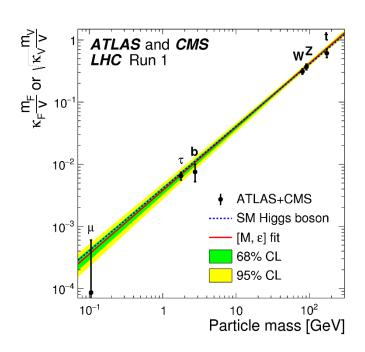
Top-bottom interference effects in Higgs plus jet production at the LHC

Chris Wever (Karlsruhe Institute of Technology)

In collaboration with: J. Lindert, K. Melnikov, L. Tancredi

Introduction

- Studies of Higgs boson properties are a crucial part of LHC physics program
- One important focus is the study of <u>Higgs couplings</u> to other particles
- After high-luminosity run it is expected that major Higgs couplings can be constrained to few percent level
- Higgs couplings to light generation quarks practically unconstrained
- Current bounds from global fits to inclusive Higgs production cross section and exclusive Higgs decays



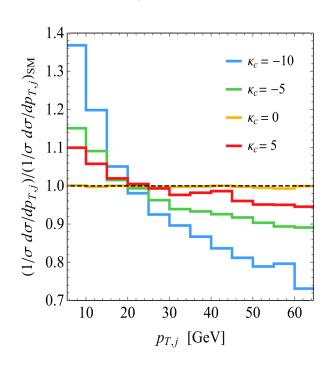
[arXiv:1606.02266]

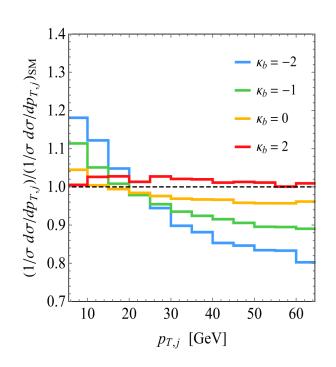
Introduction: H + j production

2

- Non-trivial Higgs transverse momentum $(p_{T,H})$ distribution generated when extra jet is radiated: H+j
- Shape of p_{TH} distribution may put stronger constraints on light-quark Yukawa couplings

[Bishara, Monni et al '16; Soreg et al '161





$$\kappa_j = y_j / y_{j,SM}$$

Bounds expected from HL-LHC

$$\kappa_c \in [-0.6, 3.0] \qquad \kappa_b \in [0.7, 1.6]$$

$$\kappa_b \in [0.7, 1.6]$$

[Bishara, Monni et al '16]

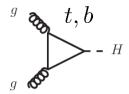
Reliable theoretical predictions for H + i differential cross section required

Bottom corrections

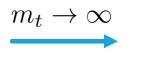
3

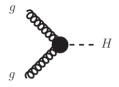
- QCD corrections to Higgs production known to be large, about hundred percent at NLO
- Inclusive production cross section at N3LO to few percent accuracy, using a point-like, top-loop induced ggH coupling (HEFT)

 [Anastasiou, Duhr, Furlan, Mistlberger et al'16]



Top loop dominant:





- At $p_{T,H}$ larger than twice the bottom mass, the ggH coupling is not point-like
- Bottom corrections naively suppressed compared to top by factor

$$y_t y_b m_b/m_h \sim y_t m_b^2/m_h^2 \sim 10^{-3}$$

 Bottom amplitude <u>contains large Sudakov-like</u> <u>logarithms</u>, <u>suppressed actually by</u>

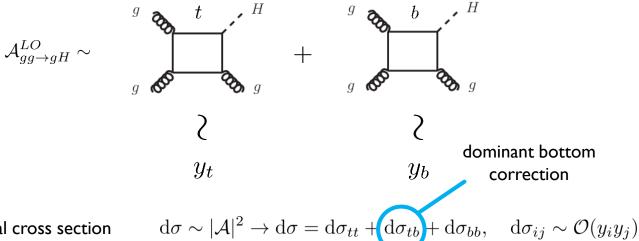
$$m_b^2/m_h^2 \left(\log^2(m_h^2/m_b^2), \log^2(p_\perp^2/m_b^2)\right) \sim 10^{-1}$$

