Measurements of Vector Boson Fusion With The ATLAS Detector

Ismet Sıral University of Michigan On Behalf of the ATLAS Collaboration 28 Aug 2017 QCD@LHC 2017

Ismet Sıral; 28 Aug 2017

Introduction

- SM electroweak theory predicts self interaction of EWK gauge bosons.
- The self interaction of these boson in triple and quartic gauge boson couplings provides us with important tool to test SM.
 - Unitarization of the Higgs boson.
 - Background for new physics searches.
 - $\circ~$ aTGC's and aQGC's to test new physics.
- In this presentation we are going to present production of:
 - $\circ \ W j j \to \ell \nu j j$
 - $\circ \ Zjj \to \ell\ell jj$
- Large cross-section of vector boson fusion allows us to test triple gauge couplings with high precision.

Measurement of the Electroweak Zjj

STDM-2016-09 and [HEP 04 (2014) 031

- EWK Zjj production. There are different processes that can generate the Zjj.
- This analysis puts constraints on the productions of Z_{jj} by:
 - Strong 0
 - EW VBF, Z bremstrahlung and non-resonant.
- The interference between the two channels is minimal.
- In this presentation we are going to focus on 13 TeV results in comparison with the 8 TeV results.

Strong Zjj production.

26

Modeling

STDM-2016-09 and JHEP 04 (2014) 031

13 TeV Analysis

• The analysis has been conducted at

 $\sqrt{(s)} = 13$ TeV with $\int L dt = 3.2$ fb $^{-1}$

- PowHeg Box (NLO) and Sherpa (LO) are used for EWK modeling.
- Sherpa (NLO), ALPGEN (LO) and MadGraph_aMC@NLO (NLO) are used for QCD modeling.

8 TeV Analysis

• The analysis has been conducted at

$$\sqrt{(s)}=8$$
 TeV with $\int L dt=20.3$ fb $^{-1}$

 PowHeg Box (NLO) and Sherpa (LO) are used for strong and EWK theoretical predictions.

Search Method

STDM-2016-09 and JHEP 04 (2014) 031

- **13 TeV Fiducial Regions**
- **Baseline** is the inclusive Signal that contains all other fiducial regions.
- **EWK-enriched** Enhances the EWK contribution by p_T^{balance} and 0 central jets
- **QCD-enriched** Enhances the QCD contribution by p_T^{balance} and at least one central jet

Object	Baseline	High-mass	High-p _T	EW-enriched	EW-enriched, $m_{jj} > 1 \text{ TeV}$	QCD-enriched
Leptons	$ \eta < 2.47, p_{\rm T} > 25$ GeV, $\Delta R_{j,\ell} > 0.4$					
Di-lepton pair	$81 < m_{\ell\ell} < 101 \text{ GeV}$					
	_			$p_{\mathrm{T}}^{\ell\ell} > 20 \; \mathrm{GeV}$		
	y < 4.4					
Jets	$p_{\mathrm{T}}^{j_1} > 55~\mathrm{GeV}$		$p_{\mathrm{T}}^{j_1} > 85 \; \mathrm{GeV}$	$p_{\mathrm{T}}^{j_1} > 55 \; \mathrm{GeV}$		
	$p_{\rm T}^{j_2} > 45~{ m GeV}$ $p_{\rm T}^{j_2} > 75~{ m GeV}$		$p_{\mathrm{T}}^{j_2} > 45 \; \mathrm{GeV}$			
Di-jet system	_	$m_{jj} > 1 { m TeV}$	_	$m_{jj} > 250 { m ~GeV}$	$m_{jj} > 1$ TeV	$m_{jj} > 250 \text{ GeV}$
Interval jets	jets —			$N_{jet (p_T > 25 \text{ GeV})}^{interval} = 0$		$N_{jet (p_T > 25 \text{ GeV})}^{interval} \ge 1$
Zjj system	_			$p_{\mathrm{T}}^{\mathrm{balance}} < 0.15$		$p_{\mathrm{T}}^{\mathrm{balance,3}} < 0.15$
$p_T^{\text{balance}} = \frac{ \vec{p_T}^{\ell 1} + \vec{p_T}^{\ell 2} + \vec{p_T}^{*,j1} + \vec{p_T}^{*,j2} }{ \vec{p_T}^{*\ell 1} + \vec{p_T}^{*\ell 2} + \vec{p_T}^{*,j2} + \vec{p_T}^{*,j2} }$			EWK sensitive cuts QCD Enriching Co		QCD Enriching Cuts	

