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Higgs pt precision studies

I Increase in statistics at the LHC allows to study Higgs differential distributions in detail.

I Higgs pt can be used shed light on potential BSM contributions. For example

I Gluon-fusion sensitive to various dimension-6 operators in different regions of the pt
spectrum [Grazzini et al., 1612.00283].

I Very competitive constraints on the charm Yukawa at the high-luminosity LHC using pt
distribution [Bishara et al., 1606.09253].

I Constraints on the trilinear Higgs coupling in the V H and VBF modes [Bizon et

al., 1610.05771].
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Fixed-order vs resummed transverse momentum

I In the dominant gluon-fusion mode, fixed-order predictions for H+1 jet available at
NNLO QCD in the EFT (mt →∞) [Boughezal et al., 1504.07922, 1505.03893], [Caola, Melnikov, Schulze,

1508.02684], [Chen et al., 1607.08817]. Quark-mass effects available at LO, top-bottom interference
at NLO [Lindert et al., 1703.03886].

I Higgs pt accurately predicted (∼ 5− 10%) at fixed order in the hard tails pt ∼M , M =
hard scale O(Higgs mass).

I When pt �M , soft/collinear QCD radiation generates large logarithms that spoil
fixed-order perturbation theory:

dσ

dpt
∼

1

pt
αnS lnk(M/pt), k ≤ 2n− 1.

Enhanced logarithmic contributions to be resummed at all orders.

I Logarithmic accuracy usually defined at the level of the logarithm of the cumulative
cross section Σ:

Σ(pt) =

∫ pt

0

dσ

dp′t
dp′t ∼ eα

n
SL

n+1+αnSL
n+αnSL

n−1+αnSL
n−2+...

for LL, NLL, NNLL, N3LL respectively, with L = ln(M/pt).
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Conjugate-space vs direct-space resummation

I Different approaches to resummation of transverse observables, usually performed in
conjugate spaces where they factorise.

I In most of the cases resummation can be performed in direct space: well developed
technology [Banfi, Salam, Zanderighi, 0112156, 0304148, 0407286] for observables V satisfying recursive
infrared and collinear (rIRC) safety.

I Scaling properties of V are the same for any number of soft/collinear emissions.

I Properties unchanged if one adds an infinitely soft/collinear emission: the more
soft/collinear, the less it contributes to the value of the observable.

I Most IRC-safe observables are rIRC-safe, not a severe restriction on the class of
resummable observables.

I Logarithmic structure of general rIRC-safe observables known up to NNLL [Banfi et

al., 1412.2126, 1607.03111]. For rIRC-unsafe observables, structure unknown beyond LL.

I Higgs pt is rIRC-safe (and global, rapidity-independent, inclusive). What is the problem
then?
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Resummation of rIRC-safe observables - sketch

I Contributions to Σ(v) =
∫ v
0
dσ
dV
dV organised in terms a set of unresolved emissions

(softer than some εv), giving rise to a Sudakov radiator, and an ensemble of resolved
emissions k1, ..., kn (harder than εv).

I Analytical manipulations performed on the Sudakov and on the resolved contributions
to the observable, V (ki), in order to only retain contributions up to a given logarithmic
accuracy.

I Usually integrals dominated by V (ki) ∼ v. Functions f(V (ki)) expanded around f(v).
Subsequent terms in the expansion give subleading ln(1/v).

I These steps, that work for ‘standard’ rIRC-safe observables, do not for v = pt: one ends
up with a formula that is singular at a finite value of pt.

I Long-known problem for pt resummation in momentum space [Frixione, Nason, Ridolfi, 9809367]:
at any logarithmic order beyond LL in terms of ln(M/pt), resummation in pt space
cannot be simultaneously free of subleading terms and of spurious singularities.
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Two competing mechanisms at small pt

I Each emission i has small kti (left): ktn < ... < kt2 < kt1 ∼ pt ∼ 0. Sudakov limit,
sensible ln(M/pt) counting, exponential suppression of Σ(pt) at small pt.

I Large azimuthal cancellations (right): ktn < ... < kt2 < kt1� pt ∼ 0. pt → 0 away from
the Sudakov limit, Σ(pt) ∼ p2

t at small pt [Parisi, Petronzio, 1979].

I Power-like suppression from the region kti � pt dominates over the Sudakov mechanism
in the pt → 0 limit.

