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Parton densities from a parton branching solution of QCD evolution equations

Motivation

Introduction

a Parton Branching (PB) method used to:

I solve DGLAP evolution equation to obtain collinear Parton Distribution Functions (PDFs)

But not only! → further advantages:

I obtain Transverse Momentum Dependent (TMD) PDFs
Moreover:
study the role of the soft-gluon resolution scale choice in the TMDs

More details in new papers:

I Phys.Lett. B772 (2017) 446-451

I arXiv:1708.03279

The project is not just a standalone evolution package!
I already available in xFitter for determination of PDFs

https://www.xfitter.org/xFitter/

I TMDlib and TMDplotter web page for easy acces to TMDs and collinear PDFs and plotting
tool
https://tmdlib.hepforge.org/doxy/html/index.html
http://tmdplotter.desy.de/

I comparison with measurements through interface with CASCADE and for example Rivet
https://cascade.hepforge.org/
https://rivet.hepforge.org/
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Parton densities from a parton branching solution of QCD evolution equations

Motivation

Why Transverse Momentum Dependent PDFs?

Motivation:

Parton Shower crucial for obtaining predictions for processes at high-energy hadron colliders
open problem: shower’s transverse momentum kinematics.

One of the approaches to deal with the problem: Transverse Momentum Dependent (TMD)
formalism based on TMD form of factorization .

What is TMD PDF?

I TMD PDF is a generalization of a concept of the PDF.

I TMD: depends not only on x and µ2 but also on kT : TMD(x , µ2, kT )

Goal: TMD PDFs for all flavours, all x , µ2 and kT

There are plenty of areas, where TMDs play an important role
Acta Physica Polonica B, Vol. 46 (2015)
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Introduction to the method

DGLAP evolution equation

DGLAP evolution equation for momentum weighted parton density xf (x , µ2) = f̃ (x , µ2)

df̃a(x , µ2)

d lnµ2
=
∑
b

∫ 1

x
dzPab

(
µ2, z

)
f̃b

( x
z
, µ2
)

(1)

a, b- quark (Nf flavours) or gluon, x- longitudinal momentum fraction of the proton carried by a parton a,

z− splitting variable, µ- evolution mass scale

splitting function:

Pab

(
µ2, z

)
= Dab

(
µ2
)
δ(1− z) + Kab

(
µ2
) 1

(1− z)+
+ Rab

(
µ2, z

)
, (2)

∫ 1
0 f (x)g(x)+dx =

∫ 1
0 (f (x) − f (1))g(x)dx

Rab

(
µ2, z

)
has no power divergences (1 − z)−n for z → 1 .

As long as Pab

(
µ2, z

)
has this structure, the formalism presented today can be applied (LO,

NLO, NNLO).
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(1− z)+
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µ2, z

)
, (2)

∫ 1
0 f (x)g(x)+dx =

∫ 1
0 (f (x) − f (1))g(x)dx

Rab

(
µ2, z

)
has no power divergences (1 − z)−n for z → 1 .

As long as Pab

(
µ2, z

)
has this structure, the formalism presented today can be applied (LO,

NLO, NNLO).

Two potential problems for numerical solution: (details in Backup!)

I piece with δ(1− z) → treated with momentum sum rule
∑

c

∫ 1
0 dzzPca

(
µ2, z

)
= 0,

I integrals separately divergent for (z → 1) → solved by a parameter zM :
∫ 1
x →

∫ zM
x
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Introduction to the method

Sudakov form factor

df̃a(x , µ2)

d lnµ2
=
∑
b

∫ zM

x
dz PR

ab

(
µ2, z

)
f̃b

( x
z
, µ2
)
− f̃a

(
x , µ2

)∑
c

∫ zM

0
dz zPR

ca

(
µ2, z

)
where PR

ab

(
µ2, z

)
= Rab

(
µ2, z

)
+ Kab

(
µ2
)

1
1−z

- real part of the splitting function.

Define the Sudakov form factor:

∆a(µ2) = exp

(
−
∫ lnµ2

lnµ2
0

d
(
lnµ′2

)∑
b

∫ zM

0
dzzPR

ba

(
µ′2, z

))

Probability of evolving between µ2
0 and µ2 without any resolvable branching

df̃a(x , µ2)

d lnµ2
=
∑
b

∫ zM

x
dzPR

ab

(
µ2, z

)
f̃b

( x
z
, µ2
)

+ f̃a
(
x , µ2

) 1

∆a(µ2)

d∆a(µ2)

d lnµ2
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Parton densities from a parton branching solution of QCD evolution equations

Introduction to the method

Sudakov form factor and Parton Branching

df̃a(x , µ2)

d lnµ2
=
∑
b

∫ zM

x
dzPR

ab

(
µ2, z

)
f̃b

( x
z
, µ2
)

