







Charmed meson and baryon production in pp collisions with ALICE at the LHC

Luuk Vermunt, Utrecht University for the ALICE Collaboration



## **Outline**



- Physics motivation for charmed hadron studies.
- Charm particle reconstruction with the ALICE detector.
- Latest results in pp (charmed meson and baryon production).
  - D-meson production measurements at  $\sqrt{s} = 5$ , 7, 8 and 13 TeV.
  - $\Lambda_c^+$  and  $\Xi_c^0$  measurements at mid-rapidity at  $\sqrt{s} = 7$  TeV.
- Summary and outlook.



# **Heavy quark production**



Heavy quarks (c, b) are mainly produced in initial hard scattering processes.

- Hard scale provided by large quark mass.
- Calculable with perturbative QCD.





## **Heavy quark production**



Heavy quarks (c, b) are mainly produced in initial hard scattering processes.

- Hard scale provided by large quark mass.
- Calculable with perturbative QCD.

### **Physics motivation** for measuring charmed hadrons in pp collisions:

- **1**. Production cross section down to  $p_{\scriptscriptstyle T}$  ~ 0.
  - Constraints for perturbative QCD models.
- 2. Production ratios of hadron species.
  - Fragmentation functions and hadronisation mechanisms.
- 3. Production ratios between various energies and rapidity regions.
  - Sensitive to gluon distribution function.
- 4. Production cross section as a function of particle multiplicity.
  - Role of Multiple-Parton Interactions (MPI).
- 5. Needed as reference for pA and AA collisions.
  - **See talk Robert Vertesi** (29/8/17, 12:00-12:30).







## The ALICE detector



### A Large Ion Collider Experiment:

Optimised for track reconstruction from low to high  $p_{_{\rm T}}$  in high-particle-density environment with excellent particle identification capabilities.

Relevant detectors for these analyses:

Inner Tracking System
Time Projection Chamber
Time Of Flight detector
Vertexing, Tracking, PID  $|\eta| < 0.9$ 

#### V0

*Trigger, Multiplicity*  $2.8 < \eta < 5.1$   $-3.7 < \eta < -1.7$ 

Used data samples:



#### proton-proton collisions

#### Run-1:

- √s = 2.76 TeV ~50M min. bias. events (L<sub>inf</sub>~0.9 nb<sup>-1</sup>)
- $\sqrt{s}$  = 7 TeV ~370M min. bias. events (L<sub>int</sub>~6.0 nb<sup>-1</sup>)
- √s = 8 TeV ~100M min. bias. events (L<sub>int</sub>~1.8 nb<sup>-1</sup>)

#### Run-2:

- √s = 5.02 TeV: ~120M min. bias. events (L<sub>int</sub>~2.3 nb<sup>-1</sup>)
- √s = 13 TeV: ~190M min. bias. events (L<sub>int</sub>~3.3 nb<sup>-1</sup>)



## Particle reconstruction: Hadronic decays





- Combine track pairs/triplets with proper charge combinations.
- Reconstruct secondary vertex.
- Apply selection cuts to select decay-like topologies, exploiting decay-vertex displacement.
- Further background reduction using PID information via dE/dx
   (TPC) and time of flight (TOF) to identify pions, kaons and protons.

| $D^0 \rightarrow K^- \pi^+$           | (3.93 ± 0.04 %)      | <i>cτ</i> ~ 123 μm |
|---------------------------------------|----------------------|--------------------|
| $D^+ \rightarrow K^- \pi^+ \pi^+$     | $(9.46 \pm 0.24 \%)$ | <i>cτ</i> ~ 312 μm |
| $D^{*+} \rightarrow D^0 \pi^+$        | (67.7 ± 0.50 %)      | <i>cτ</i> ~ 2 fm   |
| $D_s^+ \rightarrow \phi \pi^+$        | (2.27 ± 0.08 %)      | <i>cτ</i> ~ 150 μm |
| $\Lambda_c^+ \rightarrow p K^- \pi^+$ | (6.35 ± 0.33 %)      | <i>cτ</i> ~ 60 μm  |
| $\Lambda_c^+ \rightarrow p K_s^0$     | (1.58 ± 0.08 %)      | <i>cτ</i> ~ 60 μm  |





## Particle reconstruction: Hadronic decays





- Combine track pairs/triplets with proper charge combinations.
- Reconstruct secondary vertex.
- Apply selection cuts to select decay-like topologies, exploiting decay-vertex displacement.
- Further background reduction using PID information via dE/dx
   (TPC) and time of flight (TOF) to identify pions, kaons and protons.
- Extract charm hadron signal via invariant mass distributions.
- Subtract beauty feed-down.