EWK sensitive region

8 TeV Fiducial Regions

- It is really similar to 13 TeV with different names.
- QCD-enriched \rightarrow Control region , EW-enriched \rightarrow Search region

Inclusive (EWK+QCD) Results

Meas. of the Electroweak Zjj at 13 TeV, STDM-2016-09

- Zjj with EWK+QCD fiducial x-sections are measured using $\sigma_{\text{fid}} = \frac{N_{\text{obs}} N_{\text{bkg}}}{\int Ldt \cdot C}$
- Good agreement with theory among all regions.
- X-sections are measured in ee and $\mu\mu$ channels and found compatible.
- The primary uncertainties are jet energy scale and resolution.
- We observe a shape discrepancy in m_{jj} distribution due to QCD-Zjj mis-modeling.
 - This is corrected while calculating fiducial x-sections.

Ismet Sıral; 28 Aug 2017

Inclusive (EWK+QCD) Results

Meas. of the Electroweak Zjj at 13 TeV, STDM-2016-09

- Good agreement between theory and observation
- The other data points will be explained later.

Ismet Sıral; 28 Aug 2017

26

Inclusive (QCD+EWK) Results

Measurement of the Electroweak Zjj at 8 TeV, JHEP 04 (2014) 031

- The 8 TeV inclusive results are obtained in the same way as 13 TeV.
- Similar same m_{jj} problem are observed.
- The primary uncertainties are jet energy scale and resolution.
- Good agreement with theory among all regions.

Fiducial region baseline high-p _T high-mass search control	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Fiducial region baseline high-p _T high-mass search control	$\begin{array}{c} \hline \sigma_{\rm theory}~(\rm pb) \\ 6.26 \pm 0.06 ~(stat) {}^{+0.50}_{-0.05}~(scale) {}^{+0.29}_{-0.33}~(\rm PDF) {}^{+0.19}_{-0.25}~(\rm model) \\ 1.92 \pm 0.02 ~(stat) {}^{+0.17}_{-0.15}~(scale) {}^{+0.09}_{-0.06}~(\rm PDF) {}^{+0.05}_{-0.00}~(\rm model) \\ 0.068 \pm 0.001 ~(stat) {}^{+0.09}_{-0.00}~(scale) {}^{+0.09}_{-0.00}~(\rm PDF) {}^{+0.09}_{-0.00}~(\rm model) \\ 1.23 \pm 0.01 ~(stat) {}^{+0.11}_{-0.054}~(scale) {}^{+0.02}_{-0.02}~(\rm PDF) {}^{+0.03}_{-0.034}~(\rm model) \\ 0.444 \pm 0.005~(stat) {}^{+0.034}_{-0.054}~(scale) {}^{+0.022}_{-0.022}~(\rm PDF) {}^{+0.034}_{-0.034}~(\rm model) \\ \end{array}$	 Data 2012 Powheg (Zjj) + Sherpa (VZ) 10¹ Powheg (Zjj) + Sherpa (VZ) 10¹ 10¹

m_{jj} Shape Corrections

Meas. of the Electroweak Zjj at 13 TeV, STDM-2016-09

- QCD-enriched and EWK-enriched regions are designed to be kinematically similar.
- In order to correct the m_{jj} shape mismatch
 - On the QCD-enriched region, the background is removed.
 - $\circ~$ Corrections to $Wjj\text{-}\mathsf{QCD}$ are extracted.
 - $^{\odot}$ $\,$ Applied to EWK-enriched region.
- Linear fit was used for the data-driven correction.
- The difference between quadratic and linear fits are found to be minimal.

