# The top-quark mass: uncertainties due to *b*-quark fragmentation

Gennaro Corcella

INFN - Laboratori Nazionali di Frascati

- 1. Introduction
- 2. Resummed calculations and Monte Carlo codes for *b*-fragmentation in top events
- 3. Sensitivity of top mass to shower and hadronization parameters
- 4. Conclusions

Frascati workshop on 'Top mass: challenges in definition and determination',
https://agenda.infn.it/conferenceDisplay.py?confld=9202
TOP 2015 and 2016 workshops: http://top2015.infn.it/, https://indico.cern.ch/event/486433/
G.C., PoS TOP2015 (2016) 037, arXiv:1511.08429
Work in progress with R.Franceschini and D.Kim

Reliable description of multiple radiation in top production and decay and b-fragmentation is fundamental in the measurement of the top properties, e.g.  $m_t$ 

b-fragmentation enters in JES and MC uncertainties, typically evaluated by comparing two codes (HERWIG vs PYTHIA) or two different models in a given generator

World average:  $\Delta m_t(tot) \simeq 760$  MeV;  $\Delta m_t(JES) \simeq 250$  eV,  $\Delta m_t(MC) \simeq 380$  MeV

Several calculations and tools are available for bottom fragmentation in top decays

Perturbative-fragmentation approach: factorization of a massless hard scattering (being  $m_b \ll m_t$ ) and universal perturbative fragmentation function (Mele-Nason,'91)

DGLAP evolution to resum (collinear)  $\alpha_S^n \ln^k (m_t^2/m_b^2)$ 

NLO+NLL calculation for b and B-hadron energy spectra in top decays (NWA), including threshold resummation. Hadron corrections from  $e^+e^-$  data (G.C., M.Cacciari and A.Mitov '02)

Could be extended to NNLO+NNLL thanks to NNLO coefficient functions (Bruchenseifer, Caola, Melnikov '13), perturbative fragmentation function (Melnikov, Mitov '14) and time-like splitting functions (Moch, Mitov, Vogt '06)

NLO distributions with collinear resummation, NWA, hadronization as above (Biswas, Melnikov and Schulze, '10)

NNLO+NNLL fragmentation in SCET for  $e^+e^- \rightarrow b\bar{b}$  Fickinger, Fleming, Kim and Mereghetti '16

Standard generators (HERWIG, PYTHIA): LO matrix element, parton showers LL+(N)LL, tree-level matrix-element matching, string/cluster models for hadronization Late progress in NLO+shower generators:

aMC@NLO: NLO single top, not yet  $t\bar{t}$ , though MadSpin includes some off-shell effects POWHEG: NLO+PS for  $t\bar{t}$  production and decay using OpenLoops, including nonresonant diagrams and interference top production/decay (Talk by T.Jezo)

aMC@NLO and POWHEG rely on HERWIG and PYTHIA for shower and hadronization



Left: HERWIG cluster model; Right: PYTHIA string model Figure from Ellis, Stirling, Webber, 'QCD and Collider Physics' *b*-fragmentation and colour reconnection (uncertainty on  $m_t^{\rm pole}$ )  $\Delta m({
m CR})\simeq 0.3~{
m GeV}$ 



Left: M.Mangano, TOP'13 (HERWIG cluster model), Right: S.Argyropoulos, LNF'15 workshop (PYTHIA string model) Simulation of fictitious *T*-hadrons (HERWIG 6, preliminary) (G.C. and M.Mangano, in progress)



Useful to study colour reconnection and uncertainty on measured  $m_t$  vs pole mass  $m_T^{\text{reco}} = m_t^{\text{reco}} + \Delta m^{\text{reco}}$  with  $m_T = m_t^{\text{pole}} + m_q + \Delta m_{t,T}$  (lattice, NRQCD, etc.)

