Energy-energy correlation in electron-positron annihilation at NNLL+NNLO accuracy

Zoltán Tulipánt
in collaboration with Adam Kardos and Gábor Somogyi
MTA-DE Particle Physics Research Group, University of Debrecen
appeared on arXiv:1708.04093
QCD at LHC 2017
2017.08.29.

Motivation

α_{S} is a fundamental parameter of the SM and must be determined precisely

At colliders: obtained from fits to data

High precision measurements demand highly accurate theoretical predictions

One option: from 3-jet event shapes in $e^{+} e^{-}$collisions:

- extensively measured by multiple collaborations
- the Born contribution is proportional to α_{S}
- state-of-the-art theory: NNLO fixed-order and NNLL resummation ($N^{3} L L$ for thrust and C-parameter)

[S. Bethke, Nucl. Part. Phys. Proc. 282-284 (2017) 149]

Can also consider observables based on particle correlations

Energy-energy correlation

Energy-energy correlation is the normalized energy-weighted cross section:

$$
\frac{1}{\sigma_{t}} \frac{d \Sigma}{d \cos \chi}=\frac{1}{\sigma_{t}} \int \sum_{i, j} \frac{E_{i} E_{j}}{Q^{2}} d \sigma_{e^{+} e^{-} \rightarrow i j+X} \delta\left(\cos \chi+\cos \theta_{i j}\right)
$$

E_{i} and E_{j} are particle energies, Q is the center-of-mass energy and $\theta_{i j}=\pi-\chi$ is the angle between the two particles

Was measured at LEP, SLC and PETRA

Energy-energy correlation

Goal: produce precise theoretical predictions for EEC

Fixed-order calculation:

- valid for medium angles
- available at NNLO accuracy

Resummation for EEC:

- for back-to-back region $(\chi \rightarrow 0)$
- computed at NNLL precision

To obtain a prediction valid on a wide kinematic range these computations must be combined through a matching procedure

Fixed-order calculation

The fixed-order expansion of EEC is

$$
\left[\frac{1}{\sigma_{t}} \frac{d \Sigma}{d \cos \chi}\right]_{(\mathrm{f} . \mathrm{O})}=\frac{\alpha_{\mathrm{S}}}{2 \pi} \frac{d \bar{A}}{d \cos \chi}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} \frac{d \bar{B}}{d \cos \chi}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{3} \frac{d \bar{C}}{d \cos \chi}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{4}\right)
$$

We performed perturbative calculations up to NNLO using the CoLoRFulNNLO scheme [V. Del Duca, G. Somogyi, Z. Trócsányi]

The scheme was implemented in the MCCSM package [A. Kardos]

Has already been tested on $H \rightarrow b \bar{b}$ and $e^{+} e^{-} \rightarrow 3$ jets

CoLoRFuINNLO scheme

Completely local subtraction for fully differential predictions at NNLO The NNLO correction contains three separately divergent terms:

$$
\sigma^{N N L O}[J]=\int_{m+2} d \sigma_{m+2}^{R R} J_{m+2}+\int_{m+1} d \sigma_{m+1}^{R V} J_{m+1}+\int_{m} d \sigma_{m}^{V V} J_{m}
$$

In the $m+2$ parton line subtractions are needed to regularize 1- and 2-parton unresolved emissions:

$$
\sigma_{m+2}^{N N L O}=\int_{m+2}\left\{d \sigma_{m+2}^{R R} J_{m+2}-d \sigma_{m+2}^{R R, A_{2}} J_{m}-\left[d \sigma_{m+2}^{R R, A_{1}} J_{m+1}-d \sigma_{m+2}^{R R, A_{12}} J_{m}\right]\right\}_{d=4}
$$

The $m+1$ parton line collects 1-parton emissions from the real-virtual term:

$$
\sigma_{m+1}^{N N L O}=\int_{m+1}\left\{\left(d \sigma_{m+1}^{R V}+\int_{1} d \sigma_{m+2}^{R R, A_{1}}\right) J_{m+1}-\left[d \sigma_{m+1}^{R V, A_{1}}+\left(\int_{1} d \sigma_{m+2}^{R R, A_{1}}\right)^{A_{1}}\right] J_{m}\right\}_{d=4}
$$