EWK Zjj Measurement

Meas. of the Electroweak Zjj at 13 TeV, STDM-201 $\stackrel{\frown}{}$

- Zjj EWK contribution is extracted on m_{jj}
- It's extracted on EWK-enriched region.
- Binned likelihood fit of QCD & EWK m_{jj} templates are used.
- The QCD-background shape in EWK-enriched is corrected using a data driven method.
- The cut $m_{jj} > 1$ TeV is used to enhance the signal to background ratio by 26%.
- The largest uncertainty is the QCD modeling uncertainty.

EWK Zjj Measurement

Meas. of the Electroweak Zjj at 13 TeV, STDM-2016-09

We observe a good agreement with the theory.

Ismet Sıral; 28 Aug 2017

Measurments of Vector Boson Fusion With The ATLAS Detector

26

EWK Zjj Measurement

Measurement of the Electroweak Zjj at 8 TeV, JHEP 04 (2014) 031

- Zjj EWK contribution is extracted on m_{jj} distribution inside the search region.
- The control region is used for estimating and constraining the background shape using re-weighting.
- PowHeg signal and data has good agreement.
- The background only hypothesis is rejected $>5\sigma$

Obs:

$$\sigma_{\rm EWK} = 54.7 \pm 4.6 ({\rm stat})^{+9.8}_{-10.4} ({\rm syst}) \pm 1.5 ({\rm lumi})~{\rm fb}$$

Exp:

```
\sigma_{\rm EWK} = 46.1 \pm 0.2 ({\rm stat})^{+0.3}_{-0.2} ({\rm scale}) \pm 0.8 ({\rm pdf}) \pm 0.5 ({\rm model}) {\rm ~fb}
```


Differential Results

Measurement of the Electroweak Zjj at 8 TeV, JHEP 04 (2014) 031

- Some of the considered differential observables are: $\circ \ m_{jj}$, $|\Delta y|$, $|\Delta \phi(j,j)|$, $\mathbf{N}^{\rm gap}_{\rm jet}$, $p_T^{\rm balance}$
- To get the differential distribution in particle level.
 - I. In differential distribution, BG is subtracted from data.
 - 2. Bayesian unfolding is then applied to get particle level distribution.
- PowHeg has better agreement in baseline as it's NLO.
- On search region both PowHeg and Sherpa have good agreements.

Differential Plots

Measurement of the Electroweak Zjj at 8 TeV, JHEP 04 (2014) 031

- On both plots we can observe that high $|\Delta Y|$ and M_{jj} is sensitive to EWK.
- On the M_{jj} differnatial we can observe modelling problems.
- None off the generators can fully describe the modeling.
- We have good agreement with prediction.

aTGC Results

Measurement of the Electroweak Zjj at 8 TeV, JHEP 04 (2014) 031

• Effective lagrangian has been used to set limits on aTGC

$$\frac{\mathcal{L}}{{}^g_{WWZ}} = i[g_{1,Z}(W^{\dagger}_{\mu\nu}W^{\mu}Z^{\nu} - W_{\mu\nu}W^{\dagger\mu}Z^{\nu}) + K_Z W^{\dagger}_{\mu}W_{\nu}Z^{\mu\nu} + \frac{\lambda_Z}{m_W^2}W^{\dagger}_{\rho\mu}W^{\mu}_{\nu}Z^{\nu\rho}]$$

- aTGC limits have been set on search region with $m_{jj} > 1 \text{ TeV}$
- To preserve unitarity a form factor is used , $\alpha(\hat{s}) = \frac{\alpha_0}{(1+\hat{s}^2/\Lambda^2)^2}$, where α is anomalous coupling of interest.
- Two scales have been used. ($\Lambda = 6 \text{ TeV}, \infty$)

aTGC	$\Lambda=6{\rm TeV}~({\rm obs})$	$\Lambda = 6{ m TeV}~({ m exp})$	$\Lambda=\infty~({ m obs})$	$\Lambda = \infty \; (\mathrm{exp})$
$\Delta g_{1,Z}$	[-0.65,0.33]	[-0.58,0.27]	[-0.50,0.26]	[-0.45,0.22]
λ_Z	[-0.22,0.19]	[-0.19,0.16]	[-0.15,0.13]	[-0.14,0.11]

EWK Zjj Measurement Summary

Measurement of the Electroweak Zjj

Overall all measurements are in good agreement with the theory.