In fact, LO bottom contribution ~ 5-10% of LO top contribution at $~p_{\perp} \in [10,40] ~{
m GeV}$

Top-bottom interference

4

Higgs plus jet production at LHC proceeds largely through quark loops

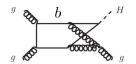


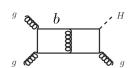
Differential cross section

$$y_i \sim m_i$$
 $m_b = 4.5 \,\mathrm{GeV}$ $m_t = 173 \,\mathrm{GeV}$

- NLO correction to $d\sigma_{th}$ may be large, as observed also for top contribution ~ 40%, and relevant for reaching percent accuracy in differential cross section
- Two-loop adds extra factor of

$$\log^2(p_{\perp}^2/m_b^2), \log^2(m_h^2/m_b^2)$$



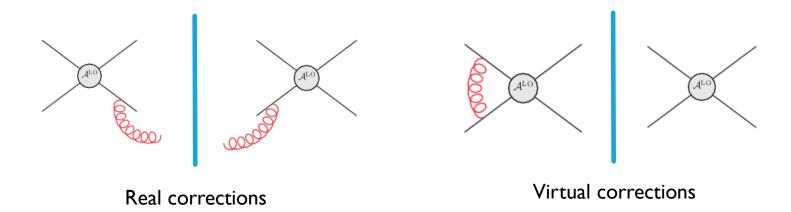


Calculation at NLO

Karlsrulser Institut für Technolog

5

Real (2 to 3) and virtual (2 to 2) contributions need to be combined, very well understood at NLO



- Peculiarity in this case: <u>LO is already 1-loop</u>
- Real corrections receive contributions from kinematical regions where one parton become soft or collinear to another parton, so a <u>numerically stable</u> approach required
- Real corrections computed in Openloops with exact top, bottom mass dependence

[Cascioli, Lindert, Pozzorini et al '12-17; Denner et al '03-'17]

One new ingredient are two-loop virtual corrections

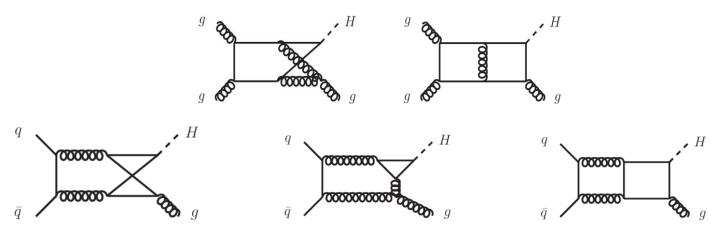
Virtual corrections

INTERPOLATION OF THE PROPERTY OF THE PROPERTY

6

$$d\sigma_{tb}^{\text{virt}} \sim \text{Re}\left[\frac{\alpha_s}{2\pi} (A_t^{\text{NLO}} A_b^{\text{LO}*} + A_t^{\text{LO}} A_b^{\text{NLO}*})\right]$$

Typical two-loop Feynman diagrams are:



Exact mass dependence in two-loop Feynman Integrals currently out of reach

[planar diagrams: Bonciani et al '16]

Scale hierarchy:
$$m_b \ll p_{\perp}, m_h \ll m_t$$

Top:

Infinite top mass limit, well known how to be treated, expanded systematically via effective Lagrangian (HEFT)

Bottom:

Small bottom mass expansion is different because loop is resolved

new methods required

Two-loop bottom amplitudes expanded in bottom mass with differential equation method

Computing virtual bottom amplitudes

Karlsruher Institut für Technologis

7

- Virtual amplitude made up of <u>complicated two-loop tensor Feynman integrals</u>
- Powerful tool for scalar integrals: <u>IBP reduction</u> to minimal set of Master Integrals (MI)

project amplitude onto form factors

$$\mathcal{A}_{H\to ggg}\left(p_{1}^{a_{1}},p_{2}^{a_{2}},p_{3}^{a_{3}}\right)=f^{a_{1}a_{2}a_{3}}\;\epsilon_{1}^{\mu}\;\epsilon_{2}^{\nu}\;\epsilon_{3}^{\rho}\;\left(F_{1}\;g^{\mu\nu}\;p_{2}^{\rho}+F_{2}\;g^{\mu\rho}\;p_{1}^{\nu}+F_{3}\;g^{\nu\rho}\;p_{3}^{\mu}+F_{4}\;p_{3}^{\mu}p_{1}^{\nu}p_{2}^{\rho}\right)$$