Tuning HERWIG and PYTHIA to  $e^+e^-$  data (G.C. and Drollinger '05, G.C. and F.Mescia '10)

| HERWIG                             | PYTHIA                                 |
|------------------------------------|----------------------------------------|
| CLSMR(2) = 0.3 (0.0)               | PARJ(41) = 0.85 (0.30)                 |
| DECWT = $0.7 (1.0)$                | PARJ(42) = 1.03 (0.58)                 |
| CLPOW = 2.1 (2.0)                  | PARJ(46) = 0.85 (1.00)                 |
| PSPLT(2) = 0.33 (1.00)             |                                        |
| $\chi^2/dof = 222.4/61$ (739.4/61) | $\chi^2/{ m dof} =$ 45.7/61 (467.9/61) |

Lund/Bowler fragmentation function (PYTHIA):  $f_B(z) \sim (1-z)^a \exp(-bm_T^2/z)/z^{1+brm_b^2}$ 

HERWIG parameters describe gaussian smearing (CLSMR), baryon/meson (CLPOW) and decuplet/octet (DECWT) ratios, mass spectrum of b-like clusters (PSPLT)

Our PYTHIA tuning in ATLAS jet-energy measurement and  $m_t$  world average



NLO+NLL calculation uses:  $D(x) = Nx^{\alpha}(1-x)$  and fits  $\alpha$  to data

#### $m_{B\ell}$ according to tuned HERWIG and PYTHIA and NLO



NLO+showers for top decays or C++ codes may shed light on  $m_{B\ell}$  and  $x_B$  discrepancies

#### Results with HERWIG 7 (from https://herwig.hepforge.org/plots/herwig7.0/)



### PYTHIA 8.1 with Monash tuning for *b*-fragmentation (Skands, Carrazza, Rojo, '14)



Preliminary results with POWHEG+PYTHIA 8 (E.Bagnaschi)

POWHEG has a private version with  $e^+e^- \rightarrow q\bar{q}$  at NLO

Though it should be consistent with HERWIG and PYTHIA with matrix-element corrections, it may be worth to retune

Tuning to ALEPH data:  $a = 0.8 \pm 0.19$ ;  $b = 0.85 \pm 0.17$ ;  $r = 0.85 \pm 0.02$ ;  $\chi^2 \sim 10^{-3}$ 



In progress: extension to top decays and comparison with aMC@NLO and differences between of HERWIG and PYTHIA showers

Novel investigation on fragmentation uncertainties and *in situ* calibration of hadronization models (G.C., R.Franceschini and D.Kim)

Most  $m_t$  methods (template,  $m_{b\ell}$ ,  $E_b$ -peak, endpoint, etc.) rely on *b*-jets: JES error Confronting *b*-jets with *B*-hadrons: JES  $\Leftrightarrow$  hadronization uncertainty:  $(m_{j\ell}, E_j, p_{T,j}) \Leftrightarrow (m_{B\ell}, E_B, p_{T,B})$ 

Sensitivities of observables O and top mass to Monte Carlo parameters  $\theta$ :

$$\frac{dm_t}{m_t} = \Delta_O^m \; \frac{d\langle O \rangle}{\langle O \rangle} \;\; ; \;\; \frac{d\langle O \rangle}{\langle O \rangle} = \Delta_\theta^O \; \frac{d\theta}{\theta}$$

Precision of 0.3% on  $m_t$  ( $\Delta m_t \leq 500$  MeV) from measurement of  $\langle O \rangle$ :

$$\frac{dm_t}{m_t} < 0.003 \implies \Delta_O^m \frac{d\langle O \rangle}{\langle O \rangle} < 0.003 \implies \Delta_O^m \Delta_\theta^O \frac{d\theta}{\theta} < 0.003$$

HERWIG 6: vary CLPOW, PSPLT, CLMSR, CLMAX,  $\Lambda_{MC} \simeq \exp(K/4\pi\beta_0)\Lambda_{\overline{MS}}$ [CMW scheme for NLLs in the shower at large x]; shower cutoffs [VGCUT and VQCUT]; bottom and gluon effective masses [RMASS(5) and RMASS(13)]

PYTHIA 8: string model a, b,  $r_B$  parameters,  $p_{T,\min}$ ,  $\alpha_{S,FSR}$ 

