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Introduction

Uncertainties in global PDFs analysis

Precise assessment of PDFs uncertainties has become crucial

PDFs subject both to theoretical and experimental uncertainties.

To deal with experimental uncertainties:
æ Offset method: relying on the approximation of linear propagation of errors by ignoring the

correlations between data points

æ Hessian method: relying on the Gaussian approximation of ∆χ2

æ ...

The offset method leads to a bigger uncertainty than the Hessian method for the same ∆χ2

[hep-ph/0508304]
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Introduction

Drawback of Hessian Method

Assumption on the choice of a tolerance criteria§ to define the permissible range of “acceptable”
∆χ2 one has to explore around the minimal value of the χ2 function

æ In principle, ∆χ2 =1 for 68% confidence level (C.L.) IF fitting consistent data sets with ideal
gaussian errors

æ In practice: due to the theoretical uncertainties at low energy scale and also due to the fact
that data from different experiments are sometimes incompatible =⇒∆χ2 > 1.

The introduction of this non standard tolerance criteria does not allow to give a statistically
rigourous meaning to the resulting uncertainties.

What can MCMC methods tell us about PDFs experimental uncertainties?

§This excepts Neural Networks techniques
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Introduction

Flowchart of PDFs extraction
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Formulation of PDFs determination in terms of Bayesian inference

PDFs determination in terms of Bayesian inference
æ ~q: vector of PDF free parameters to be adjusted:

~q = (q(1), q(2), ..., q(d))ᵀ

HERAPDF functional form at Q2
0 =1.9 GeV2:

xf (x) = AxB(1− x)C(1 + Dx + Ex2), where f represents a parton (g,U,D, uval, dval).

æ D: data

Bayesian inference
Both PDF free parameters and observables considered as random quantities. Aims at
determining a joint probability density P(D,~q) over all random quantities: P(D,~q) = P(D|~q)P(~q)

æ P(~q): prior probability density

æ P(D|~q): likelihood of the data L(~q)

Bayes’ theorem
Express P(~q|D) in terms of the likelihood P(D|~q)

P(~q|D) =
P(D|~q)P(~q)∫
P(D|~q)P(~q)d~q

(1)

æ P(~q|D): posterior probability density
æ Can be sampled using a Markov Chain Monte Carlo algorithm

Yémalin Gabin GBEDO MCMC PDFs August 31, 2017 8 / 31



Formulation of PDFs determination in terms of Bayesian inference

PDFs determination in terms of Bayesian inference
Likelihood

Let’s denote

æ DnI , TnI , and σnI : respectively the data value, theory value, and uncertainty for data point I
of data set (or “experiment”) n

The logarithm of the likelihood function (for a normal density) is given by:

lnL(~q) = −
1
2

4∑
n=1

∑
I

[
DnI − TnI(~q)

σnI

]2

︸ ︷︷ ︸
χ2

n

= −
1
2
χ2(~q) (2)

In practice, Eq.(2) is generalized to include the full experimental error correlation matrix
[hep-ph/0101051]

Prior probability density

The prior probability density acts to reweight the likelihood based on our existing knowledge. Any
justifiable choice can be made

We choose in our analysis P(~q) uniform

Remark: If DnI normally distributed, maximum likelihood estimator and least square method are
equivalent
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Formulation of PDFs determination in terms of Bayesian inference

Metropolis [Metropolis et al., J. Chem Phys. 21 (1953)]

æ One of the simplest MCMC algorithm

æ Extremely straightforward to implement and to sample a target density P(~q|D)

æ At each Monte Carlo (MC) time t corresponding to the point ~qt, a candidate point ~q′ is
generated from a proposal distribution‡. This candidate point is accepted as new point of
the chain with the probability

α(~qt,~q′) = min
(

1,
P(~q′|D)

P(~qt|D)

)
In our case (Uniform prior probability density)

α(~qt,~q′) = min
(

1, e−
1
2

[
χ2(~q′)−χ2(~qt)

])
= min(1, e−

1
2 ∆χ2

)

And why we do not use it...

Acceptance test

- Typically for 1 parameter: 30-50%
- Decreases as ∼ (0.5)d =⇒ for d = 10 parameters, unacceptable acceptance rate...

‡Proposal distribution assumed symmetric here
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Formulation of PDFs determination in terms of Bayesian inference

Hamiltonian Monte Carlo

æ Originally developed for lattice QCD [Duane et al, 1987]

æ Combines molecular dynamics evolution with a Metropolis accept/reject step

æ Consists in associating to each set of PDF free parameters ~q a set of conjugate momenta ~p
and to replace the posterior probability density in Eq.(1) we want to sample by a joint
probability distribution defined as

P(~q,~p) =
1
Z

e−H(~q,~p) =
1
Z

e−K(~p)e−U(~q), Z is a normalizing constant

and H(~q,~p) is an Hamiltonian written as H(~q,~p) = K(~p) + U(~q).