• Form factors F_i expressed in terms of <u>scalar integrals</u>

Three families flashing by

$$\mathcal{I}_{\text{top}}(a_1, a_2, ..., a_8, a_9) = \int \frac{\mathfrak{D}^d k \mathfrak{D}^d l}{[1]^{a_1} [2]^{a_2} [3]^{a_3} [4]^{a_4} [5]^{a_5} [6]^{a_6} [7]^{a_7} [8]^{a_8} [9]^{a_9}}$$

Prop.	Topology PL1	Topology PL2	Topology NPL
[1]	k^2	$k^2 - m_b^2$	$k^2 - m_b^2$
[2]	$(k-p_1)^2$	$(k-p_1)^2 - m_b^2$	$(k+p_1)^2-m_b^2$
[3]	$(k-p_1-p_2)^2$	$(k-p_1-p_2)^2-m_b^2$	$(k-p_2-p_3)^2-m_b^2$
[4]	$(k-p_1-p_2-p_3)^2$	$(k-p_1-p_2-p_3)^2-m_b^2$	$l^2 - m_b^2$
[5]	$l^2 - m_b^2$	$l^2 - m_b^2$	$(l+p_1)^2 - m_b^2$
[6]	$(l-p_1)^2 - m_b^2$	$(l-p_1)^2 - m_b^2$	$(l-p_3)^2-m_b^2$
[7]	$(l-p_1-p_2)^2-m_b^2$	$ (l-p_1-p_2)^2 - m_b^2 $	$(k-l)^2$
[8]	$(l-p_1-p_2-p_3)^2-m_b^2$	$ (l-p_1-p_2-p_3)^2-m_b^2 $	$(k-l-p_2)^2$
[9]	$(k-l)^2 - m_b^2$	$(k-l)^2$	$(k-l-p_2-p_3)^2$

Computing virtual bottom amplitudes

Karisruher Institut für Technologie

7

- Virtual amplitude made up of <u>complicated two-loop tensor Feynman integrals</u>
- Powerful tool for scalar integrals: <u>IBP reduction</u> to minimal set of Master Integrals (MI)

project amplitude onto form factors

$$\mathcal{A}_{H\to ggg}\left(p_{1}^{a_{1}},p_{2}^{a_{2}},p_{3}^{a_{3}}\right)=f^{a_{1}a_{2}a_{3}}\,\,\epsilon_{1}^{\mu}\,\epsilon_{2}^{\nu}\,\epsilon_{3}^{\rho}\,\left(F_{1}\,g^{\mu\nu}\,p_{2}^{\rho}+F_{2}\,g^{\mu\rho}\,p_{1}^{\nu}+F_{3}\,g^{\nu\rho}\,p_{3}^{\mu}+F_{4}\,p_{3}^{\mu}p_{1}^{\nu}p_{2}^{\rho}\right)$$

- Form factors F_i expressed in terms of <u>scalar integrals</u>
- Integration by parts (IBP) identities $\int \left(\prod_i d^d k_i\right) \frac{\partial}{\partial k_j^\mu} \left(v^\mu I\right) = \text{Boundary term} \stackrel{DR}{=} 0$
- Reduce to set of MI is very difficult, naïve reduction with public codes failed
- Performed in steps: top topology to subtopology reduction with Form+Reduze, then FIRE

$$\mathcal{I}_{a_1 \cdots a_n}(s) = \sum_{\substack{(b_1 \cdots b_n) \in \text{Master Integrals}}} \text{Rational}_{a_1 \cdots a_n}^{b_1 \cdots b_n}(s, d) \text{MI}_{b_1 \cdots b_n}(s)$$

