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Total cross section & multiple scattering

Multiple parton scattering involves multiparton distributions

e.g., DPDs (2GPDs) F(2) for double scattering:
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standard simplification:
neglect multiparton correlations

⇒ F
(2)
I1I2

(x1,x2,∆b) =∫
d2b fI1

(x1,b) fI2
(x2, |~b+ ~∆b|)
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t ) =
1
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∫
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fI ⊗σ2→2
IJ ⊗ fJ

]2

...
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(similarly for the production of n > 2 dijets)

this leads to the usual ’minijet’ ansatz:

σtot
pp(s) = 2

∫
d2b

[

1− exp(−χ
jet
pp(s,b,pcut

t ))
]

( χ
jet
pp(s,b,pcut

t ) = 1
2 ∑I,J fI ⊗σ2→2

IJ ⊗ fJ )

NB: absorptive (screening) corrections to σtot
pp – closely related to

the strength of multiple scattering

stronger screening ⇒ larger multiplicity tails
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Problem: using realistic GPDs, σtot
pp rises too fast

[Rogers, Stasto & Strikman, 2008]

being constrained by the known integrated PDFs, one may be
tempted to use denser parton ’packing’?

⇒ larger DPS rates & stronger screening

this will be in variance with measured dσel
pp/dt & Bel

pp ∝ 〈b2〉

this signals the breakdown of the uncorrelated parton picture!

NB: in MC-generators the problem is ’cured’ by using
energy-dependent cutoff for jet production: pcut

t = pcut
t (s)

Where is the problem and how to cure it?

double (multiple) hard scattering results
from independent cascades

⇒ mostly in central collisions

one has to create parton ’clumps’ to
enhance peripheral multiple scattering
(without changing the transverse profile)

can be done via ’soft’ & ’hard’ parton
splitting mechanisms



Multi-parton correlations & multi-Pomeron interactions

’Soft parton splitting’ naturally emerges in enhanced Pomeron
framework in the QGSJET-II model [SO, 2006, 2011]
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Nonlinear processes: Pomeron-Pomeron interactions (scattering of
intermediate partons off the proj./target hadrons & off each other)
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thick lines = Pomerons = ’elementary’ parton cascades



Multi-parton correlations & multi-Pomeron interactions

Nonlinear processes: Pomeron-Pomeron interactions (scattering of
intermediate partons off the proj./target hadrons & off each other)

(a) (b) (c) (d) (e) (f) (g)

thick lines = Pomerons = ’elementary’ parton cascades

Pomeron-Pomeron interaction: a closer look

basic assumption: multi-P
vertices – dominated by soft
(|q2|< Q2

0) parton processes

kind of soft parton splitting

+ ...= +
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graphs
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Inclusive jet production - a closer look

described in RTF by Kancheli-Mueller
graphs

projectile & target ’triangles’ generally
contain absorptive corrections p

p

V (p )
JJ

Examples of graphs hidden in the ’triangles’

+= + + + +   ...



Inclusive jet production - a closer look

Dijet cross section (neglecting absorption)

σ
2jet(noabs)
pp (s,pcut

t ) = ∑
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∫
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soft Pomeron

QCD ladder
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σQCD
IJ - contribution of DGLAP ladder with leg parton

virtualities Q2
0

χPsoft

(i)I - eikonal for soft Pomeron coupled to eigenstate |i〉 of
the proton & parton I
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IJ - contribution of DGLAP ladder with leg parton

virtualities Q2
0

χPsoft

(i)I - eikonal for soft Pomeron coupled to eigenstate |i〉 of
the proton & parton I

Including absorption χPsoft

(i)I (s0/x,b) is replaced by the solution of

’fan’ diagram equation, x f̃
(i)
I (x,b)

f̃
(i)
I (x,b) may be interpreted as GPDs G

(i)
I (x,Q2

0,b) at the
virtuality scale Q2

0; higher scales - DGLAP-evolved:

G
(i)
I (x,Q2,b) = ∑

I′

∫ 1

x

dz

z
EDGLAP

I′→I (z,Q2
0,Q

2) f̃
(i)
I′ (x/z,b)



Inclusive jet production - a closer look

Impact of transverse diffusion on 〈b2〉 of gluons at Q2
0 = 3 GeV2

〈b2〉 - dominated by the
largest size Fock state

quick spread with energy
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DPS production of 2 dijets

Production of 2 dijets by independent parton cascades (’2v2’)

σ
4jet(2v2)
pp (s,pcut

t ) =
1

2
∑
i,j

Ci Cj

∫
d2b

×

[∫
dx+ dx− ∑

I,J

σQCD
IJ (x+x−s,Q2

0,p
cut
t )

×
∫

d2b′ f̃
(i)
I (x+,b′) f̃

(j)
J (x−, |~b−~b′|)

]2

JJ
V (p  )

1 JJ
V (p  )

2

p

p

NB: two dijet processes for the same b & eigenstates |i〉, |j〉



DPS production of 2 dijets

’Soft parton splitting’ (’2v1s’)