• The first term of the Hamiltonian has the form of a kinetic energy

K(~p) = (~p)ᵀM−1~p/2, (3)

where M is a mass matrix (generally taken to be diagonal)

• The second term U(~q) is an arbitrary potential energy, that we define as

U(~q) = − ln[P(D|~q)P(~q)] (4)
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Formulation of PDFs determination in terms of Bayesian inference

Steps of the HMC algorithm
Goal: given an n-dimensional joint probability density P(~q,~p) ∝ e−H(~q,~p),
generate a sequence of points ~q1,~q2,~q3, ...
Choose L and δ (Subtle task!)
Initialize ~q0; set t=0
Repeat {

Set ~q = ~qt

Generate ~p ∼ N (0,1)

Generate candidate points ~q′ and ~p′:
discretization of the Hamiltons’ equations using the Leapfrog Method

For j = 1, L do
~p′ = ~p− δ

2∇~qU(~q)
~q′ = ~q + δ∇~pK(~p′)
~p′ = ~p′ − δ

2∇~qU(~q′)
End

Form Metropolis test ratio α = min
[

1, P(~q′,~p′)
P(~q,~p)

]
= min(1, e−∆H)

Generate u ∼ Uniform[0, 1]

If u ≤ α, ~qt+1 = ~q′ ⇐= move to proposed point
else ~qt+1 = ~q ⇐= old point repeated
Increment t
}
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Formulation of PDFs determination in terms of Bayesian inference

æ In theory, the Hamiltonian is conserved, i.e. ∆H = 0 and the acceptance rate is 100%.

æ In practice: the acceptance rate is degraded because of numerical resolution of Hamiltons’
equations, but still very high (typically 70− 90% , independently of the dimension of the
chain).

e.g.: sampling of a hundred-dimensional Gaussian. Values of the position coordinate with largest
standard deviation. [R. M. Neal, arXiv:1206.1901]
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Formulation of PDFs determination in terms of Bayesian inference

Implementation of HMC in xFitter package

æ Parametrized HERA PDFs at Q2
0 =1.9 GeV2 :

xg, xU ≡ xū, xD ≡ xd̄ + xs̄, xuval ≡ xU− xU, xdval ≡ xD− xD

æ We consider 10 free parameters : Bg, Cg, Buval , Cuval , Euval , Cdval , CU, AD, BD, CD

æ Validation study, with combined neutral current (NC) and charged current (CC) inclusive e±p
scattering cross sections data sets measured by H1 and ZEUS at HERA. A minimum Q2 cut
of Q2

min = 10 GeV2 is imposed on these data sets to remain in the kinematic region where
perturbative QCD is valid.

Data set Ndat
NC DIS cross sections HERA I H1-ZEUS combined e−p 145
NC DIS cross sections HERA I H1-ZEUS combined e+p 324
CC DIS cross sections HERA I H1-ZEUS combined e−p 34
CC DIS cross sections HERA I H1-ZEUS combined e+p 34

Total number of experimental data points used 537

æ Tuning of HMC parameters

æ Comparison with HERAPDF1.0 NLO for Zero-Mass-Variable-Flavour-Number Scheme
(ZM-VFNS) results from HERAFitter
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Formulation of PDFs determination in terms of Bayesian inference

HMC tuning parameters

The HMC algorithm requires the tuning of essentially two parameters:

æ the leapfrog step size δ

æ the leapfrog steps L

We have chosen L=100 and one leapfrog step size for each of the 10 PDF free parameters†. With
these settings, we got an integrated autocorrelation time τint ∼ 2 (see next slides)

The HMC algorithm also requires the computation of the derivative of the potential energy (that is
in our case the χ2(~q)) with respect to the PDF free parameters ~q:

æ there are roughly 2040 evaluations of χ2 for each Monte Carlo iteration

æ each χ2 computation takes about 0.03 seconds, so each Monte Carlo iteration takes about
1 minute. So for 158400 points we need 110 days, divided by the CPUs we use (36), that is
about 3 days.

æ for realistic PDFs determination, 4000 Monte Carlo points should be large enough (this will
require about 2 hours under 36 CPUs).

†Namely we took ε(i) = δ∆q(i) with δ = 3.10−2, where, ∆q(i) is, for each PDF free
parameters, the value of its standard deviation as provided by the standard MINUIT minimization.
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Markov chain analysis

Burn-in length

Extracting observables and assessing their statistical errors from Monte Carlo simulations: subtle
task, requiring careful treatment of the Markov chain.

The burn-in length b represents the number of states {~qt}1,...,b to be discarded from the
beginning so that the chain forgets its starting point.
Recall: xf (x,Q2

0) = AxB(1− x)C(1 + Dx + Ex2), where f = g,U,D, uval, dval.
e.g.: sampling of parameter Bg

We have taken b such that P(~qb|D) > P1/2.
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Markov chain analysis

Autocorrelation and statistical errors

Autocorrelation: inherent correlations from one point of the Markov chain to the next
Usual estimate of variance of an observable O:

σ2
naive =

1
N− b

(
Ot − 〈O〉

)2
, where 〈.〉 =

1
N− b

N∑
t=b+1

Ot.