I Hierarchy in ln(M/pt) is not sensible: neglected effects actually dominate the limit.
Impossible to recover power behaviour at a given order in ln(M/pt).

I Establish a well defined logarithmic counting in momentum space. [Monni, Re, Torrielli,

1604.02191], [Ebert, Tackmann, 1611.08610], [Bizon et al., 1705.09127]
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Traditional solution: b space

I For inclusive observables, vectorial nature of the azimuthal cancellations handled via a
Fourier transfrom [Parisi, Petronzio, 1979], [Collins, Soper, Sterman, 1985], [Bozzi et al., 0508068], see also
[Becher, Neubert, Wilhelm, 1212.2621].

δ(2)(~pt − (~kt1 + ...+ ~ktn)) =

∫
d2~b

4π2
e−i

~b· ~pt
n∏
i=1

ei
~b·~kti ,

d2Σ(pt)

dΦBdpt
=
∑
c1,c2

d|MB |2c1c2
dΦB

∫
b db ptJ0(ptb) fT (b0/b)C

c1;T
N1

(αS(b0/b))HCSS(M)Cc2
N2

(αS(b0/b))f(b0/b)

× exp

{
−

2∑
`=1

∫ M

b0/b

dkt

kt
R′CSS,` (kt)

}
.

I C (coefficient functions) and HCSS (form factor) known up to O(α2
S) [Catani, Grazzini,

1106.4652], [Gehrmann, Luebbert, Yang, 1403.6451].

2∑
`=1

∫ M

b0/b

dkt

kt
R′CSS,` (kt) =

2∑
`=1

∫ M

b0/b

dkt

kt

(
ACSS,`(αS(kt)) ln(M2/k2

t ) +BCSS,`(αS(kt))
)
.

I ACSS and BCSS anomalous dimensions known up to N3LL (but for the four-loop cusp)
[Davies, Stirling, 1984], [de Florian, Grazzini, 0008152], [Becher, Neubert, 1007.4005], [Li, Zhu, 1604.01404].
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A solution in momentum space
I Multiple-emission squared amplitude organised into n-particle-correlated blocks. For

example 2-particle correlated:

= +

( )
+ ...

O(α2
SL

4) O(α2
SL

3)

I Blocks classified (due to rIRC-safety) according to the logarithmic order at which they
contribute. The more correlated, the more logarithmically subleading.

I Introduce a resolution scale εkt1 (as opposed to εpt!). ε is a slicing parameter to be
eventually taken → 0.

I By rIRC safety, blocks with total kti < εkt1 (unresolved) do not contribute significantly
to the observable. Integrated inclusively in d dimensions, they exponentiate and
regularise the virtuals giving rise to the Sudakov:

e
−R(εkt1)

= e
−R(kt1)−ln(1/ε)R′(kt1)−...

I Blocks with total kti > εkt1 (resolved) treated exclusively in 4 dimensions and
parametrised as derivatives of the Sudakov (wrt ln(M/kti)) R

′(kti).
Resolved kti are of the same order as kt1.

I ε-dependence in the resolved cancels against the one in the Sudakov, leaving εp effects.
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A solution in momentum space - comments

I Resolved kti are of the same order of kt1 but not necessarily ∼ pt: all kinematic
configurations are taken into account, without assumptions on the hierarcy between kti
and pt. In particular the phase-space region kti � pt is accounted for.

I By including the contributions from the kti � pt region, the spurious singularities at
finite pt are removed.

I This is also the reason why the b space works.

I Logarithmic counting is defined in terms of ln(M/kti).

I In the Sudakov limit, where the hierarchy in ln(M/pt) makes sense, kti ∼ pt ∼ 0
=⇒ same as resummation of ln(M/pt). Logarithmic accuracy in ln(M/kti) translates
into the same accuracy in ln(M/pt) plus subleading terms.
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Momentum-space resummation at N3LL: equivalence with b space

I Result at N3LL is:

dΣ(v)

dΦB
=

∫
C1

dN1

2πi

∫
C2

dN2

2πi
x−N1

1 x−N2
2

∑
c1,c2

d|MB |2c1c2
dΦB

fTN1
(µ0)Σ̂c1,c2

N1,N2
(v)fN2 (µ0)