26

Measurement of the Electroweak Wjj

Eur. Phys. J. C (2017) 77:474

- Similar to VBF Zjj prod., Wjj prod. is composed of:
 - Strong
 - EWK VBF, W bremstrahlung and non-resonant.
- Similar to Zjj, Wjj EWK contribution increases with m_{jj} .

26

Modeling

- Wjj is simulated using PowHeg + Pythia8 (NLO) with data driven corrections.
- Sherpa (LO) is also used to validate the signal as well to estimate the uncertainty of interference between strong and EWK channels.
- For testing unfolded distributions, <u>HEJ</u> (High Energy Jets)(all-order) is also used.
- The BG with prompt charged leptons are modeled with MC.
- The multi-jet background is estimated using a data-driven method.
- The analysis has been conducted at both
 - $\sqrt{(s)}=7, 8$ TeV with $\int Ldt=4.7, 20.3$ fb $^{-1}$
 - This is the only VBF measurement at 7 TeV.

Search Method

- The analysis has been split into 3 fiducial regions for setting fiducial cross-section limits. Marked Blue.
- 6 additional fiducial regions have been implements for differential measurements. Marked Red.
- There is a fiducial region defined to enhance aTGC's production.

Region name	Requirements
Preselection	Lepton $p_{\rm T} > 25 \text{ GeV}$
	Lepton $ \eta < 2.5$
	$E_{\rm T}^{\rm miss} > 20 {\rm ~GeV}$
	$m_T > 40 \text{ GeV}$
	$p_T^{j_1} > 80 \text{ GeV}$
	$p_T^{j_2} > 60 \text{ GeV}$
	y < 4.4
	$M_{jj} > 500 \text{ GeV}$
	$\Delta y(j_1, j_2) > 2$
	$\Delta R(j, \ell) > 0.3$
Fiducial and differential measurements	
Signal region	$N_{\text{lepton}}^{\text{cen}} = 1, N_{\text{iets}}^{\text{cen}} = 0$
Forward-lepton control region	$N_{\text{lenton}}^{\text{cen}} = 0, N_{\text{integ}}^{\text{cen}} = 0$
Central-jet validation region	$N_{\text{lepton}}^{\text{cen}} = 1, N_{\text{iets}}^{\text{cen}} \ge 1$
Differential measurements only	
Inclusive regions	M ₁₁ > 0.5 TeV, 1 TeV, 1.5 TeV, or 2 TeV
Forward-lepton/central-jet region	$N_{\text{lenton}}^{\text{cen}} = 0, N_{\text{iets}}^{\text{cen}} \ge 1$
High-mass signal region	$M_{jj} > 1$ TeV, $N_{lepton}^{cen} = 1$, $N_{jets}^{cen} = 0$
Anomalous coupling measurements only	
High- q^2 region	$M_{jj} > 1 \text{ TeV}, N_{\text{lepton}}^{\text{cen}} = 1, N_{\text{iets}}^{\text{cen}} = 0, p_T^{j_1} > 600 \text{ GeV}$

Measurments of Vector Boson Fusion With The ATLAS Detector

• Using the m_{jj} distribution on the signal region, the fiducial

- Using the m_{jj} distribution on the signal region, the fiducial EWK Wjj cross-section was measured.
- The primary uncertainties, jet energy scaling and resolution.
- Similar to Zjj, m_{jj} shape correction has been driven for QCD-Wjj contribution in forward-lepton control region, The slopes of the fit were consistent with 0.
- The cross-sections are extracted using a binned likelihood fit on m_{jj} distributions in the signal region.

