\bar{t}+nj)$ and $\Gamma(t\bar{t}+nj)$, $n \leq 2$. Expansion up to $\mathcal{O}(\alpha_s^4)$

$$\begin{split} \mathrm{d}\sigma_{t\bar{t}+1j}^{\mathrm{NLO}} &= \Gamma_{t,\mathrm{tot}}^{-2} \left(\mathrm{d}\sigma_{t\bar{t}+1j}^{\mathrm{LO}} \mathrm{d}\Gamma_{t\bar{t}}^{\mathrm{LO}} + \mathrm{d}\sigma_{t\bar{t}}^{\mathrm{real}} \mathrm{d}\Gamma_{t\bar{t}+1j}^{\mathrm{LO}} \right. \\ &+ \left(\mathrm{d}\sigma_{t\bar{t}+1j}^{\mathrm{virt}} + \mathrm{d}\sigma_{t\bar{t}+2j}^{\mathrm{real}} \right) \mathrm{d}\Gamma_{t\bar{t}}^{\mathrm{LO}} + \mathrm{d}\sigma_{t\bar{t}}^{\mathrm{LO}} \left(\mathrm{d}\Gamma_{t\bar{t}+1j}^{\mathrm{virt}} + \mathrm{d}\Gamma_{t\bar{t}+2j}^{\mathrm{real}} \right) \\ &+ \mathrm{d}\sigma_{t\bar{t}+1j}^{\mathrm{real}} \mathrm{d}\Gamma_{t\bar{t}+1j}^{\mathrm{real}} + \mathrm{d}\sigma_{t\bar{t}}^{\mathrm{virt}} \mathrm{d}\Gamma_{t\bar{t}+1j}^{\mathrm{LO}} + \mathrm{d}\sigma_{t\bar{t}}^{\mathrm{LO}} \mathrm{d}\Gamma_{t\bar{t}}^{\mathrm{virt}} \right) \end{split}$$

LHC 7 TeV :
$$\sigma_{\rm NLO} = 323 \, ({\rm Pr}) + \underbrace{40.5 \, ({\rm Dec})}_{14\%} - \underbrace{75.5 \, ({\rm Mix})}_{26\%} = 288 \, {\rm fb}.$$

Setup

Setup for LHC 13 TeV

- Different lepton families: $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} j + X$ $\Rightarrow \gamma^* \rightarrow \ell^{\pm} \ell^{\mp}$ interference neglected (0.1% at LO)
- All light quarks (including bottom) and leptons are massless
- Contribution from initial state *b*-quarks are neglected (< 1% at LO)
- Top quark: $m_t = 173.2 \text{ GeV}$
- Final states: exactly 2 b jets, at least 1 light jet, 2 charged leptons and missing E_T
- Jets: partons with $|\eta| < 5$, anti- k_T with $\Delta R = 0.5$

Total Cross Section

F

PDF: C	T14			LHC 13 TeV	LO $(\mu_0 = m_t)$)
- ixed so	cale: μ_0 :	$= m_t$	2500	CT14	LO $(\mu_0 = E_T)$	(2) (2)
Dynami	cal scale	: $\mu_0=E_T/2$ and $H_T/2$	/2 2000		NLO $(\mu_0 = m_T)$ NLO $(\mu_0 = m_T)$ NLO $(\mu_0 = E)$	$T_T/2)$
$E_T = \chi$ $H_T = \sum_{i=1}^{N}$	$\sqrt{m_t^2 + p_t^2}$ $\sum_i p_T(i)$	$p_T^2(t) + \sqrt{m_t^2 + p_T^2(\bar{t})}$ + p_T^{miss} , $i = e^+, \mu^-, b_T$	$(b, \bar{b}, j_1.$ $(b, \bar{b}, j_1.$ $(b, \bar{b}, j_1.$ $(b, \bar{b}, j_1.)$		NLO ($\mu_0 = H$ $\mu_R = \mu_F = \varepsilon$	$t_T/2)$ $\xi\mu_0$ 10
	μ_0	$\sigma_{ m LO}[\textit{fb}]$	σ	NLO[fb]	K	
	m _t	608.09 + 50% - 31% (scale)	537.24 ^{+2%} _209	(scale) + 3% (pdf)) 0.88	
	$E_T/2$	493.54 $^{+47\%}_{-30\%}(\text{scale})$	544.64 ^{+1%} 9%	(scale) $^{+3\%}_{-3\%}$ (pdf)) 1.10	
	$H_T/2$	479.38 $^{+46\%}_{-30\%}({ m scale})$	538.66 ^{+1%} _9%	(scale) $^{+3\%}_{-3\%}$ (pdf)) 1.12	