All parameters varied by  $\sim 10\%$  around default values

Calibration observables: quantities which may potentially exhibit mild dependence on  $m_t$  can be used to tune fragmentation parameters

 $p_{T,B}/p_{T,j}; \rho(r) = \frac{1}{E_j \times \Delta R} \sum_{\text{tracks}} E(\text{tracks})\Theta(|r - \Delta R|) \text{ (radial energy density)};$  $\Delta \phi(j\bar{j}); \Delta R(j\bar{j}); \Delta \phi(B\bar{B}); \Delta \phi(j\bar{j}); m_{B\bar{B}}/m_{j\bar{j}}$ 

 $\chi_B(X_B) = 2E_B/X_B$ , with  $X_B = m_{j\bar{j}}$ ,  $|p_{T,j}| + |p_{T,\bar{j}}| E_j + E_{\bar{j}}$ ,  $\sqrt{s_{\min}^{j\bar{j}}}$ 



Left:  $\chi_B = E_B/(E_j + E_{\bar{j}})$  shows remarkable dependence on  $\alpha_{S,\text{FSR}}$ Right:  $m_{B\bar{B}}/m_{j\bar{j}}$  exhibits mild dependence on  $r_B$ Mellin moments:  $\mathcal{M}_N = \frac{1}{x_{\text{max}} - x_{\text{min}}} \int_{x_{\text{min}}}^{x_{\text{max}}} dx \ x^{N-1}f(x)$ ;  $\mathcal{M}_1 = \langle f \rangle$  $x_{\text{min}}$  and  $x_{\text{max}}$  such that full width at half maximum (FWHM)

## Sensitivity of calibration observables to top mass and PYTHIA parameters

|                                                                                                               | $\Lambda(\mathcal{M}_1)$ | $\Delta_{\theta}^{(\mathcal{M}_1)}$ |             |             |             |           |             |  |  |
|---------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------|-------------|-------------|-------------|-----------|-------------|--|--|
|                                                                                                               | $\Delta_m$ –             | $\alpha_{s,FSR}$                    | $m_b$       | $p_{T,min}$ | a           | b         | $r_B$       |  |  |
| $\rho(r)$                                                                                                     | -0.069(5)                | 0.52(4)                             | 0.18(1)     | -0.100(2)   | 0.033(3)    | -0.055(8) | 0.07(1)     |  |  |
| $p_{T,B}/p_{T,j}$                                                                                             | -0.020(1)                | -0.043(2)                           | -0.04(1)    | 0.013(7)    | -0.011(1)   | 0.018(1)  | -0.022(1)   |  |  |
| $m_j$                                                                                                         | 0.28(1)                  | 0.18(1)                             | 0.011(3)    | -0.018(2)   | -0.0008(20) | 0.0017(1) | -0.0004(40) |  |  |
| $\boxed{ \chi_B(\sqrt{s_{\min,b\bar{b}}})}$                                                                   | -0.045(2)                | -0.24(2)                            | -0.072(1)   | 0.021(7)    | -0.009(1)   | 0.022(1)  | -0.025(6)   |  |  |
| $\chi_B \left( E_j + E_{\overline{j}} \right)$                                                                | -0.10(1)                 | -0.30(2)                            | -0.10(1)    | 0.028(1)    | -0.011(1)   | 0.029(1)  | -0.033(5)   |  |  |
| $\chi_B(m_{j\bar{j}})$                                                                                        | -0.19(3)                 | -0.50(5)                            | -0.18(1)    | 0.06(1)     | -0.032(6)   | 0.05(2)   | -0.06(5)    |  |  |
| $\left[ \begin{array}{c} \chi_B \left( \left  p_{T,j} \right  + \left  p_{T,\bar{j}} \right  \right) \right]$ | -0.24(3)                 | -0.49(6)                            | -0.19(1)    | 0.051(1)    | -0.030(1)   | 0.05(1)   | -0.024(2)   |  |  |
| $\Delta \phi(j\bar{j})$                                                                                       | -0.011(3)                | 0.0036(1)                           | -0.0001(20) | -0.0006(6)  | 0.0003(4)   | 0.002(1)  | 0.003(7)    |  |  |
| $\Delta R(j\overline{j})$                                                                                     | -0.007(2)                | 0.001(1)                            | -0.0007(4)  | -0.0001(3)  | 0.0004(20)  | 0.0012(3) | 0.0030(3)   |  |  |
| $\Delta \phi(B\bar{B})$                                                                                       | -0.012(3)                | 0.0015(7)                           | -0.0005(30) | -0.0003(7)  | -0.0001(30) | 0.002(1)  | 0.0036(5)   |  |  |
| $\Delta R(B\bar{B})$                                                                                          | -0.007(2)                | 0.0003(3)                           | -0.0006(5)  | 0.00002(40) | 0.0002(20)  | 0.0008(2) | 0.003(2)    |  |  |
| $\left  \Delta \phi(B\bar{B}) - \Delta \phi(j\bar{j}) \right $                                                | 0.03(1)                  | 0.66(1)                             | 0.14(1)     | -0.091(6)   | 0.013(5)    | -0.020(8) | 0.05(4)     |  |  |
| $\left \Delta R(B\bar{B}) - \Delta R(j\bar{j})\right $                                                        | 0.08(1)                  | 0.88(1)                             | 0.14(1)     | -0.086(5)   | 0.015(5)    | -0.020(5) | 0.03(1)     |  |  |
| $m_{B\bar{B}}/m_{j\bar{j}}$                                                                                   | -0.023(1)                | -0.053(1)                           | -0.043(1)   | 0.013(1)    | -0.008(1)   | 0.017(1)  | -0.020(5)   |  |  |