8

System of partial differential equations (**DE**) in m_b, s, t, m_h^2 with IBP relations

$$\frac{\partial}{\partial \tilde{s}_k} \vec{\mathcal{I}}^{MI}(\tilde{s}, \epsilon) \stackrel{\text{IBP}}{=} \overline{\overline{M}}_k(\tilde{s}, \epsilon) . \vec{\mathcal{I}}^{MI}(\tilde{s}, \epsilon)$$

• Interested in m_h expansion of Master integrals I^{MI}

Step I: solve DE in m_b

• Solve m_b DE with following ansatz

$$\mathcal{I}_i^{MI}(m_b^2, s, t, m_h^2, \epsilon) = \sum_{ijkn} c_{ijkn}(s, t, m_h^2, \epsilon) \left(\frac{m_b^2}{m_h^2}\right)^{j-k\epsilon} \log^n \left(\frac{m_b^2}{m_h^2}\right)$$

- Plug into m_b DE and get constraints on coefficients c_{ijkn}
- c_{i000} is $m_b=0$ solution (hard region) and has been computed before

MI with DE method for small m_b (2/2)

9

$$\mathcal{I}_i^{MI}(m_b^2,s,t,m_h^2,\epsilon) = \sum_{ijkn} c_{ijkn}(s,t,m_h^2,\epsilon) \, \left(\frac{m_b^2}{m_h^2}\right)^{j-k\epsilon} \, \log^n \left(\frac{m_b^2}{m_h^2}\right)^{j-k\epsilon} \, \log^$$

Step 2: solve s, t, m_h^2 DE for $c_{ijkn}(s, t, m_h^2)$

- Solution expressed in extensions of usual polylogarithms: Goncharov Polylogarithms
- After solving DE for unknown c_{ijkn} , we are left with <u>unknown boundary constants</u> that only depend on ε

Step 3: fix ε dependence

- Determination of most boundary constants in ε by <u>imposing that unphysical singularities in solution</u> vanish
- Other constants in ε fixed by matching solution of DE to Master integrals computed via various methods (Mellin-Barnes, expansion by regions, numerical fits) in a specific point of s, t, m_h^2

Step 4: numerical checks with **FIESTA**

Numerical setup

10

[Lindert, Melnikov, Tancredi, CW '17]

- LHC 13 TeV
- PDF set and associated strong coupling constant: NNPDF3.0_lo for LO and NNPDF3.0_nlo for NLO
- Central scale is dynamical:

$$\mu_r = \mu_f = \mu_0 = H_T/2, \quad H_T = \sqrt{m_H^2 + p_\perp^2} + \sum_j p_{\perp,j}$$
 $m_H = 125 \,\text{GeV}, \quad m_t = 173.2 \,\text{GeV}$

Theory uncertainties considered

- Scale variation: $\mu = \{1/2,2\} * \mu_0$
- Large ambiguity in bottom mass scheme: appropriate renormalization scheme for m_b from Yukawa coupling is MSbar scheme at $\mu \sim m_h$, while scheme for m_b from helicity flip might require on-shell bottom mass scheme instead. Two bottom mass schemes considered:

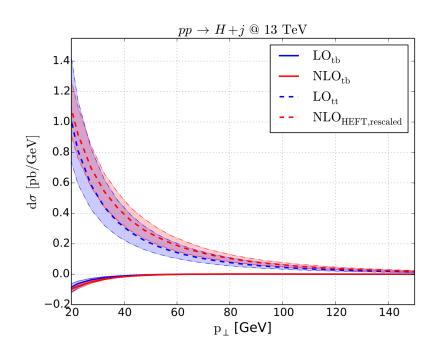
$$m_b^{\text{OS}} = 4.75\,\text{GeV}$$

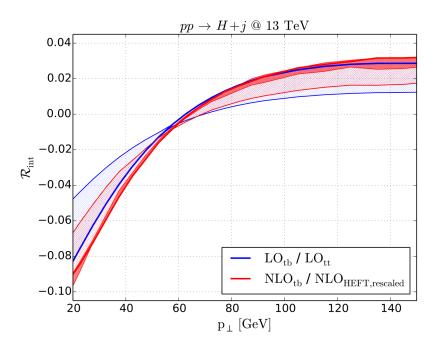
$$m_b^{\overline{\text{MS}}}(\mu = 100) = 3.07\,\text{GeV}$$