The m parton line contains the double virtual term and integrated subtractions:

$$
\sigma_{m}^{N N L O}=\int_{m}\left\{d \sigma_{m}^{V V}+\int_{2}\left[d \sigma_{m+2}^{R R, A_{2}}-d \sigma_{m+2}^{R R, A_{12}}\right]+\int_{1}\left[d \sigma_{m+1}^{R V, A_{1}}+\left(d \sigma_{m+2}^{R R, A_{1}}\right)^{A_{1}}\right]\right\}_{d=4} J_{m}
$$

CoLoRFuINNLO scheme

General features:

- fully local counterterms
(mathematically well defined)
- fully differential predictions
(with jet functions defined in four dimensions)
- explicit expressions including flavor and color (using color space notation)
- completely general construction (valid in any order of perturbation theory)
- option to constrain subtraction near singular regions ($\alpha_{\max }$) (important check)

EEC at NNLO

Higher order predictions improve agreement with data for medium angles
Sizable differences remain due to hadronization and resummation corrections In the forward $\left(\chi=180^{\circ}\right)$ and back-to-back $\left(\chi=0^{\circ}\right)$ regions fixed-order calculations diverge due to multiple soft emissions

Resummation

EEC resummation is known in the back-to-back region up to NNLL, [D. de Florian, M. Grazzini, (2005)]

$$
\left[\frac{1}{\sigma_{t}} \frac{d \Sigma}{d \cos \chi}\right]_{(\text {res. })}=\frac{Q^{2}}{8} H\left(\alpha_{\mathrm{S}}\right) \int_{0}^{\infty} d b b J_{0}(b Q \sqrt{y}) S(Q, b)
$$

where $y=\sin ^{2}\left(\frac{\chi}{2}\right)$ and the Sudakov form factor collects all log-enhanced terms

$$
S(Q, b)=\exp \left\{-\int_{b_{0}^{2} / b^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}}\left[A\left(\alpha_{S}\left(q^{2}\right)\right) \ln \frac{Q^{2}}{q^{2}}+B\left(\alpha_{S}\left(q^{2}\right)\right)\right]\right\}
$$

The functions $\boldsymbol{A}\left(\alpha_{\mathrm{S}}\right), \boldsymbol{B}\left(\alpha_{\mathrm{S}}\right)$ and $\boldsymbol{H}\left(\alpha_{\mathrm{S}}\right)$ can be computed perturbatively

$$
A\left(\alpha_{\mathrm{S}}\right)=\sum_{n=1}^{\infty}\left(\frac{\alpha_{\mathrm{S}}}{4 \pi}\right)^{n} A^{(n)}, \quad B\left(\alpha_{\mathrm{S}}\right)=\sum_{n=1}^{\infty}\left(\frac{\alpha_{\mathrm{S}}}{4 \pi}\right)^{n} B^{(n)}, \quad H\left(\alpha_{\mathrm{S}}\right)=1+\sum_{n=1}^{\infty}\left(\frac{\alpha_{\mathrm{S}}}{4 \pi}\right)^{n} H^{(n)}
$$

Resummation

The pure resummed results capture the general behavior of the data for small angles

Differences become sizable even for moderate values of χ

R matching (naive)

Resummed and fixed-order calculations are complementary to each other
One way of combining the two is naive R matching

$$
\frac{1}{\sigma_{t}} \frac{d \Sigma}{d \cos \chi}=\left[\frac{1}{\sigma_{t}} \frac{d \Sigma}{d \cos \chi}\right]_{(\text {res. })}+\left[\frac{1}{\sigma_{t}} \frac{d \Sigma}{d \cos \chi}\right]_{\text {f.o. }}-\left.\left[\frac{1}{\sigma_{t}} \frac{d \Sigma}{d \cos \chi}\right]_{(\text {res. })}\right|_{\mathrm{ffoo}}
$$

The fixed-order expansion of the NNLL does not contain all logarithms of the NNLO result

The naively R-matched NNLL+NNLO distribution contains non-expanentiated subleading logarithmic terms

The naively R-matched NNLL+NNLO is unphysical (divergent) in the back-to-back region

log-R matching

In this scheme we consider the cumulative event shape distribution

$$
R(y)=\frac{1}{\sigma_{t}} \int_{0}^{y} d y^{\prime} \frac{d \sigma}{d y^{\prime}}
$$