+ f̃a
(
x , µ2

) 1

∆a(µ2)

d∆a(µ2)

d lnµ2

After integration:

f̃a(x , µ2) = f̃a(x , µ2
0)∆a(µ2) +

∫ lnµ2

lnµ2
0

d lnµ′2
∆a(µ2)

∆a(µ′2)

∑
b

∫ zM

x
dzPR

ab

(
µ′2, z

)
f̃b

( x
z
, µ′2

)

f̃b
(
x
z
, µ2′) has it’s own evolution history!

f̃b

( x
z
, µ′2

)
= f̃b

( x
z
, µ2

0

)
∆b(µ′2)+

∫ lnµ′2

lnµ2
0

d lnµ′′2
∆a(µ′2)

∆a(µ′′2)

∑
c

∫ zM

x
dz ′PR

bc

(
µ2′′, z ′

)
f̃c
( x

zz ′
, µ′′2

)

This problem has an iterative solution and an interpretation in terms of Parton Branching
process!
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Parton densities from a parton branching solution of QCD evolution equations

Introduction to the method

Iterative solution

Example for a= gluon:

f̃a(x, µ2) = f̃a(x, µ2
0)∆a(µ2)+

∫ lnµ2

lnµ2
0

d lnµ′2
∆a(µ2)

∆a(µ′2)

∑
b

∫ zM

x
dzPR

ab

(
µ
′2
, z
)
f̃b

(
x

z
, µ

2
0

)
∆b(µ′2) + ...

probability of evolving from µ2
0 to µ2

without any resolvable branching.

OR

Sudakov: probability of a evolving
from µ2

0 to µ2 without any resolvable
branching.

This problem can be easily implemented in the MC code.
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Parton densities from a parton branching solution of QCD evolution equations

Introduction to the method

kt dependence

Parton branching method: for every branching µ′2 is generated and available.

a

cz = xa/xb

xbp
+, kt,b

xap
+, kt,a

qt,c → µ

b

1

'

How to connect µ with qt,c of the emitted and kt,a of the propagating parton?

I ”qt - ordering”: −→q 2
t,c = µ′2.

I ”angular ordering”: −→q 2
t,c = (1− z)2µ′2

I ”virtuality ordering”: −→q 2
t,c = (1− z)µ′2

−→
k t,a =

−→
k t,b −−→q t,c

kt,a contains the whole history of the evolution.
In this method kinematics is treated properly at every branching.
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Parton densities from a parton branching solution of QCD evolution equations

Introduction to the method

zM choice

Partons emitted with a transverse distance smaller than a certain value given by a resolution
scale can not be resolved → branchings with z > zM are non- resolvable

Normally treated with the plus prescription but
integrals in evolution equation separately divergent (z → 1) :

→ solved by a parameter zM :
∫ 1
x →

∫ zM
x

zM - defines our resolution scale

Different choices of zM :

I zM - fixed

I zM - can change dynamically with the scale (resolution scale different for different scales)
Replace qt,c with some minimum q0:

I ”angular ordering”: −→q 2
0 = (1− z)2µ′2 → zM = 1−

(
q0
µ′

)
I ”virtuality ordering”: −→q 2

0 = (1− z)µ′2 → zM = 1−
(

q0
µ′

)2
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Parton densities from a parton branching solution of QCD evolution equations

Collinear PDFs from parton branching method

NLO comparison with semi analytical methods More details in: arXiv:1708.03279

Initial distribution: f̃b0
(x0, µ

2
0) - from QCDnum

The evolution performed with parton branching method up to a given scale µ2.
Obtained distribution compared with a pdf calculated at the same scale by semi analytical method (QCDnum)

Results for fixed 1− zM = 10−5.

5− 4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5− 0

 x
f(

x)

5−10

4−10

3−10

2−10

1−10

1

10

210

2 = 10 GeV2µ  
2 = 1000 GeV2µ  

2 = 100000 GeV2µ  

gluon

x

 r
at

io

0.9

0.95

1

1.05

1.1

5−10 4−10 3−10 2−10 1−10 1

5− 4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5− 0

 x
f(

x)

5−10

4−10

3−10

2−10

1−10

1

10

2 = 10 GeV2µ  
2 = 1000 GeV2µ  

2 = 100000 GeV2µ  

down

x

 r
at

io

0.9

0.95

1

1.05

1.1

5−10 4−10 3−10 2−10 1−10 1

Upper plots: collinear pdfs from the parton branching method
Lower plots: ratios of the pdfs from a parton branching method and pdfs from QCDnum.

Very good agreement with the results coming from semi analytical methods (QCDnum).
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Collinear PDFs from parton branching method

Cross check for different fixed zM More details in: arXiv:1708.03279

Comparison of the results for different fixed zM values (all independent of branching scale).