## Particle reconstruction: Hadronic decays





- Combine track pairs/triplets with proper charge combinations.
- Reconstruct secondary vertex.
- Apply selection cuts to select decay-like topologies, exploiting decay-vertex displacement.
- Further background reduction using PID information via dE/dx (TPC) and time of flight (TOF) to identify pions, kaons and protons.
- Extract charm hadron signal via invariant mass distributions.
- Subtract beauty feed-down.

- Feed-down contribution estimated using FONLL predictions of D meson from beauty-hadron decay and prompt and feed-down D-meson reconstruction efficiencies.
- Method cross-checked with data-driven estimate from D-meson impact parameter fit.





## Particle reconstruction: Semileptonic decays





- Combine an electron track originating close to primary vertex with a reconstructed  $\Lambda$  or  $\Xi^{\pm}$  ( $c\tau \sim 7.9$  and 4.9 cm respectively).
- Apply selection cuts exploiting the decay vertex displacement of the  $\Lambda$  and  $\Xi^{\pm}$  baryon to enhance the  $\Lambda$  and  $\Xi^{\pm}$  signal purity.

$$\Lambda_{c}^{+} \rightarrow e^{+} \nu_{e} \Lambda$$
 (3.6 ± 0.4 %)  $c\tau \sim 60 \mu m$   
 $\Xi_{c}^{0} \rightarrow e^{+} \nu_{e} \Xi^{-}$  BR unknown  $c\tau \sim 34 \mu m$ 





## Particle reconstruction: Semileptonic decays





- Combine an electron track originating close to primary vertex with a reconstructed  $\Lambda$  or  $\Xi^{\pm}$  ( $c\tau \sim 7.9$  and 4.9 cm respectively).
- Apply selection cuts exploiting the decay vertex displacement of the  $\Lambda$  and  $\Xi^{\pm}$  baryon to enhance the  $\Lambda$  and  $\Xi^{\pm}$  signal purity.
- Wrong sign pairs  $e^{-} \wedge (e^{-} \Xi^{+})$  subtracted from right sign spectra  $e^{+} \wedge (e^{+} \Xi^{-})$ .
- Correct for  $\Lambda_b^0$  and  $\Xi_b^0$  ( $\Xi_c^{0,+}$ ) in wrong sign (right sign) spectra.
- Correct for missing momentum  $v_e$  by **unfolding**  $e^+ \wedge (e^+ \Xi^-) p_{\top}$  spectra.











# Results



## **D-meson cross sections**



### Production cross section of prompt D mesons:

$$\frac{\mathrm{d}^2 \sigma^{\mathrm{D}}}{\mathrm{d} p_{\mathrm{T}} \mathrm{d} y} = \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}^{1} \underbrace{\frac{\frac{1}{2} \left[ f_{\mathrm{prompt}} \cdot N^{\mathrm{D} + \overline{\mathrm{D}}, \mathrm{raw}} \right]_{|y| < y_{\mathrm{fid}}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1} \underbrace{\frac{1}{c_{\Delta y} \Delta p_{\mathrm{T}}}}_{\left[ (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \right]}^{1$$

- 1) Number of reconstructed D mesons.
- 2) Efficiency and detector acceptance corrections.
- 3) Fraction of prompt D mesons.
- 4) Normalisation factors.



## **D-meson cross sections**



### Production cross section of prompt D mesons:

$$\frac{\mathrm{d}^{2}\sigma^{\mathrm{D}}}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} = \underbrace{\frac{1}{c_{\Delta y}} \underbrace{\frac{1}{2} \underbrace{f_{\mathrm{prompt}}}_{P} \underbrace{N^{\mathrm{D} + \overline{\mathrm{D}}, \mathrm{raw}}_{|y| < y_{\mathrm{fid}}}}_{[\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}}} \underbrace{\frac{1}{L_{\mathrm{int}}}}_{L_{\mathrm{int}}}$$

- 1) Number of reconstructed D mesons.
- 2) Efficiency and detector acceptance corrections.
- 3) Fraction of prompt D mesons.
- 4) Normalisation factors.
- →  $p_{T}$ -differential cross section of D mesons described within uncertainties by pQCD calculations (FONLL and GM-VFNS) at  $\sqrt{s}$  = 5, 7, 8, 13 TeV.



FONLL: JHEP 05 (1998) 007 GM-VFNS: Eur. Phys. J. C41 (2005), Eur. Phys. J. C72 (2012) 2082



## **D-meson cross sections**



- Analysis of pp data at  $\sqrt{s} = 7$  TeV (collected in 2010).
  - $p_{\scriptscriptstyle T}$  coverage down to zero for the D° meson.
- → Data described within uncertainties by FONLL and GM-VFNS. LO  $k_{\rm T}$  factorisation calculations underestimate cross section at intermediate  $p_{\rm T}$ .