This has the following fixed-order exansion

$$
R_{\text {f.o. }}=1+\frac{\alpha_{\mathrm{S}}}{2 \pi} \overline{\mathcal{A}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} \overline{\mathcal{B}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{3} \overline{\mathcal{C}}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{4}\right)
$$

The formulae in the literature pertain to observables that can be resummed in a completely exponentiated form

$$
R_{(\text {res. })}=\left(1+\alpha_{S} C_{1}+\alpha_{S}^{2} C_{2}+\ldots\right) e^{L g_{1}\left(\alpha_{S} L\right)+g_{2}\left(\alpha_{S} L\right)+\alpha_{S} g_{3}\left(\alpha_{S} L\right)+\ldots}+\mathcal{O}\left(\alpha_{S} y\right)
$$

The function g_{n} can be expanded in powers of α_{S} and $L=\log y$

$$
g_{n}\left(\alpha_{\mathrm{S}} L\right)=\sum_{i=1}^{\infty} G_{i, i+2-n}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{i} L^{i+2-n}
$$

log-R matching

In the $\log -\mathrm{R}$ scheme we take

$$
\begin{aligned}
\ln R_{(\text {res.) }} & =L g_{1}\left(\alpha_{\mathrm{S}} L\right)+g_{2}\left(\alpha_{\mathrm{S}} L\right)+\alpha_{\mathrm{S}} g_{3}\left(\alpha_{\mathrm{S}} L\right)+\alpha_{\mathrm{S}} C_{1}+\alpha_{\mathrm{S}}^{2}\left(C_{2}-\frac{1}{2} C_{1}\right) \\
& +\alpha_{\mathrm{S}}^{3}\left(C_{3}-C_{2} C_{1}+\frac{1}{3} C_{1}^{3}\right)+\mathcal{O}\left(\alpha_{\mathrm{S}}^{4}\right)
\end{aligned}
$$

and replace the terms up to $\mathcal{O}\left(\alpha_{S}^{3}\right)$ with those of the fixed-order

$$
\begin{aligned}
\ln R & =L g_{1}\left(\alpha_{\mathrm{S}} L\right)+g_{2}\left(\alpha_{\mathrm{S}} L\right)+\alpha_{\mathrm{S}} g_{3}\left(\alpha_{\mathrm{S}} L\right) \\
& +\frac{\alpha_{\mathrm{S}}}{2 \pi}\left(\overline{\mathcal{A}}-G_{11} L-G_{12} L^{2}\right) \\
& +\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2}\left(\overline{\mathcal{B}}-\frac{1}{2} \overline{\mathcal{A}}^{2}-G_{21} L-G_{22} L^{2}-G_{23} L^{3}\right) \\
& +\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{3}\left(\overline{\mathcal{C}}-\overline{\mathcal{B}} \overline{\mathcal{A}}+\frac{1}{3} \overline{\mathcal{A}}^{3}-G_{32} L^{2}-G_{33} L^{3}-G_{34} L^{4}\right)
\end{aligned}
$$

The C_{n} do not appear since constant terms of the form $C_{n} \alpha_{S}^{n}$ must be factorized with respect to the form factor and should not be exponentiated

log-R matching

In our case, there are two difficulties with this method:

- the fixed-order expansion of the event shape diverges for both small and large angles, so the cumulants cannot be determined reliably
- the resummed distribution is not in a completely exponentiated form

To solve the first issue, we consider a linear combination of moments:

$$
\frac{1}{\sigma_{t}} \tilde{\Sigma}(\chi) \equiv \frac{1}{\sigma_{t}} \int_{0}^{\chi} d \chi^{\prime}\left(1+\cos \chi^{\prime}\right) \frac{d \Sigma}{d \chi^{\prime}}
$$

The singularity of the differential distribution at $\chi=\pi$ is suppressed

$$
\frac{1}{\sigma_{t}} \tilde{\Sigma}(\pi)=\frac{1}{\sigma_{t}} \int \sum_{i, j} \frac{E_{i} E_{j}}{Q^{2}}\left(1-\cos \theta_{i j}\right) d \sigma_{e^{+} e^{-} \rightarrow i j+x}=1 \quad \text { (in massless QCD) }
$$

This condition fixes the integration constants in the fixed-order coefficients $\overline{\mathcal{A}}$, $\overline{\mathcal{B}}$ and $\overline{\mathcal{C}}$

log-R matching

Second issue: the formulae do not translate to our case exactly but we can repeat the constructions