Higgs transverse momentum distribution

П

[Lindert, Melnikov, Tancredi, CW '17]



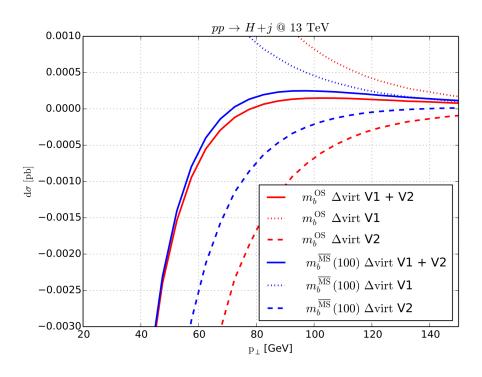


- Top-bottom interference at $p_{T,H}$ =30 GeV: -6% at LO and -7% at NLO
- Large relative corrections to top-bottom interference ~ relative corrections to top-top ~ 40%
- Large mass renormalization-scheme ambiguity
- At small $p_{T,H}$ the ambiguity is reduced by a factor of two at NLO; less pronounced at larger $p_{T,H}$

VI:NLO(t)xLO(b) vs V2:LO(t)xNLO(b)

12

[Lindert, Melnikov, Tancredi, CW '17]



$$d\sigma_{tb}^{\text{virt}} \sim \text{Re}\left[A_t^{\text{LO}} A_b^{\text{LO}*} + \frac{\alpha_s}{2\pi} (A_t^{\text{NLO}} A_b^{\text{LO}*} + A_t^{\text{LO}} A_b^{\text{NLO}*})\right]$$

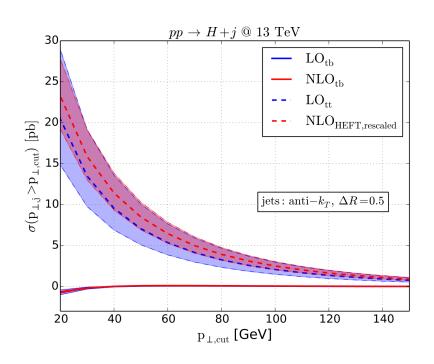
- Two contributions enter with opposite signs
- V2 is dominant at low $p_{T,H} \sim 20\text{-}50$ GeV which reduces mass scheme ambiguity
- At large $p_{T,H} \vee 1 \sim \vee 2$ and $\vee 1$ represents LO bottom mass scheme ambiguity

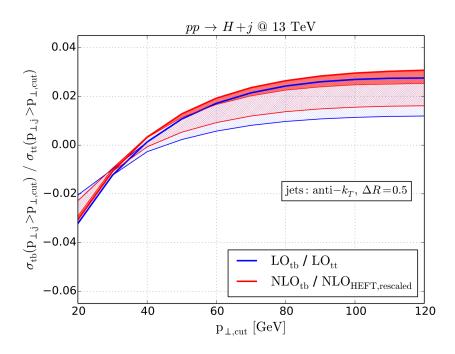
Total Higgs plus jet cross section

13

[Lindert, Melnikov, Tancredi, CW '17]

• Total integrated cross section as function of threshold on jet $p_{T,i}$





$$\sigma_{tb}/\sigma_{tt}(p_{T,j} > 20, 30, 40, 50)_{LO} = -3.2, -1.2, +0.1, 1.1\%$$

 $\sigma_{tb}/\sigma_{tt}(p_{T,j} > 20, 30, 40, 50)_{NLO} = -3.1, -1.1, +0.3, 1.3\%$

- Total integrated NLO top-bottom interference contributes [-3%, 3%] of NLO top-top contribution
- Strong dependence on jet $p_{T,j}$ cut