With the exception of  $m_j$  and  $\chi_B$ , all observables have  $\Delta_m^{\langle O \rangle} \leq \mathcal{O}(10^{-2})$ 

 $\rho(r)$  and  $\chi_B$  variables exhibit the largest dependence on PYTHIA parameters; mild dependence of  $\Delta R$ ,  $\Delta\phi$  and B/j ratios

# Results on $m_t$ -determination sensitivity to Monte Carlo parameters HERWIG: FHWM Mellin moments of $m_{B\ell}$ , $p_{T,B}$ , $E_B$ , $p_{T,\ell}$ , $E_{\ell}$

| Mellin-1 $\Delta_{m_t}^{(\mathcal{M}_1)}$ | $_{\Lambda}(\mathcal{M}_1)$ | $(\mathcal{M}_1)$ $dm_t$ | $\Delta_{	heta}^{(\mathcal{M}_1)}$ |            |            |             |            |            |            |            |           |
|-------------------------------------------|-----------------------------|--------------------------|------------------------------------|------------|------------|-------------|------------|------------|------------|------------|-----------|
|                                           | $\overline{d\mathcal{M}_1}$ | PSPLT                    | QCDLAM                             | CLPOW      | CLSMR(2)   | CLMAX       | RMASS(5)   | RMASS(13)  | VGCUT      | VQCUT      |           |
| $m_{B\ell,\text{true}}$                   | 1.2                         | 1.63                     | 0.019(1)                           | -0.0065(1) | -0.003(1)  | 0.0011(8)   | -0.004(1)  | 0.03(4)    | 0.032(2)   | 0.0017(3)  | -0.002(1) |
| $p_{T,B}$                                 | 1.2                         | 3.3                      | 0.033(3)                           | -0.013(4)  | -0.007(3)  | 0.0017(2)   | -0.008(4)  | 0.053(2)   | 0.0563(2)  | 0.0031(5)  | -0.003(2) |
| $E_B$                                     | 1.1                         | 2.4                      | 0.028(2)                           | -0.012(1)  | -0.0075(2) | 0.0016(3)   | -0.005(5)  | 0.049(3)   | 0.049(3)   | 0.003(8)   | -0.003(2) |
| $p_{T\ell}$                               |                             |                          | 0.002(2)                           | 0.001(2)   | -0.002(4)  | 0.0001(2)   | -0.0007(4) | -0.0005(3) | -0.0005(2) | -0.0003(4) | 0.002(1)  |
| $E_{\ell}$                                |                             |                          | -0.0005(4)                         | -0.006(3)  | -0.003(3)  | -0.00002(2) | -0.0002(5) | 0.001(4)   | 0.001(2)   | -0.0002(5) | 0.001(2)  |