Data point in  $0 < p_{T} < 1$  GeV/c is obtained from analysis without decay vertex reconstruction.



L. Vermunt

FONLL: JHEP 10 (2012) 137; GM-VFNS: Eur. Phys. J. C41 (2005), Eur. Phys. J. C72 (2012) 2082

kT: Phys. Rev. D87 no. 9 (2013)



## **Cross section ratios**



D-meson cross section ratios help to further constrain pQCD calculations.

- Species, rapidity and energy ratios.
- Several systematic uncertainties of pQCD models cancel.
- D-meson species ratios well described by models.
  - Sensitive to fragmentation functions.
  - No significant  $p_{\tau}$  dependence observed.



FONLL: JHEP 10 (2012) 137 JHEP 05 (1998) 007 GM-VFNS: Eur. Phys. J. C41 (2005) Eur. Phys. J. C72 (2012) 2082 kT: Phys. Rev. D87 no. 9 (2013)



## **Cross section ratios**



D-meson cross section ratios help to further constrain pQCD calculations.

- Species, rapidity and energy ratios.
- Several systematic uncertainties of pQCD models cancel.
- D-meson species ratios well described by models.
  - Sensitive to fragmentation functions.
  - No significant  $p_{\tau}$  dependence observed.
- D-meson rapidity and energy ratios compatible with FONLL.
  - Sensitive to gluon PDF at small Bjorken-x.









# Λ<sub>c</sub><sup>+</sup>-baryon cross section





 $\Lambda_c^+$  cross section is measured in three decay channels.

- **First**  $\Lambda_c^+$  production measurements at mid-rapidity at the LHC.
- Compatible within uncertainties (1.7 $\sigma$  deviation in  $p_{\rm T}$  bin 6 8 GeV/c).
- Averaged to one final cross section.

Cross section underestimated by theory.

- ~2 (~20) times higher than GM-VFNS (POWHEG+PYTHIA6).
- GM-VFNS compatible with  $\Lambda_c^+$  measurement by LHCb at 2 < y < 4.5 [1].



GM-VFNS: Eur. Phys. J. C41 (2005) 199–212 Eur. Phys. J. C72 (2012) 2082

POWHEG: JHEP 09 (2007) 126

[1] Nucl.Phys. B871 (2013) 1-20



# Λ<sup>+</sup>/ D<sup>0</sup> baryon-to-meson ratio





Sensitive to implementation of hadronisation:

#### **PYTHIA8**

- String formation model.
- Monash (standard) and Mode0 tune (beyond leading-colour approximation).

#### **DIPSY**

- Colour rope model.
- Expected to increase baryon-to-meson ratio.

#### **HERWIG7**

Cluster hadronisation mechanism.

→ All theoretical predictions underestimate  $\Lambda_c^+$  / D<sup>0</sup> ratio.

- PYTHIA8 with colour-reconnection closest to data.
- Ratios in pp and p-Pb collisions compatible with each other.

PYTHIA8 Monash: PYTHIA8 (CR, Mode0):

DIPSY: HERWIG7: Eur. Phys. J. C74 (2014) 3024 JHEP 08 (2015) 003 Phys. Rev. D 92 094010 (2015)



# $\Xi_c^0$ cross section and $\Xi_c^0$ / D<sup>0</sup> ratio







- First measurement of  $\Xi_c^0$  baryon at LHC.
  - Cross section multiplied by branching ratio (theoretical expectation: 0.3 3.2% [1]).
  - Feed-down contribution not subtracted.
- $\Xi_c^0$  / D<sup>o</sup> ratio significantly underestimated by both PYTHIA 8 tunes.

[1] Phys. Rev. D40 (1989) 2955, Phys. Rev. D43 (1991) 2939, Phys. Rev. D53 (1996) 1457

PYTHIA8 Monash: Eur. Phys. J. C74 (2014) 3024

PYTHIA8 (CR, Mode0): JHEP 08 (2015) 003



## **Yields versus multiplicity**



### Multiple-parton interactions on hard scale?

- D-meson yield may be correlated to the event charged-particle multiplicity.
- Steeper-than-linear increase of D<sup>0</sup>, D<sup>+</sup> and D\*<sup>+</sup> yields versus multiplicity.
  - Similar trend for prompt and non-prompt J/Ψ.

Multi-parton interactions and/or additional hadronic activity?