æ Relies on the assumption that measurements performed on the Markov chain are NOT
correlated

æ The Γ-method [U. Wolff, arXiv:hep-lat/0306017v4] accounts for the correlations: explicit
determination of autocorrelation functions ρ and integrated autocorrelation time τint

ρ(s) =
(Ot − 〈O〉)(Ot+s − 〈O〉)

(Ot − 〈O〉)2
, 2τint = 1 + 2

W∑
s=1

ρ(s)

Several methods to account for the Statistical errors:

æ The Γ-method: σ2
τ = 2τintσ

2
naive

æ The Jackknife method: once the integrated autocorrelation time is determined, the statistical
error on any observables is obtained from a chain of length (N-b)/2τint.

For this study: τint ∼ 2.
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Markov chain analysis

convergence

Convergence: start from three different values of parameter Bg, and check that all the three
chains reach the same distribution
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Results

Ready to compare standard MINUIT minimization and
MCMC methods

Comparison of results obtained for parameters Bg of xg(x,Q2
0) and CD of xD(x,Q2

0) using MCMC
method or χ2 MINUIT minimization.

parameter values MCMC MINUIT minimization

Bg

mean −0.0537± 0.0002
best fit −0.0632± 0.0168 −0.0559

standard deviation 0.0299± 0.0001 0.0288

CD

mean 6.2096± 0.0076
best fit 5.888± 0.142 5.875

standard deviation 1.505± 0.009 1.290

We have much more information with MCMC method...
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Results

Marginal probability densities for PDF parameters and correlations between PDF parameters

Recall: xf (x,Q2
0) = AxB(1− x)C(1 + Dx + Ex2), where f = g,U,D, uval, dval.
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Results

Probability density functions of PDFs
For each MC parameter set ~qt, compute the corresponding PDFs

æ probability density function of PDFs at fixed (x,Q2)
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x≈ 0.83 and Q2 =10GeV2

Gluon PDF probability density function for x ≈ 10−4 (l.h.s.) and x ≈ 0.83 at fixed Q2 = 10 GeV2.
The 68% confidence interval (see next slides) is obtained from this distribution,
considering the region of the distribution containing 68% of the Monte Carlo data
remaining on each side of the best fit value.
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Results

PDFs ratio plot
Comparison of the xdval and xg experimental uncertainties normalized by their respective central
value obtained for HERAPDF1.0 NLO and MCMC NLO respectively by the Hessian and MCMC
methods.
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The MCMC uncertainties tend to be slightly larger than the standard deviations obtained in the
Hessian approach.
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Conclusion and outlook

Conclusion and outlook

What we have done...
æ MCMC, well-suited to multi-parameter determination, applicable to PDFs extraction

æ Overcome the technical difficulties by using HMC algorithm

æ Obtained PDF probability densities and as by-product, confidence intervals

What we would like to do...
æ Extend this study to a competitive PDF ensemble with more parameters and experimental

data sets

æ Consider more complex χ2 functions including systematics correlations and study prior
influence

æ Take into account the heavy quarks masses =⇒ FONLL scheme with APFELgrid
techniques

Bayesian inference applied to global PDF analyses can lead to a deeper insight into PDF
experimental uncertainties estimation
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THANK YOU!
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BACK UP
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QCD settings for HERAPDF1.0 in the zero-mass
variable-flavour-number-scheme (ZM-VFNS)

The QCD settings are optimised for HERA measurements of proton structure functions:
PDFs are parametrised at the starting scale Q2

0 as follows:
xfuval (x) = Auval x

Buval (1− x)Cuval (1 + Euval x
2), xfdval (x) = Adval x

Bdval (1− x)Cdval

xfU(x) = AUxBU (1− x)CU , xfD(x) = ADxBD (1− x)CD

xf̄s(x) = 0.31xfD(x), xfg(x) = AgxBg (1− x)Cg

æ The parameters Auval , Adval , and Ag are constrained by a number of sum rules:∫ 1
0 fuval (x)dx = 2

∫ 1
0 fdval (x)dx = 1

∫ 1
0 [xfU(x) + xfD(x) + xfg(x)]dx = 1

æ The parameters AU and AD are related such as
AU = 0.69AD

æ PDFs are evolved via DGLAP evolution equations to NLO (αs(M2
Z) = 0.1176).

æ The hard scattering cross sections are calculated in the ZM-VFNS.
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Sampling of the χ2 distribution

The solid line is an adjustment with a χ2distribution law.
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HERAPDF1.0 for ZM-VFNS vs MCMC PDFs
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The parton distribution functions obtained using MCMC (right) compared to HERAPDF1.0
(ZM-VFN scheme) (left) for xdval and xg at Q2 = 10 GeV2. The bands show the 68% confidence
interval around the central (best fit) value for the MCMC PDFs, and the standard ∆χ2 = 1
deviation for HERAPDF1.0.
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