σ
4jet(2v1)s
pp (s,pcut

t ) =
1

2
∑
i,j

Ci Cj

×G3P

∫
d2b′

∫
dx′

x′

[

1− e
−χfan

(i)
(s0/x′,b′)

]

×
∫

d2b

[∫
dx+

x+

∫
dx−∑

I,J

σ
QCD
IJ (x+x−s,Q2

0,p
cut
t )

×
∫

d2b′′ χ
Psoft

PI (s0 x′/x+,b′′) f̃
(j)
J (x−, |~b−~b′′|)

]2
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V (p  )

1

JJ
V (p  )

2

p

p

small α′
P
⇒ two hard processes are closeby in b-space

involves triple-Pomeron coupling r3P (G3P ∝ r3P)

neglecting absorptive corrections → triple-Pomeron graph
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P
⇒ two hard processes are closeby in b-space

involves triple-Pomeron coupling r3P (G3P ∝ r3P)

neglecting absorptive corrections → triple-Pomeron graph

We may compare this with the standard DPS formula

σ
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DPS production of 2 dijets

We may compare this with the standard DPS formula
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The two contributions (2v2 & 2v1s) correspond to 2GPDs

F
(2)
I1I2

(x1,x2,Q
2
0,Q

2
0,∆b) = ∑

i

Ci

∫
d2b′

{

f̃ (i)
I1
(x1,b

′) f̃
(i)
I2
(x2, |~b

′− ~∆b|)

+
G3P

x1x2

∫
dx′

x′

[

1− e
−χfan

(i)
(s0/x′,b′)

]

∫
d2b′′ χ
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PI1
(
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}

2nd term generates short range two-parton correlations in b-space



DPS production of 2 dijets

The two contributions (2v2 & 2v1s) correspond to 2GPDs
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2nd term generates short range two-parton correlations in b-space

NB: such 2GPDs would also produce
a ’loop’ contribution
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V (p  )

1

p
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Example of the fit of σtot
pp

in this framework,
reasonable fit of σtot

pp was
obtained for a low cutoff
Q2

0 = 1 GeV2 [SO, 2006]
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Example of the fit of σtot
pp

in this framework,
reasonable fit of σtot

pp was
obtained for a low cutoff
Q2

0 = 1 GeV2 [SO, 2006]

with constraints from particle
production, much higher
value is required (Q2

0 = 3

GeV2 is used in QGSJET-II)
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A different view on the problem: nonuniversality of PDFs

Universal PDFs insufficient for noninclusive observables in pp

in DIS: rescattering of
intermediate partons off
the parent hadron

in pp: rescattering off the
target hadron in addition
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Universal PDFs insufficient for noninclusive observables in pp

in DIS: rescattering of
intermediate partons off
the parent hadron

in pp: rescattering off the
target hadron in addition

p p

p
...

(x, Q  )2 (x, Q  )2

Some enhanced graphs are contained in PDFs

namely, the ones describing
rescattering off the parent
hadron

...
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A different view on the problem: nonuniversality of PDFs

Universal PDFs insufficient for noninclusive observables in pp

in DIS: rescattering of
intermediate partons off
the parent hadron

in pp: rescattering off the
target hadron in addition

p p

p
...

(x, Q  )2 (x, Q  )2

Others are responsible for nonfactorizable corrections

those prove to be the most
important ones

...

...
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Multi-parton interactions: perturbative splitting

3 → 4 contrib. to double parton scatt.: collinearly enhanced
[Blok et al., 2011]

may also impact σtot
pp?

⇒ included in a test version of the model

only 3 → 4 contribution

assume AGK rules

neglect b-size of the ’hard
triangle’ wrt soft evolution

⇒ ’hard triangle’ works as an
effective 3P-vertex
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for Q2
0 = 3 GeV2: negligible effect

⇒ choose Q2
0 = 2 GeV2 and refit the model parameters

(using σ
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Multi-parton interactions: perturbative splitting

for Q2
0 = 3 GeV2: negligible effect

⇒ choose Q2
0 = 2 GeV2 and refit the model parameters
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tot/el
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Perturbative splitting: cross-check with contributions to

DPS rates [SO & Bleicher, 2016]

Relative importance of the soft and hard parton splittings

’soft splitting’: large
correction for small pcut

t

small for high pcut
t

⇒ flattens
pcut

t -dependence
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Perturbative splitting: cross-check with contributions to

DPS rates [SO & Bleicher, 2016]

Relative importance of the soft and hard parton splittings

’soft splitting’: large
correction for small pcut

t

small for high pcut
t

⇒ flattens
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Motivation: the situation is yet far from being satisfactory

present fit of the model parameters is a marginary one

e.g., multiplicity distribution is broader than observed

most worrysome: the pt-cutoff plays a crucial role in the fit

moreover, a rather large value (3 GeV2) is used

ideally, pt-cutoff should be just a technical parameter,
without a strong impact on the results

⇒ some important perturbative mechanism seems missing

possible hint: energy-dependent pt-cutoff in MC generators
– is it possible have a perturbative mechanism behind?
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