5− 4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5− 0

 x
f(

x)

4−10

3−10

2−10

1−10

1

10

2 = 100000 GeV2µ  
 QCDnum

-8=1-10M z
-5=1-10M z
-3=1-10M z

down

x

 r
at

io

0.9

0.95

1

1.05

1.1

5−10 4−10 3−10 2−10 1−10 1

Upper plot: collinear pdfs from the parton branching method
Lower plot: ratios of the pdfs from the parton branching method
and pdfs from QCDnum.

There is no dependence on zM as long as zM
large enough.

Here results at NLO, at LO the same conclusion.
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Parton densities from a parton branching solution of QCD evolution equations

Collinear PDFs from parton branching method

Dynamical zM
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Results for zM = 1−
(

q0
µ′

)2

µ′- scale at which the branching happens
q0 - a free parameter describing the
resolution scale

On the plots: Comparison of
collinear PDFs for different q0

values

q0 = 0.02 GeV - the same
behaviour as for fixed zM being
close to 1 (consistent with
QCDNUM)

q0 = 0.5 GeV - similar behaviour
as for fixed zM being too far away
from 1 (not consistent with
QCDNUM)
Might be important for parton
showers!
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Results for TMDs

TMD PDFs from different kt definition at NLO

Let’s come back to fixed zM
Reminder: for collinear PDFs there was no zM dependence.
What about zM dependence for TMDs?
Here the results for fixed zM
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large zM - a lot of soft gluons!
qt - ordering: for every zM value we obtain different TMD
→ not physical behaviour, qt - ordering shouldn’t be used

For virtuality and angular ordering no zM dependence (suppression of soft gluons because of the
(1− z) term)

18 / 26



Parton densities from a parton branching solution of QCD evolution equations

Fit of integrated TMDs for all flavours to HERA DIS data with xFitter
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Fit of integrated TMDs for all flavours to HERA DIS data with xFitter

Procedure of the fit to the HERA 1+2 F2 data More details in: arXiv:1708.03279

Goal: TMD PDF sets for all flavours, all x , Q2 and kT

I A kernel Ab
a is determined from the parton branching method from a toy starting

distribution: f0,b = δ(1− x).

I xFitter chooses a starting distribution A0,b and performs a convolution of the kernel

Ab
a with the starting distribution A0,b to obtain a parton density

f̃a(x, µ2) =

∫ ∞
0

dk2
T

k2
T

∫
dx′A0,b(x′)

x′

x
Ab
a

(
x′

x
, k2

T , µ
2

)
︸ ︷︷ ︸

f̃a(x,µ2,k2
T

)

(3)

I Obtained parton density f̃a(x, µ2) is fitted to the F2 data and χ2 is calculated.
Data: arXiv:1506.06042v3, Abramowicz, H. and others.

I The procedure is repeated with the new starting distributions A0,b many times to

minimize χ2.
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A very good χ2/ndf ∼ 1.2 is obtained for 3.5 < Q2 < 30000 GeV2.
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Fit of integrated TMDs for all flavours to HERA DIS data with xFitter

TMDs from fits

TMDs sets for all flavours with uncertainties were obtained from the fit

TMDs with experimental uncertainties
from the fit.

Comparison of the LO and NLO
TMDs from the fit.

At small kT (no branching or just a
few branchings), the difference in the
quark TMDs comes from initial
distributions.
At large kT (many branchings) TMDs
for quarks the same.

TMD sets released soon, working on model uncertainties
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First applications of our TMDs

Current studies Work in progress

Use TMDs instead of PS for inclusive quantities:

LO Drell–Yan for qq → Z0:
kt according to TMD (̂s fixed, x1, x2 change)

k  > 0

TMD

DY

TMD

k  > 0
t

t
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First applications of our TMDs

Current studies Work in progress

Use TMDs instead of PS for inclusive quantities:

I TMD fitted to HERA data reproduces
correctly the shape of Z pt spectrum

I NO tuning/adjustment of parameters is
done
all is coming from PDF fit, no free
parameters after fit (in contrast to what is
being done in MC tuning)

I transverse momentum originates directly
from parton branching

I difference between angular ordering and
virtuality ordering observed also in physical
observable

I free parameters: intrinsic kt (here gauss
with width=0.7 GeV), scale in αs (here it
is µ but it could be kt), fit to F2 (including
kt dependence of ME)
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Summary

Summary

New approach to solve coupled gluon and quark DGLAP evolution equation with a parton
branching method at LO and NLO was shown.