PSPLT,  $\Lambda_{MC}$ ,  $m_b$  and  $m_g$  to be determined at  $\mathcal{O}(10\%)$  for a 300 MeV accuracy on  $m_t$ Table 9: As in Table 8, but in terms of the HERWIG 6 shower and hadronization parameters. Other parameters: order of magnitude is enough

#### Sensitivity of $m_t$ to PYTHIA parameters

# 

| Mellin-1                                      | $\Delta_{m_t}^{(\mathcal{M}_1)}$ | $dm_t$                      | $\Delta_{\theta}^{(m_t)}$ |              |        |       |       |       |  |  |
|-----------------------------------------------|----------------------------------|-----------------------------|---------------------------|--------------|--------|-------|-------|-------|--|--|
|                                               |                                  | $\overline{d\mathcal{M}_1}$ | $\alpha_{s,FSR}$          | $p_{T,\min}$ | recoil | $r_B$ | a     | b     |  |  |
| $E_B$                                         | 1.1                              | 2.4                         | 0.43                      | 0.019        | 0.028  | 0.039 | 0.020 | 0.039 |  |  |
| $E_B + E_B$                                   | 1.2                              | 0.99                        | 0.42                      | 0.019        | 0.032  | 0.046 | 0.023 | 0.034 |  |  |
| $p_{T,B}$                                     | 1.2                              | 3.3                         | 0.43                      | 0.021        | 0.027  | 0.043 | 0.022 | 0.042 |  |  |
| $p_{T,B} + p_{T,B}$                           | 1.2                              | 1.47                        | 0.36                      | 0.017        | 0.024  | 0.042 | 0.016 | 0.044 |  |  |
| $m_{B\ell,\min}$                              | 1.0                              | 2.6                         | 0.26                      | 0.011        | 0.016  | 0.041 | 0.011 | 0.031 |  |  |
| $m_{B\ell, true}$                             | 1.2                              | 1.63                        | 0.24                      | 0.008        | 0.013  | 0.031 | 0.009 | 0.022 |  |  |
| $m_{T2,B\ell,	ext{true}}^{(	ext{mET})}$       | 0.97                             | 1.51                        | 0.24                      | 0.012        | 0.012  | 0.034 | 0.013 | 0.032 |  |  |
| $m_{T2,B\ell,\min}^{(mET)}$                   | 0.98                             | 1.42                        | 0.23                      | 0.011        | 0.012  | 0.031 | 0.012 | 0.03  |  |  |
| $m_{T2,B\ell,\min,\perp}^{(\mathrm{mET})}$    |                                  | 1.55                        | 0.24                      | 0.01         | 0.011  | 0.038 | 0.011 | 0.03  |  |  |
| $m_{T2,B\ell,\mathrm{true}}^{(\mathrm{ISR})}$ | 0.99                             | 1.45                        | 0.21                      | 0.007        | 0.01   | 0.022 | 0.008 | 0.022 |  |  |
| $m_{T2,B\ell,\min}^{(\mathrm{ISR})}$          | 0.97                             | 1.35                        | 0.2                       | 0.008        | 0.013  | 0.024 | 0.01  | 0.027 |  |  |
| $m_{T2,B\ell,\min,\perp}^{(\mathrm{ISR})}$    |                                  | 1.52                        | 0.22                      | 0.01         | 0.01   | 0.03  | 0.013 | 0.03  |  |  |

Final-state strong coupling constant needed at 1%, other parameters at 10% Stronger parameter dependence in PYTHIA than in HERWIG on  $m_t$  observables In progress: checks with POWHEG and aMC@NLO to possibly decrease  $\Delta$ 's