Summary

14

- Fully differential NLO QCD corrections to top-bottom interference first time computed
- Two-loop integrals computed at first order in bottom mass expansion with DE method
- NLO bottom contribution ~ [-10, -4] % of NLO top contribution at lower range of Higgs $p_{T,H}$
- Large relative NLO corrections to top-bottom interference similar to pure top NLO corrections \sim 40% for Higgs $p_{T,H}$ and rapidity distributions
- On-shell vs MSbar bottom mass: large renormalization scheme ambiguity. Reduced at small $p_{T,H}\sim$ 20-40 GeV, but unchanged at larger $p_{T,H}\sim$ 60-100 GeV

Outlook

Combine various contributions to get best H + j prediction:

- Low $p_{T,H}$ -resummation
- NNLO HEFT corrections
- NLO top-bottom interference

[Grazzini et al '13; Banfi et al '14,16; Bagnaschi et al '15]

[Boughezal et al '14,15; Gehrmann et al '15,16]

[Lindert et al '17]

Backup slides

IBP reduction

15

[Melnikov, Tancredi, CW '16-'17]

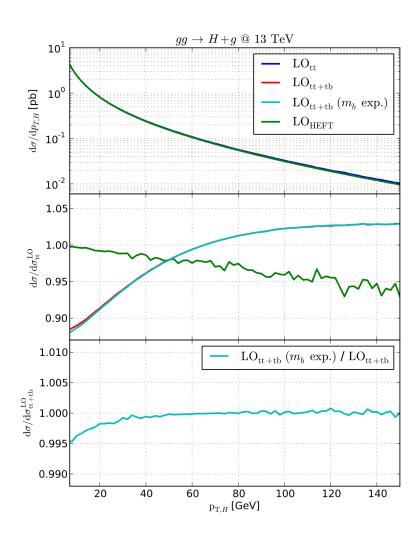
IBP reduction to Master Integrals

$$\mathcal{I}_{a_1 \cdots a_n}(s) = \sum_{\substack{(b_1 \cdots b_n) \in \text{Master Integrals}}} \text{Rational}_{a_1 \cdots a_n}^{b_1 \cdots b_n}(s, d) \text{MI}_{b_1 \cdots b_n}(s)$$

- Reduction very non-trivial: we were not able to reduce top non-planar integrals with t=7 denominators with FIRE5/Reduze
- Reduction fails because coefficients multiplying MI become too large to simplify ~ hundreds of Mb of text
- Reduction for complicated t=7 non-planar integrals performed in two steps:
 - I) FORM code reduction:

$$\mathcal{I}_{t=7}^{\text{NPL}} = \sum c_i \text{MI}_{t=7}^i + \sum d_i \mathcal{I}_{t=6}^i$$

- 2) Plug reduced integrals into amplitude, expand coefficients c_i , d_i in m_b
- 3) Reduce with FIRE/Reduze: t=6 denominator integrals $\mathcal{I}_{t=6}$
- Exact m_b dependence kept at intermediate stages. Algorithm for solving IBP identities directly expanded in small parameter is still an open problem
- Expansion in m_b occurs at last step: solving with Master integrals with differential equation method



How useful is m_b expansion?

17

- NLO amplitudes require computing 2-loop Feynman integrals with massive quark loop
- If these integral are computed exactly in quark mass, results in <u>very complicated functions</u>