\sqrt{s}	$\sigma_{ m meas}^{ m fid}$ [fb]	$\sigma_{ m SM}^{ m fid}$ [fb]	Acceptance \mathcal{A}	$\sigma_{ m meas}^{ m inc}$ [fb]
7 TeV	144 ± 23 (stat) ± 23 (exp) ± 13 (th)	144 ± 11	0.053 ± 0.004	2760 ± 670
8 TeV	$159 \pm 10 \text{ (stat) } \pm 17 \text{ (exp) } \pm 20 \text{ (th)}$	198 ± 12	0.058 ± 0.003	2890 ± 510

EWK Wjj Measurement

Differential Measurements

- The differential measurements are only done for 8 TeV.
- Differential measurements are done in all nine fiducial regions.
- EWK differential measurements require $m_{jj} > 1$ TeV
 - $\circ~$ For EWK differential measurements, before unfolding in addition to background, QCD Wjj is also removed.
- <u>The considered observables that are EWK sensitive</u>:
 C_ℓ, C_j, M_{jj}, Δy(j₁, j₂), N^{gap}_{jets}
- The considered observables that are aTGC sensitive: $\circ \ p_T^{j_1}, p_T^{j_j}, \Delta \phi(j_1, j_2)$

Differential EWK cross section

- The over estimation on m_{jj} cannot be seen here.
- Interference effects becomes much more dominant on low $|\Delta Y|$.
- Differential cross section measured for EW-Only Wjj processes in various fiducial regions in agreement with prediction.

Integrated Differential Cross-Sections

Measurement of the Electroweak Wjj, Eur. Phys. J. C (2017) 77:474

Fiducial region

- Integrated cross-sections are also extracted from each fiducial region.
- Each region has good agreement with theory.

Ismet Sıral; 28 Aug 2017

aTGC Results

- Limits on aTGC are set with the fiducial region $\overline{m_{jj} > 1}$ TeV, $N_{\ell}^{\text{cen}} = 1$, $N_{i}^{\text{cen}} = 0$, $p_{T}^{j1} > 600$ GeV.
- 39 Events were predicted and 30 events were observed.
- The aTGC's were modeled using the following effective Lagrangian.
- aTGC limits of 95% CL is set.

$$\begin{split} i\mathcal{L}_{\text{eff}}^{WWW} &= g_{WWW} \{ [g_1^V V^{\mu} (W_{\mu\nu}^- W^{+\nu} - W_{\mu\nu}^+ W^{-\nu}) + K_V W_{\mu}^+ W_{\nu}^- V^{\nu\mu} + \frac{\lambda_V}{m_W^2} V^{\mu\nu} W_{\nu}^{+\rho} W_{\rho\mu}^-] \\ &- [\frac{\tilde{K}_V}{2} W_{\mu}^- W_{\nu}^+ \epsilon^{\mu\nu\rho\sigma} V_{\rho\sigma} + \frac{\tilde{\lambda}_V}{2m_W^2} W_{\rho\mu}^- W_{\nu}^{+\mu} \epsilon^{\nu\rho\alpha\beta} V_{\alpha\beta}] \} \end{split}$$

- To preserve unitarity a form factor is used , $\alpha(q^2) = \frac{\alpha}{(1+q^2/\Lambda^2)^2}$, where α is anomalous coupling of interest.
- Two scales have been used.($\Lambda=4\,\text{TeV},\,\infty$)

aTGC Results

- Limits on aTGC are set with 95% CL.
- Conversion to effective field theory are also available.

Summary

- Understanding of the EWK process is crucial for our understanding and testing of SM.
- Detailed EWK VBF studies have been conducted for 8, 13 TeV Zjj and 7, 8 TeV Wjj.
- Differential cross-sections and aTGC limits are available at 8 TeV studies for both productions.
- Overall good agreement is found between data and predictions.

Backup Slides

Ismet Sıral; 28 Aug 2017

m_{jj} Shape Corrections

Measurement of the Electroweak Zjj at 8 TeV, JHEP 04 (2014) 031

- Control and search regions are designed to be kinematically similar.
- In order to correct the m_{jj} shape mismatch, corrections to Wjj-QCD are extracted in control region and applied to search region.
- First order poly. was used for the data-driven correction.
- The difference between second order poly. and first order poly. are found to be minimal.

Ismet Sıral; 28 Aug 2017

m_{jj} Shape Corrections

- Control and signal regions are designed to be kinematically similar
- In order to correct the m_{jj} shape mismatch, corrections to Wjj-QCD are extracted in control region and applied to search region.
- First order poly. was used for the data-driven correction.
- The effect of slope correction of 1%/TeV is approx 0.1 in μ_{EW} .