Advantages:

I it reproduces exactly semi-analytical solution for collinear PDFs (results consistent with
QCDNum),
moreover:

I extraction of TMD PDFs
I options to study different orderings and different definitions of the resolution scale for

collinear and TMD PDFs available within this framework
I TMDs are not defined consistently with pt ordering, but angular ordering and virtuality

ordering give consistent definition
I fit to F2 Hera data at LO and NLO was performed within xFitter,

TMDs sets for all flavours with uncertainties were obtained from the fit,
I application in measurements: use TMD instead of PS (first attempts look promising!)

Prospects:

I TMD sets released soon,
I more applications in measurements and direct usage in PS matched calculation.
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Summary

Thank you!
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Back up

DGLAP evolution equation

DGLAP evolution equation for momentum weighted parton density xf (x, µ2) = f̃ (x, µ2)

df̃a(x , µ2)

d lnµ2
=
∑
b

∫ 1

x
dzPab

(
µ2, z

)
f̃b

( x
z
, µ2
)

a, b- quark (Nf flavours) or gluon, x- longitudinal momentum fraction of the proton carried by a parton a,
z- splitting variable, µ- evolution variable

a structure of a splitting function:

Pab

(
µ2, z

)
= Dab

(
µ2
)
δ(1− z) + Kab

(
µ2
) 1

(1− z)+
+ Rab

(
µ2, z

)
,

∫ 1
0 f (x)g(x)+dx =

∫ 1
0 (f (x) − f (1))g(x)dx

Dab

(
µ2
)

= δabda

(
µ2
)

, Kab

(
µ2
)

= δabka

(
µ2
)

,

Rab

(
µ2, z

)
contains logarithmic terms in ln(1 − z) and has no power divergences (1 − z)−n for z → 1 .

df̃a(x , µ2)

d lnµ2
=
∑
b

∫ 1

x
dz

(
Kab

(
µ2
) 1

(1− z)
+ Rab

(
µ2, z

))
f̃b

( x
z
, µ2
)

+

−
∑
b

f̃b
(
x , µ2

) ∫ 1

0
dz

(
Kab

(
µ2
) 1

(1− z)
− Dab

(
µ2
)
δ(1− z)

)
Two potential problems for numerical solution:
I presence of the delta function,
I integrals separately divergent for z → 1.
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Back up

Momentum sum rule

To get rid of the delta function:

We use momentum sum rule
∑

c

∫ 1
0 dzzPca

(
µ2, z

)
= 0:

df̃a(x , µ2)

d lnµ2
=
∑
b

∫ 1

x
dz

(
Kab

(
µ2
) 1

(1− z)
+ Rab

(
µ2, z

))
f̃b

( x
z
, µ2
)

+

−
∑
b

f̃b
(
x , µ2

) ∫ 1

0
dz

(
Kab

(
µ2
) 1

(1− z)
− Dab

(
µ2
)
δ(1− z)

)
+

−f̃a(x , µ2)
∑
c

∫ 1

0
dzzPca

(
µ2, z

)
=

=
∑
b

∫ 1

x
dz

(
Kab

(
µ2
) 1

1− z
+ Rab

(
µ2, z

))
f̃b

( x
z
, µ2
)

+

− f̃a
(
x , µ2

)∑
c

∫ 1

0
dz z

(
Kca

(
µ2
) 1

1− z
+ Rca

(
µ2, z

))
We got rid of the delta function,

both pieces of the equation written in the same way.
Virtual and non-resolvable pieces still included.
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Back up

Divergence for z → 1

To avoid divergence when z → 1 a cut off must be introduced.
zM - defines resolvable branching

∑
b

∫ 1

x
dz

(
Kab

(
µ2
) 1

1− z
+ Rab

(
µ2, z

))
f̃b

( x
z
, µ2
)

+

− f̃a
(
x , µ2

)∑
c

∫ 1

0
dz z

(
Kca

(
µ2
) 1

1− z
+ Rca

(
µ2, z

))
→
∑
b

∫ zM

x
dz

(
Kab

(
µ2
) 1

1− z
+ Rab

(
µ2, z

))
f̃b

( x
z
, µ2
)

+

− f̃a
(
x , µ2

)∑
c

∫ zM

0
dz z

(
Kca

(
µ2
) 1

1− z
+ Rca

(
µ2, z

))

It can be shown that terms
∫ 1
zM

skipped are of order O(1− zM ) .

4 / 5



Parton densities from a parton branching solution of QCD evolution equations

Back up

LO comparison with semi analytical methods

Initial distribution: f̃b0
(x0, µ

2
0) - from QCDnum

The evolution performed with parton branching method up to a given scale µ2.
Obtained distribution compared with a pdf calculated at the same scale by semi analytical method (QCDnum)
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Upper plots: collinear pdfs from the parton branching method
Lower plots: ratios of the pdfs from a parton branching method and pdfs from QCDnum.

Very good agreement with the results coming from semi analytical methods (QCDnum).
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