[Bevilacqua, HBH, Kraus, Worek '16]

Differential Distributions (1)

Transverse momentum of the hardest light jet

Scale uncertainty:

$$\left(\frac{\mu_R}{\mu_0}, \frac{\mu_F}{\mu_0}\right) = \left\{ \left(0.5, 0.5\right), \left(0.5, 1\right), \left(1, 0.5\right), \left(1, 1\right), \left(1, 2\right), \left(2, 1\right), \left(2, 2\right) \right\} \right\}$$

[Bevilacqua, HBH, Kraus, Worek '16]

Differential Distributions (2)

Rapidity of the hardest light jet

[Bevilacqua, HBH, Kraus, Worek '16]

PDF Uncertainties

[Bevilacqua, HBH, Kraus, Worek '16]

Comparison with NWA (1)

- $\mu_R = \mu_F = m_t$, CT14 PDF.
- $\bullet~$ NWA Prod \rightarrow NLO corrections only in production.

[Bevilacqua, HBH, Kraus, Schulze, Worek, in preparation]

Comparison with NWA (2)

[Bevilacqua, HBH, Kraus, Schulze, Worek, in preparation]

Comparison with NWA (3)

[Bevilacqua, HBH, Kraus, Schulze, Worek, in preparation]

• Pseudodata sets are generated using $m_t^{\text{in}} = 173.2 \text{ GeV}$ \rightarrow NLO off-shell, with $\mu_0 = H_T/2$, luminosity of 25 fb⁻¹

• Fit with theory templates gives m_t^{out}

- Templates: $m_t = [168.2, 170.7, 173.2, 175.7, 178.2]$ GeV
 - NLO off-shell: $\mu_0 = \{m_t, E_T/2, H_T/2\}$
 - NLO NWA: $\mu_0 = m_t$
 - NLO NWA_{Prod}: $\mu_0 = m_t$

• Observables: M_{be^+} and $\mathcal{R}(m_t, \rho_s)$ for the moment

• Analysis are carried out at fixed order, no parton shower involved

Bayu Hartanto (IPPP Durham)

Observable (1): M_{be^+}

Well studied observable for $t\overline{t}$

b-jet fragmentation

 M_{be^+} from $t\bar{t}i$

- off-shell QCD effects
- off-shell QCD+EW effects
- top-quark mass extraction

 $\begin{array}{l} m_t = 172.99 \pm 0.41 (\text{stat}) \pm 0.74 (\text{syst}) \; \text{GeV} \; \text{[ATLAS'16]} \\ m_t = 172.22 \pm 0.18 (\text{stat}) ^{+0.89}_{-0.93} (\text{sys}) \; \text{GeV} \; \text{[CMS'17]} \end{array}$

16 / 20

Result (1): M_{be^+}

PRELIMINARY

Theory Template	$m_t^{ m out} \pm \Delta m_t^{ m out}$	$m_t^{\rm in} - m_t^{ m out}$
Full NLO, $\mu = H_T/2$	173.18 ± 0.15	+0.02
Full NLO, $\mu = E_T/2$	173.23 ± 0.15	-0.03
Full NLO, $\mu = m_t$	173.22 ± 0.16	-0.02
NWA NLO, $\mu = m_t$	173.98 ± 0.16	-0.78
NWA NLO _{Pr} , $\mu = m_t$	172.62 ± 0.17	+0.58

• NWA vs Off-shell: shift of +760 MeV

- NWA vs NWA $_{\rm Prod}$: shift of -1.36 GeV
- shifts due to scale variation: $H_T/2$ and $E_T/2 \rightarrow \mathcal{O}(50 \text{ MeV})$ $m_t \rightarrow \mathcal{O}(1 \text{ GeV})$
- different PDF sets shift m_t by $\mathcal{O}(30 \text{ MeV})$

[Bevilacqua, HBH, Kraus, Schulze, Worek, in preparation]

Bayu Hartanto (IPPP Durham)