Non-logarithmically enhanced constant terms from $H\left(\alpha_{S}\right)$ must not be exponentiated and thus should not appear in the formula for the matched expression

We compute

$$
\begin{aligned}
\ln \left[\frac{1}{\sigma_{t}} \tilde{\Sigma}\right]= & \ln \left\{\frac{1}{H\left(\alpha_{\mathrm{S}}\right)}\left[\frac{1}{\sigma_{t}} \tilde{\Sigma}\right]_{\text {(res.) }}\right\}-\left.\ln \left\{\frac{1}{H\left(\alpha_{\mathrm{S}}\right)}\left[\frac{1}{\sigma_{t}} \tilde{\Sigma}\right]_{(\text {res. })}\right\}\right|_{\text {f.o. }} \\
& +\frac{\alpha_{\mathrm{S}}}{2 \pi} \overline{\mathcal{A}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2}\left(\overline{\mathcal{B}}-\frac{1}{2} \overline{\mathcal{A}}^{2}\right)+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{3}\left(\overline{\mathcal{C}}-\overline{\mathcal{B}} \overline{\mathcal{A}}+\frac{1}{3} \overline{\mathcal{A}}^{3}\right)+\mathcal{O}\left(\alpha_{\mathrm{S}}^{4}\right)
\end{aligned}
$$

NNLL+NLO, R vs log-R

The difference of the two matched distributions is $\sim 2 \%$ for small angles and $<1 \%$ for the bulk of the region

NNLL+NNLO, log-R

Sizable difference between NNLL+NLO and NNLL+NNLO for $\chi>40^{\circ}$
Reduced uncertainty band from scale variation at NNLL+NNLO (not apparent on plot due to normalization)

Comparison to data

- Predictions compared to OPAL and SLD data
- We use χ^{2} analysis
- Virtually no information available on the correlation of uncertainties in measurements
- The uncertainties are determined by adding statistical and systematic uncertainties in quadrature and treating them as uncorrelated between all data points
- Theoretical uncertainties are obtained by varying the renormalization scale in the region $[Q / 2,2 Q]$ and repeating the fits
- Two ways of treating non-perturbative corrections:
- omitting entirely
- using analytic model

Fit to data: no NP corrections

Fit to OPAL and SLD data, no hadronization corrections
Fit ranges chosen as in [D. de Florian, M. Grazzini, (2005)]

Fit range	$\mathrm{NNLL}+\mathrm{NLO}(R)$		$\mathrm{NNLL}+\mathrm{NLO}(\log -R)$		$\mathrm{NNLL+NNLO}(\log -R)$	
	$\alpha_{\mathrm{S}}\left(M_{Z}\right)$	$\chi^{2} /$ d.o.f.	$\alpha_{\mathrm{S}}\left(M_{Z}\right)$	$\chi^{2} /$ d.o.f.	$\alpha_{\mathrm{S}}\left(M_{Z}\right)$	$\chi^{2} /$ d.o.f.
$0^{\circ}<\chi<63^{\circ}$	0.133 ± 0.001	1.96	0.131 ± 0.003	1.21	0.129 ± 0.003	
$15^{\circ}<\chi<63^{\circ}$	0.132 ± 0.001	0.59	0.131 ± 0.003	0.54	0.128 ± 0.003	
$15^{\circ}<\chi<120^{\circ}$	0.135 ± 0.002	3.96	0.134 ± 0.004	5.12	0.127 ± 0.003	

Taking NNLO corrections into account, the values for $\alpha_{S}\left(M_{z}\right)$ get closer to the world average 0.1181 ± 0.0011 (Particle Data Group)

NNLO is especially relevant for describing data at intermediate χ values

Fit to data: analytic NP correction

We have repeated the analysis by taking hadronization into account through an analytic model

Multiply the Sudakov with

$$
S_{N P}=e^{-\frac{1}{2} a_{1} b^{2}}\left(1-2 a_{2} b\right)
$$

Fit for the parameters a_{1} and a_{2} [Y. L. Dokshitzer, G. Marchesini, B. R. Webber, (1999)]