Σ̂c1,c2
N1,N2

(v) =
[
Cc1;T
N1

(αs(µ0))H(µR)Cc2
N2

(αs(µ0))
] ∫ M

0

dkt1

kt1

∫ 2π

0

dφ1

2π

× e−R(εkt1) exp

{
−

2∑
`=1

(∫ µ0

εkt1

dkt

kt

αs(kt)

π
ΓN` (αs(kt)) +

∫ µ0

εkt1

dkt

kt
Γ

(C)
N`

(αs(kt))

)}
2∑

`1=1

(
R′`1 (kt1) +

αs(kt1)

π
ΓN`1

(αs(kt1)) + Γ
(C)
N`1

(αs(kt1))

)

×
∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

ε

dζi

ζi

∫ 2π

0

dφi

2π

2∑
`i=1

(
R′`i (kti) +

αs(kti)

π
ΓN`i

(αs(kti)) + Γ
(C)
N`i

(αs(kti))

)
×Θ (v − V ({p̃}, k1, . . . , kn+1)) ,

I ζi = kti/kt1.

I ΓN`i
, ΓCN`i

=

anomalous
dimensions of PDFs
and coefficient
functions.

I Equivalent to b space, up to a resummation-scheme change: using the Θ representation

d2Σ(pt)

dΦBdpt
=
∑
c1,c2

d|MB |2c1c2
dΦB

∫
b db ptJ0(ptb) fT (b0/b)C

c1;T
N1

(αs(b0/b))H(M)Cc2
N2

(αs(b0/b))f(b0/b)

× exp

{
−

2∑
`=1

∫ M

0

dkt

kt
R′` (kt) (1− J0(bkt))

}
,

with (1− J0(bkt)) ' Θ(kt −
b0

b
)+

ζ3

12

∂3

∂ ln(Mb/b0)3
Θ(kt −

b0

b
) + . . . ,

I ζ3 term starts at N3LL, absorbed in a redefinition of A4, B3, and H2, (or C) wrt CSS.
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Momentum-space resummation at N3LL
I Above formula presented in Mellin space only to diagonalise PDF evolution.

I At any logarithmic order only a finite number of DGLAP-evolution steps necessary:
analytic Mellin inversion, dealing only with momentum-space quantities.

I Expand kti around kt1 in the resolved radiation at the desired logarithmic accuracy.

dΣ(v)

dΦB
=

∫
dkt1

kt1

dφ1

2π
∂L

(
−e−R(kt1)LN3LL(kt1)

)∫
dZ[{R′, ki}]Θ (v − V ({p̃}, k1, . . . , kn+1))

+

∫
dkt1

kt1

dφ1

2π
e−R(kt1)

∫
dZ[{R′, ki}]

∫ 1

0

dζs

ζs

dφs

2π

{(
R′(kt1)LNNLL(kt1)− ∂LLNNLL(kt1)

)
×
(
R′′(kt1) ln

1

ζs
+

1

2
R′′′(kt1) ln2 1

ζs

)
−R′(kt1)

(
∂LLNNLL(kt1)− 2

β0

π
α2
s(kt1)P̂ (0) ⊗ LNLL(kt1) ln

1

ζs

)
+
α2
s(kt1)

π2
P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1)

}{
Θ (v − V ({p̃}, k1, . . . , kn+1, ks))−Θ (v − V ({p̃}, k1, . . . , kn+1))

}

+
1

2

∫
dkt1

kt1

dφ1

2π
e−R(kt1)

∫
dZ[{R′, ki}]

∫ 1

0

dζs1

ζs1

dφs1

2π

∫ 1

0

dζs2

ζs2

dφs2

2π
R′(kt1)

×
{
LNLL(kt1)

(
R′′(kt1)

)2
ln

1

ζs1
ln

1

ζs2
− ∂LLNLL(kt1)R′′(kt1)

(
ln

1

ζs1
+ ln

1

ζs2

)

+
α2
s(kt1)

π2
P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1)

}

×
{

Θ (v − V ({p̃}, k1, . . . , kn+1, ks1, ks2))−Θ (v − V ({p̃}, k1, . . . , kn+1, ks1))−

Θ (v − V ({p̃}, k1, . . . , kn+1, ks2)) + Θ (v − V ({p̃}, k1, . . . , kn+1))

}
+O

(
αns ln2n−6 1

v

)
,

I H and C absorbed in L.

I Reproduces correct p2t
scaling at small pt (see

backup).