Observable (2): $\mathcal{R}(m_t, \rho_s)$

• Alternative method to *m_t* extraction

[Alioli, Fernandez, Fuster, Irles, Moch, Uwer, Vos 13]

$$\mathcal{R}(m_t^{ ext{pole}},
ho_s) = rac{1}{\sigma_{tar{t}+1- ext{jet}}} rac{d\sigma_{tar{t}+1- ext{jet}}}{d
ho_s}(m_t^{ ext{pole}},
ho_s), \qquad
ho_s = rac{2m_0}{\sqrt{s_{tar{t}+1- ext{jet}}}}$$

• 7 TeV: $m_t = 173.7 \pm 2.2 \text{ GeV}$ [Atlas'15]

• 8 TeV: $m_t = 169.9 \pm 3.9$ GeV [CMS'16]

Bayu Hartanto (IPPP Durham)

Result (2): $\mathcal{R}(m_t, \rho_s)$

PRELIMINARY

Theory Template	$m_t^{ m out}\pm\Delta m_t^{ m out}$	$m_t^{\rm in} - m_t^{ m out}$
Full NLO, $\mu = H_T/2$	173.09 ± 0.42	+0.11
Full NLO, $\mu = E_T/2$	172.45 ± 0.39	+0.75
Full NLO, $\mu = m_t$	173.76 ± 0.40	-0.56
NWA NLO, $\mu = m_t$	175.65 ± 0.31	-2.45
NWA NLO _{Pr} , $\mu = m_t$	169.59 ± 0.30	+3.61

- NWA vs Off-shell: shift of +1.89 GeV
- NWA vs NWA_{Prod}: shift of -6.06 GeV
- shifts due to scale variation: $H_T/2$ and $E_T/2 \rightarrow 0.6 1.2 \text{ GeV}$ $m_t \rightarrow 2.1 - 2.8 \text{ GeV}$
- different PDF sets shift m_t by 0.4 0.7 GeV

[Bevilacqua, HBH, Kraus, Schulze, Worek, in preparation]

Bayu Hartanto (IPPP Durham)

Conclusion

- ✓ Complete description for tt̄j process with resonant and non-resonant contributions at NLO QCD.
- ✓ Different scales have been studied: m_t , $E_T/2$ and $H_T/2$
- Scale and PDF uncertainties for total cross section and differential distributions
- Comparison with NWA calculation for total cross section and differential distributions
 - \Rightarrow NLO corrections to decay important
- ✓ Preliminary results for top quark mass extraction from M_{b,e^+} and $\mathcal{R}(m_t, \rho)$ ⇒ Fixed scale $\mu_{R,F}$ not suitable for top mass extraction $d\sigma/dX$
- \Rightarrow More observables to study: $M_{t\bar{t}}$, $M_{\ell\ell}$, H_T

BACKUPs

Comparison with NWA (4)

[Bevilacqua, HBH, Kraus, Schulze, Worek, in preparation]

Conclusion

Scale dependence of ρ distributions

Bayu Hartanto (IPPP Durham)

Conclusion

ρ distributions: ATLAS and CMS binning

m_t from $\mathcal{R}(m_t, \rho_s)$: ATLAS binning

Theory Template	$m_t^{ m out} \pm \Delta m_t^{ m out}$	$m_t^{\rm in} - m_t^{\rm out}$
Full NLO, $\mu = H_T/2$	173.05 ± 1.31	+0.15
Full NLO, $\mu = E_T/2$	172.19 ± 1.34	+1.01
Full NLO, $\mu = m_t$	173.86 ± 1.39	-0.66
NWA NLO, $\mu = m_t$	175.22 ± 1.15	-2.02
NWA NLO _{Pr} , $\mu = m_t$	169.39 ± 1.46	+3.81

- NWA vs Off-shell: shift of +1.36 GeV
- NWA vs NWA $_{\rm Prod}$: shift of -5.83 GeV

m_t from $\mathcal{R}(m_t, \rho_s)$: CMS binning

Theory Template	$m_t^{ m out} \pm \Delta m_t^{ m out}$	$m_t^{\rm in} - m_t^{\rm out}$
Full NLO, $\mu = H_T/2$	173.09 ± 1.53	+0.11
Full NLO, $\mu = E_T/2$	172.20 ± 1.54	+1.00
Full NLO, $\mu = m_t$	173.94 ± 1.49	-0.74
NWA NLO, $\mu = m_t$	175.66 ± 1.10	-2.46
NWA NLO _{Pr} , $\mu = m_t$	169.96 ± 1.80	+3.24

- NWA vs Off-shell: shift of +1.72 GeV
- NWA vs NWA $_{\rm Prod}$: shift of -5.7 GeV