# Shape analysis: beyond Mellin moments (average values) peaks and endpoints $(\dot{O})$ may be useful to determine $m_t$

| ΛΛ 1                                             | $\Delta_{m_t}^{(\mathcal{M}_1)}$ | $\frac{dm_t}{d\mathcal{M}_1}$ | $\Delta_{\theta}^{(\mathcal{M}_1)}$ |             |             |        |        |             |  |
|--------------------------------------------------|----------------------------------|-------------------------------|-------------------------------------|-------------|-------------|--------|--------|-------------|--|
|                                                  |                                  |                               | $\alpha_{s,FSR}$                    | $p_{T,min}$ | recoil      | $r_B$  | a      | b           |  |
| $E_{B,peak}$                                     | 1.44                             | 2.8                           | 0.46                                | 0.018       | 0.032       | 0.057  | 0.018  | 0.042       |  |
| $\grave{m}_{B\ell,min}$                          | 1.28                             | 0.89                          | 0.0021                              | $< 10^{-3}$ | $< 10^{-3}$ | 0.0038 | 0.0021 | 0.0017      |  |
| $\grave{m}_{B\ell,{\sf true}}$                   | 1.28                             | 0.89                          | 0.005                               | $< 10^{-3}$ | $< 10^{-3}$ | 0.0035 | 0.0014 | $< 10^{-3}$ |  |
| $\hat{m}_{T2,B\ell,{	t true}}^{({	t m}{	t ET})}$ | 1.01                             | 1                             | $< 10^{-3}$                         | $< 10^{-3}$ | $< 10^{-3}$ | 0.0029 | 0.0015 | 0.0014      |  |
| $\hat{m}_{T2,B\ell,min}^{(mET)}$                 | 1                                | 1                             | 0.0016                              | $< 10^{-3}$ | $< 10^{-3}$ | 0.0035 | 0.0012 | $< 10^{-3}$ |  |
| $\grave{m}_{T2,B\ell,min,\perp}^{(mET)}$         |                                  | 0.96                          | 0.016                               | $< 10^{-3}$ | $< 10^{-3}$ | 0.0071 | 0.0019 | 0.0017      |  |
| $\dot{m}_{T2,B\ell,{ m true}}^{({ m ISR})}$      | 0.99                             | 1                             | 0.0067                              | 0.0015      | $< 10^{-3}$ | 0.0042 | 0.0021 | 0.0024      |  |
| $\hat{m}_{T2,B\ell,min}^{(ISR)}$                 | 0.98                             | 1                             | 0.0063                              | 0.0015      | $< 10^{-3}$ | 0.0031 | 0.0021 | 0.0023      |  |
| $\hat{m}_{T2,B\ell,min,\perp}^{(ISR)}$           |                                  | 0.98                          | 0.0056                              | $< 10^{-3}$ | $< 10^{-3}$ | 0.0042 | 0.0016 | 0.0014      |  |

Energy peaks exhibit substantial dependence on shower/hadronization parameters, especially on  $\alpha_{S,\rm FSR}$ 

Very little sensitivity of endpoints on all parameters:  $\Delta_{\theta}^{(\mathcal{M}_1)} \leq 10^{-3} - 10^{-2}$ 

# Conclusions and outlook

Bottom fragmentation in top decays contributes to error on top mass: JES and MC uncertainties

Predictions for top decays yielded by the different codes exhibit some discrepancies, mostly driven by unsatisfactory tunings

Novel investigation on dependence of top-mass observables on MC parameters: determination may be needed to 1% accuracy to meet 0.3% precision on  $m_t$ 

Calibration observables (angular variables, hadron/jet ratios, etc.) useful to constrain parameters thanks to mild dependence on  $m_t$ 

Endpoints exhibit the littlest sensitivity on shower and hadronization parameters

Extending perturbative-fragmentation formalism to NNLO+NNLL for top decays

Re-tuning PYTHIA 8 and HERWIG++ can be a valuable strategy to pursue

Tuning fragmentation parameters directly to LHC data ( $t\bar{t}$ ,  $b\bar{b}$ ,  $Z/\gamma + b$ )

Calibration and sensitivity analysis with POWHEG/aMC@NLO

Monte Carlo parameters with errors (like pdfs) would be ultimately desirable