$$\log \left(x_3x_1^2 - x_1^2 + x_2x_1 - 4x_3x_1 + R_1(x_1)R_2(x_1)R_7(x)\right) \,, \\ \log \left(-x_2^2 + x_1x_2 - x_1x_3x_2 + 2x_3x_2 + 2x_1x_3 + R_1(x_2)R_2(x_2)R_7(x)\right) \,, \\ \log \left(-x_3^2x_1^2 + 3x_3x_1^2 + 4x_3^2x_1 - 4x_2x_3x_1 + R_1(x_3)R_5(x)R_6(x)x_1\right) \,, \\ \log \left(x_3R_1(x_2)R_2(x_2) + x_2R_1(x_3)R_2(x_3)\right) \,, \\ \log \left(x_1R_1(x_2)R_2(x_2) + x_2R_1(x_1)R_2(x_1)\right) \,, \\ \log \left(x_1R_1(x_3)R_2(x_3) - R_1(x_1)R_1(x_3)R_5(x)\right) \,, \\ \log \left(x_3R_1(x_1)R_2(x_1) - R_1(x_1)R_1(x_3)R_5(x)\right) \,, \\ \log \left(-x_2R_1(x_1)R_2(x_1) + x_3R_1(x_1)R_2(x_1) + x_1R_3(x_3)R_4(x_3)\right) \,, \\ \log \left(-x_2R_1(x_2)R_2(x_2) + x_3R_1(x_2)R_2(x_2) + x_2R_3(x_3)R_4(x_3)\right) \,, \\ \log \left(-x_2R_1(x_3)R_2(x_3) + x_1R_1(x_3)R_2(x_3) + x_3R_3(x_1)R_4(x_1)\right) \,, \\ \log \left(-x_2R_1(x_2)R_2(x_2) + x_1R_1(x_2)R_2(x_2) + x_2R_3(x_1)R_4(x_1)\right) \,, \\ \log \left(-x_2^2x_1^2 + 3x_3x_1^2 + 4x_3^2x_1 - 3x_2x_3x_1 + R_1(x_1)R_1(x_3)R_5(x)R_7(x)\right) \,, \\ \log \left(x_2R_1(x_1)R_1(x_3)R_5(x) - x_1x_3R_1(x_2)R_2(x_2)\right) \,, \\ \log \left(-x_2x_3 + x_1x_3 + R_1(x_2)R_2(x_2)x_3 - R_1(x_1)R_1(x_3)R_5(x)\right) \,.$$

[planar diagrams: Bonciani et al '16]

$$\begin{split} R_1(x_1) &= \sqrt{-x_1} \,,\, R_1(x_3) = \sqrt{-x_3} \,,\, R_1(x_2) = \sqrt{-x_2} \,,\\ R_2(x_1) &= \sqrt{4-x_1} \,,\, R_2(x_3) = \sqrt{4-x_3} \,,\, R_2(x_2) = \sqrt{4-x_2} \,,\\ R_3(x_1) &= \sqrt{x_2-x_1} \,,\, R_3(x_3) = \sqrt{x_2-x_3} \,,\\ R_4(x_1) &= \sqrt{x_2-x_1-4} \,,\, R_4(x_3) = \sqrt{x_2-x_3-4} \,,\\ R_5(x) &= \sqrt{4x_2+x_1x_3-4(x_1+x_3)} \,,\\ R_6(x) &= \sqrt{2x_3(-2x_2+x_1+2x_3)-x_1x_3^2-x_1} \,,\\ R_7(x) &= \sqrt{2x_1x_3(x_2-x_1)+(x_2-x_1)^2+(x_1-4)x_1x_3^2} \,. \end{split}$$

- Starting from weight three not possible to express in terms of usual GPL's anymore
- <u>Expanding</u> in small bottom quark mass results in simple <u>2-dimensional harmonic polylogs</u>

Real corrections with Openloops

18

Channels for real contribution to Higgs plus jet at NLO

$$gg \to Hgg, gg \to Hq\bar{q}, qg \to Hqg, q\bar{q} \to Hgg, \cdots$$

- Receives contributions from kinematical regions where one parton become soft or collinear to another parton
- This requires a delicate approach of these regions in phase space integral
- Openloops algorithm is publicly available program which is capable of dealing with these singular regions in a numerically stable way
- Crucial ingredient is tensor integral reduction performed via expansions in small Gram determinants: Collier

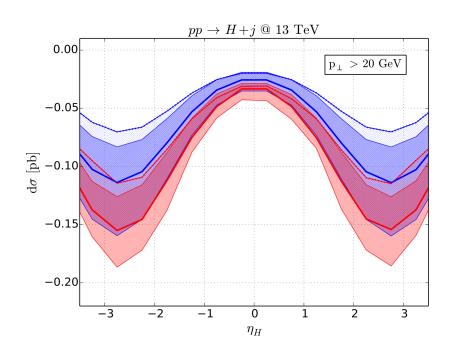
[Cascioli et al '12, Denner et al '03-'17]