I Evaluated numerically by

means of fast Monte Carlo

code: RadISH.
∫
dZ[{R′, ki}]

generated as a parton

shower.
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Advantages with respect to b-space solution?

I If it were only for pt, there wouldn’t be a clear advantage with respect to b space

I ... but possibly for the easier interpretation of the dominant dynamics at pt → 0

I ... and for potentially more efficient numerical implementations

I ... and for the possible connections with parton-shower formalisms

I However a solution in momentum space is much less observable-dependent.

I What is learnt for pt can be immediately exported to all other observables of the same
class (global, rapidity-independent, inclusive). Extension to more general rIRC-safe
observables is conceptually known.

I For example, εkt1 is a correct resolution scale for all observables with the same LL as pt.
One can write a generator that computes all of them at the same time (pt, φ

∗ in DY,
pt(j1), ET , ...).

I It gives access to joint resummations at high logarithmic accuracies.
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Matching to fixed order

I Resummation matched to fixed order with a multiplicative scheme
(Σ(pt,ΦB) ≡ dΣ(pt)/dΦB):

ΣMAT(pt,ΦB) = (ΣRES(pt,ΦB))Z
ΣFO(pt,ΦB)

(ΣEXP(pt,ΦB))Z
,

ΣFO(pt,ΦB) = σNkLO
pp→H(ΦB)−

∫
pt

dp′t
dσNk−1LO
pp→Hj (ΦB)

dp′t
,

I k = 2, 3 for fixed-order pt spectrum at NLO or NNLO.

I Z → 1 at small pt and Z → 0 at high pt: resummation turned off asymptotically and
total cross section recovered.

I ΣEXP = expansion of ΣRES up to the relevant order in αS.

I ΣEXP determined as linear combination (with analytic coefficients) of master integrals
evaluated numerically with high precision.

I At NNLO (k = 3), the multiplicative scheme recovers constant terms of O(α3
S).
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Phenomenological results (EFT)

RadISH, 13 TeV, mH = 125 GeV

µR = µF = mH, Q = mH/2

PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations
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Figure 2. Comparison between two different prescriptions for the resummation-scale-variation range, as
described in the text. The comparison is shown both at the resummation level (left) and with a matching
to NLO (right).

of the N3LL correction on the central value of the distribution is about 10 � 15% for pt < 40 GeV
and it is partly driven by the O(↵2

s) coefficient functions and virtual corrections to the form factor
that are not included in the NNLL result. The inclusion of the N3LL corrections also leads to a
reduction in the scale uncertainty of the resummed prediction compared to the NNLL result.12

RadISH, 13 TeV, mH = 125 GeV

µR = µF = mH, Q = mH/2

PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations (x 3/2)

1
/σ

 d
σ

/d
 p

tH
 [
1
/G

e
V

]

NNLL

N3LL

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

ra
tio

 t
o
 N

3
L
L

pt
H [GeV]

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3

 5  10  15  20  25  30  35  40

RadISH, 13 TeV, mH = 125 GeV

µR = µF = mH, Q = mH/2

PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations (x 3/2)

1
/σ

 d
σ

/d
 p

tH
 [
1
/G

e
V

]

NNLL+NLO

N3LL+NLO

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

ra
tio

 t
o
 c

e
n
tr

a
l

pt
H [GeV]

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3

 20  40  60  80  100  120  140

Figure 3. Left: comparison between the resummed distributions at N3LL and NNLL; the lower panel
shows the ratio of the two distributions. Right: comparison between the matched N3LL+NLO and the
NNLL+NLO predictions for the inclusive Higgs spectrum; the lower panel shows the ratio of each distribu-
tion to its central value.

The right plot of Figure 3 shows the matching of the NNLL and N3LL predictions to NLO. We
observe that at the matched level, the N3LL corrections amount to ⇠ 10% around the peak of the
spectrum, and they get slightly larger for smaller pt values (. 10 GeV). A substantial reduction of
the total scale uncertainty is observed for pt . 10 GeV.

12An identical reduction in size is observed when varying Q by a factor of two around its central value.

– 38 –

I Left: pure resummation at N3LL and NNLL.

I Pure N3LL correction amounts to 10-15%, in part due to inclusion of constant O(α2
S)

coefficient functions and form factor, absent at NNLL.

I Reduction in theoretical uncertainty (µR, µF , Q) compared to NNLL.