## **Yields versus multiplicity**



### Multiple-parton interactions on hard scale?

- D-meson yield may be correlated to the event charged-particle multiplicity.
- Steeper-than-linear increase of D<sup>0</sup>, D<sup>+</sup> and D\*<sup>+</sup> yields versus multiplicity.
  - Similar trend for prompt and non-prompt J/Ψ.
  - Multi-parton interactions and/or additional hadronic activity?
- Models including MPI predict steeper-than-linear increase.
  - Reproduce the data at low multiplicity while deviate at high multiplicity.



Phys.Rept. 350 (2001) 93-289, Phys.Rev. C89 (2014) 064903

#### **Percolation**

- Colour sources with finite spatial extension (similar scenario as MPI).
- Steeper-than-linear increase.

### **EPOS 3.099** + *Hydro*

- Parton based Gribov-Regge formalism.
- N<sub>MPI</sub> directly related to multiplicity.
- Steeper-than-linear for hydro.

### **Pythia 8.157**

- Soft QCD with colour reconnection.
- MPI implemented in combination with initial- and final-state radiation.
- Almost linear increase.

Comput. Phys. Commun. 178 (2008) 852-867

Phys.Rev. C86 (2012) 034903, arXiv:1501.03381



# **Coming soon: ALICE upgrade**



### Major upgrade ALICE foreseen:

 New ITS, new Muon Forward Tracker, TPC, readout electronics, trigger and Online/Offline (O²).

→ Improve low  $p_{\top}$  tracking, vertexing and data rate performances.

- 6 → 7 layers (closer to interaction point).
- Reduce material budget and pixel size.
- Improve read-out electronics.





# **Coming soon: ALICE upgrade**



### Major upgrade ALICE foreseen:

 New ITS, new Muon Forward Tracker, TPC, readout electronics, trigger and Online/Offline (O²).

→ Improve low  $p_{T}$  tracking, vertexing and data rate performances.

• 6 → 7 layers (closer to interaction point).

Reduce material budget and pixel size.

Improve read-out electronics.

Improve heavy-flavour background rejection.

• A factor 4-5 for D<sup>0</sup> mesons with  $p_{\tau} > 2$  GeV/c.







## **Summary and outlook**



### D mesons in proton-proton collisions:

- $p_{T}$ -differential cross sections at  $\sqrt{s} = 5.7.8$  and 13 TeV are **compatible with pQCD predictions**.
- Provide constraints to models with precise differential cross section measurements and ratios amongst charmed hadrons, energies and rapidities.

### Charmed baryons in proton-proton collisions:

- First  $\Lambda_c^+$  and  $\Xi_c^0$  production measurements at mid-rapidity.
- Production cross section underestimated by models.
- $\Lambda_c^+$  / D° and  $\Xi_c^0$  / D° ratios **higher than MC predictions**.

### Charm production versus event charged-particle multiplicity:

- D-meson yield increases steeper-than-linear with multiplicity.
- Suggests that multiple-parton interactions and/or additional hadronic activity play an important role at high multiplicity.

### **Prospects:**

- LHC Run 2: Additional measurements in pp collisions at  $\sqrt{s} = 5$  and 13 TeV with more statistics.
- LHC Run 3: Improvement of factor 10-100 on statistics and better vertexing with the new ITS.
  - Precision measurements on charm sector and direct access to beauty sector.





# Back-up



## **Feed-down correction**







- Feed-down for D mesons and  $\Lambda_c$  baryon determined using theory-based method using theoretical prediction of charmed hadrons from beauty.
  - $\Lambda_c$  measurements uses input from measured  $\Lambda_b$  cross section for systematic uncertainties.
- Up to now, D mesons in p-Pb collisions checked using data-driven method.
  - Unbinned log-likelihood fit to impact parameter distribution with different distributions for prompt and feed-down D mesons.



# D<sup>0</sup> cross section down to zero p<sub>T</sub>



- Different analysis method allows us to measure D<sup>0</sup> down to  $p_{T} = 0$ .
  - No secondary vertex reconstruction, no topological selection.
  - Background subtraction by event mixing, like-sign distribution, track rotation or fit of sidebands.





# Λ<sub>c</sub><sup>+</sup> measurement in LHCb







- Differential cross sections for  $\Lambda_c^+$  baryon production compared to GM-VFNS for ALICE (|y| < 0.5) and LHCb (2.0 < y < 4.5).
  - Suggests a rapidity dependence.

GM-VFNS: Eur. Phys. J. C41 (2005) 199-212

Eur. Phys. J. C72 (2012) 2082

POWHEG: JHEP 09 (2007) 126



## J/Ψ yields versus multiplicity





- Production of D mesons increases steeper-than-linear with multiplicity.
- Same trend for non-prompt  $(B \rightarrow)J/\Psi$  as well as prompt  $J/\Psi$  yields.
  - Caveat: Different  $\eta$  and  $p_{\tau}$  regions.