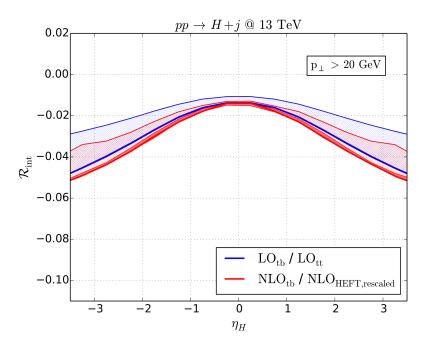
 Exact top and bottom mass dependence kept throughout for both top-top and top-bottom contribution to differential cross section

Higgs pseudo-rapidity distribution

19

[Lindert, Melnikov, Tancredi, CW '17]

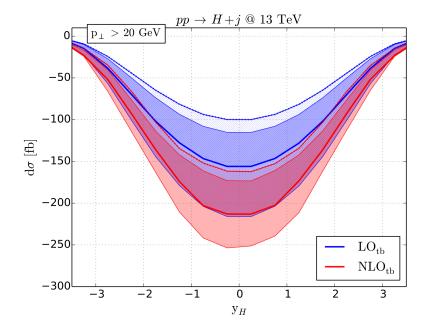


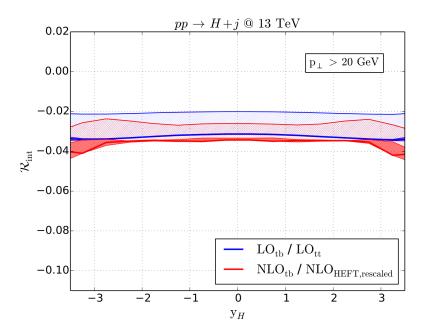


- Relative corrections to top-bottom interference ~ relative corrections to top-top
- ullet At central rapidity (dominated by large $p_{T,H}$) mass scheme ambiguity similar between LO and NLO
- ullet At larger absolute rapidity (dominated by small $p_{T,H}$) the mass scheme variation band is smaller for NLO

Higgs rapidity distribution

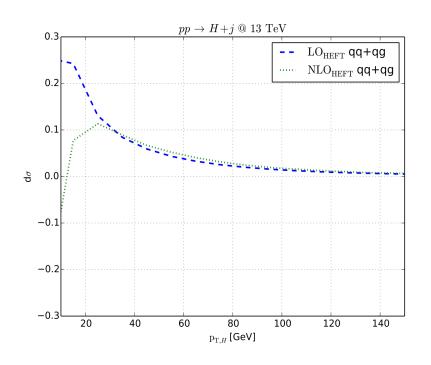
20

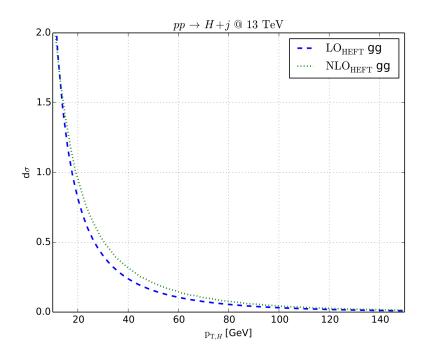




Channel contribution: tt

21

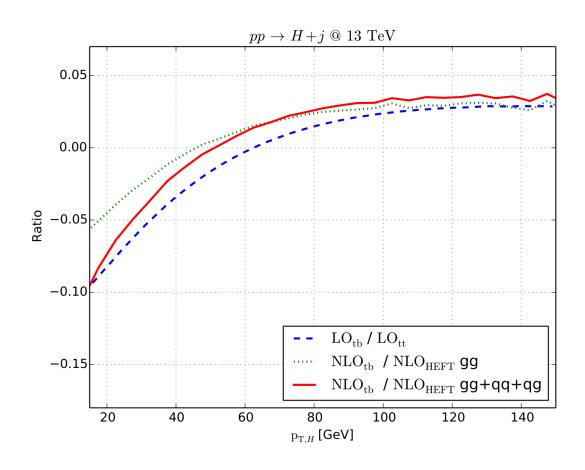




gg fusion channel dominates

Channel contribution: tb

22



gg fusion channel dominates