I Right: NLO matching (i.e. using σNNLO
pp→H and σNLO

pp→Hj).

I N3LL+NLO correction is O(10%) around the peak, and somewhat larger at smaller pt.

I Perturbative uncertainty halved below 10 GeV, unchanged elsewhere.
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Phenomenological results (EFT)

We notice that, at the matched level, the impact of the N3LL corrections is reduced with
respect to the sole resummation shown in the left plot of Figure 3. This is to a good extent
due to the matching scheme that we chose here. Indeed, in a multiplicative scheme we include the
O(↵2

s) constant terms already at NNLL, although they are formally of higher-order accuracy. While
these terms enter at N3LL, they are numerically sizeable and therefore their inclusion reduces the
difference between the N3LL+NLO and the NNLL+NLO predictions.

To conclude this section, in Figure 4 we report the N3LL+NNLO prediction for the normalised
distribution. The latter is compared both to NNLL+NNLO and to the pure NNLO result. When
matched to NNLO, the N3LL corrections give rise to a few-percent shift of the central value with
respect to the NNLL+NNLO prediction around the peak of the distributions, while they have
a somewhat larger effect for pt . 10 GeV. We recall that some of the N3LL effects are already
included in the NNLL+NNLO prediction by means of the multiplicative matching scheme that
we adopt here. As a consequence, this reduces the difference between the N3LL+NNLO and the
NNLL+NNLO curves. We also observe that the matched N3LL and NNLL predictions are only
moderately different in their theoretical-uncertainty bands. While this is of course expected in the
hard region of the spectrum, we point out that, in the region pt . 30 GeV, the latter feature is due
(and increasingly so at smaller pt) to numerical instabilities of the fixed-order runs with one of the
scales (µR or µF ) set to mH/2. As we already observed at NLO, it is indeed necessary to have
stable fixed-order predictions for pt < 10 GeV in order to benefit from the uncertainty reduction
due to the higher-order resummation. We leave this for future work.

RadISH, 13 TeV, mH = 125 GeV

µR = µF = mH, Q = mH/2

PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations (x 3/2)

Fixed order from PRL 115 (2015) 082003
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Figure 4. Comparison among the matched normalised distributions at N3LL+NNLO, NNLL+NNLO, and
NNLO. The uncertainties are obtained as described in the text.

5 Conclusions

In this article we presented a formulation of the momentum-space resummation for global, recursive
infrared and collinear safe observables that vanish far from the Sudakov limit because of kinematic
cancellations implicit in the observable’s defintion. In particular, we studied the class of inclusive
observables that do not depend on the rapidity of the QCD radiation. Members of this class are,
among others, the transverse momentum of a heavy colour singlet and the �⇤ observable in Drell-
Yan pair production. We obtained an all-order formula that is valid for all observables belonging

– 39 –

I NNLO matching (i.e. using σN3LO
pp→H and

σNNLO
pp→Hj).

I N3LO pp→ H cross section from
[Anastasiou et al., 1503.06056]. NNLO pp→ Hj
cross section from [Boughezal et al., 1504.07922]

I N3LL+NNLO corrections are a few percent around the peak, and get more sizeable
O(10%) below 10 GeV.

I N3LL+NNLO display only moderate reduction in uncertainty with respect to
NNLL+NNLO. Need for very stable NNLO distributions below 10 GeV to appreciate
reduction / make a quantitative statement.

I Quark-mass corrections necessary to improve further.
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Conclusions

I New formalism for pt resummation up to N3LL in momentum space.

I Presented for pt but valid for all inclusive, rapidity-independent, global rIRC-safe
observables with (or without) azimuthal cancellations away from the Sudakov limit.

I Extension to more general rIRC-safe observables possible and under study.

I Formalism allows an efficient implementation in a computer code. RadISH can process
any colour singlet with arbitrary cuts at Born level. To be publicly released soon.

I Higgs-pt phenomenology (EFT)

I N3LL+NLO corrects NNLL+NLO by O(10%) around and below the peak. Uncertainty
nearly halved below 10 GeV.

I N3LL+NNLO corrects NNLL+NNLO by few percent at the peak, and O(10%) below.
Moderate reduction in theo. uncertainty, now below ∼ 10% in the whole spectrum.

Thank you for your attention
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Backup: reproducing the Σ(pt) ∼ p2
t scaling at pt → 0

I Computation at NLL (for DY and nf = 4) gives exactly the original Parisi-Petronzio
result [Parisi, Petronzio, 1979]:

d2Σ(pt)

dptdΦB
= 4

dσB

dΦB
pt

∫ M

ΛQCD

dkt1

k3
t1

e−R(kt1) ' 2
dσB

dΦB
pt

(
Λ2

QCD

M2

) 16
25

ln 41
16

.

I As now higher logarithmic terms (up to N3LL) are under control, one can systematically
improve the perturbative prediction of the coefficient in front of pt (non-perturbative
effects – of the same order – not considered in this analysis).

I Each new subleading-logarithmic order induces a relative O(αS) correction with respect
to the previous order: scaling L ∼ 1/αS.
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Backup: NLL result and the finiteness in four dimensions

dΣ(pt)

dΦB
=

∫ M

0

dkt1

kt1

∫ 2π

0

dφ1

2π
∂L

(
−e−R

′(kt1)LNLL(kt1)
)
×

× εR
′(kt1)

∞∑
n=0

1

n!

(
n+1∏
i=2

∫ kt1

εkt1

dkti

kti

∫ 2π

0

dφi

2π
R′(kt1)

)
Θ(pt − |~kt1 + ...+ ~kt(n+1)|)︸ ︷︷ ︸

≡
∫
dZ[{R′,ki}]Θ(pt−|~kt1+...+~kt(n+1)|)

.

I L = ln(M/kt1); luminosity LNLL(kt1) =
∑
c1,c2

d|MB |2c1c2
dΦB

fc1 (x1, kt1)fc2 (x2, kt1).

I
∫
dZ[{R′, ki}]Θ finite as ε→ 0:

εR
′(kt1) = 1−R′(kt1) ln(1/ε) + ... = 1−

∫ kt1

εkt1

R′(kt1) + ...,

∫
dZ[{R′, ki}]Θ =

[
1−

∫ kt1

εkt1

R′(kt1) + ...

] [
Θ(pt − |~kt1|) +

∫ kt1

εkt1

R′(kt1)Θ(pt − |~kt1 + ~kt2|) + ...

]
= Θ(pt − |~kt1|) +

∫ kt1

0︸ ︷︷ ︸
ε→0

R′(kt1)
[
Θ(pt − |~kt1 + ~kt2|)−Θ(pt − |~kt1|)

]
︸ ︷︷ ︸

finite: real-virtual cancellation

+...

I Evaluated with Monte Carlo techniques:
∫
dZ[{R′, ki}] is generated as a parton shower

over secondary emissions.
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Backup: generating secondary radiation as a parton shower

I Secondary radiation:

dZ[{R′, ki}] =
∞∑
n=0

1

n!

(
n+1∏
i=2

∫ 2π

0

dφi

2π

∫ kt1

εkt1

dkti

kti
R′(kt1)

)
εR
′(kt1)

=
∞∑
n=0

(
n+1∏
i=2

∫ 2π

0

dφi

2π

∫ kt(i−1)

εkt1

dkti

kti
R′(kt1)

)
εR
′(kt1),

εR
′(kt1) = e−R

′(kt1) ln 1/ε =

n+2∏
i=2

e−R
′(kt1) ln kt(i−1)/kti ,

with kt(n+2) = εkt1.

I Each secondary emissions has differential probability

dwi =
dφi

2π

dkti

kti
R′(kt1)e−R

′(kt1) ln kt(i−1)/kti =
dφi

2π
d
(
e−R

′(kt1) ln kt(i−1)/kti
)
.

I kt(i−1) ≥ kti. Scale kti extracted by solving e−R
′(kt1) ln kt(i−1)/kti = r, with r random

number extracted uniformly in [0, 1]. Shower ordered in kti.

I Extract φi randomly in [0, 2π].
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Backup: checks

I b-space resummation reproduced analytically.

I Correct small-pt scaling reproduced analytically.

I Numerical checks down to very low pt against b-space codes at the resummed level (HqT
[Bozzi et al., 0302104, 0508068], [de Florian et al., 1109.2109 , CuTe [Becher et al., 1109.6027, 1212.2621]).

I Expansion of the momentum-space formula up to O(α3
S) checked against b space.

I Expansion checked against MCFM [Campbell, Ellis, 9905386], [Campbell et al., 1105.0020, 1503.06182] up to
O(α2

S).
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