Using R-matching at NNLL+NLO the best fit is

$$
\alpha_{\mathrm{S}}\left(M_{Z}\right)=0.134_{-0.009}^{+0.001}, \quad a_{1}=1.55_{-1.54}^{+4.26} \mathrm{GeV}^{2}, \quad a_{2}=-0.13_{-0.05}^{+0.50} \mathrm{GeV}
$$

with $\chi^{2} /$ d.o.f. $=38.7 / 48=0.81$

Fit to data: analytic NP correction

Using log-R matching:

- NNLL+NLO:

$$
\begin{aligned}
& \quad \alpha_{\mathrm{S}}\left(M_{z}\right)=0.128_{-0.006}^{+0.002}, \quad a_{1}=1.17_{-0.29}^{+1.46} \mathrm{GeV}^{2}, \quad a_{2}=0.13_{-0.09}^{+0.14} \mathrm{GeV} \\
& \text { with } \chi^{2} / \text { d.o.f. }=40.8 / 48=0.85
\end{aligned}
$$

- NNLL+NNLO:

$$
\begin{aligned}
& \quad \alpha_{\mathrm{S}}\left(M_{Z}\right)=0.121_{-0.003}^{+0.001}, \quad a_{1}=2.47_{-2.38}^{+0.48} \mathrm{GeV}^{2}, \quad a_{2}=0.31_{-0.05}^{+0.27} \mathrm{GeV} \\
& \text { with } \chi^{2} / \text { d.o.f. }=56.7 / 48=1.18
\end{aligned}
$$

$\alpha_{\mathrm{S}}\left(\mathrm{Mz}_{\mathrm{Z}}\right)$: closer to the world average and its uncertainty is reduced a_{1}, a_{2} : not determined very well, strong anticorrelation between a_{2} and α_{S}

Fit to data: analytic NP correction

The shape is better modelled by the NNLL+NNLO prediction
The renormalization scale band becomes narrower for NNLL+NNLO implying smaller theoretical uncertainty

Summary

Theoretical predictions for EEC in $e^{+} e^{-}$collisions at NNLL+NNLO accuracy were presented

Log-R matching was used to obtain physical predictions over a wide kinematic range

We performed a comparison to data and extracted $\alpha_{S}\left(M_{Z}\right)$
Using an analytic hadronization model the best fit is $\alpha_{S}\left(M_{Z}\right)=0.121_{-0.003}^{+0.001}$
Impact of NNLO corrections:

- better modelling of the shape of the distribution, better fit quality
- theoretical uncertainties are reduced
- the extracted value of $\alpha_{S}\left(M_{z}\right)$ is closer to the world average
\Longrightarrow NNLO must be included in a precise measurement of α_{S} from EEC

Acknowledgements

ZT was supported by the New National Excellence Program of the Ministry of Human Capacities of Hungary

Correlations

NNLL+NLO (R):

$$
\alpha_{\mathrm{S}}\left(M_{Z}\right)=0.134_{-0.009}^{+0.001}, \quad a_{1}=1.55_{-1.54}^{+4.26} \mathrm{GeV}^{2}, \quad a_{2}=-0.13_{-0.05}^{+0.50} \mathrm{GeV}
$$

$$
\operatorname{corr}\left(\alpha_{\mathrm{S}}, a_{1}, a_{2}\right)=\left(\begin{array}{ccc}
1 & 0.04 & -0.70 \\
0.04 & 1 & -0.03 \\
-0.70 & -0.03 & 1
\end{array}\right)
$$

NNLL+NLO (log-R):

$$
\begin{aligned}
\alpha_{\mathrm{S}}\left(M_{Z}\right)=0.128_{-0.006}^{+0.002}, \quad a_{1} & =1.17_{-0.29}^{+1.46} \mathrm{GeV}^{2}, \quad a_{2}=0.13_{-0.09}^{+0.14} \mathrm{GeV} \\
& \operatorname{corr}\left(\alpha_{\mathrm{S}}, a_{1}, a_{2}\right)=\left(\begin{array}{ccc}
1 & -0.17 & -0.98 \\
-0.17 & 1 & 0.08 \\
-0.98 & 0.08 & 1
\end{array}\right)
\end{aligned}
$$

NNLL+NNLO ($\log -R$):

$$
\alpha_{\mathrm{S}}\left(M_{Z}\right)=0.121_{-0.003}^{+0.001}, \quad a_{1}=2.47_{-2.38}^{+0.48} \mathrm{GeV}^{2}, \quad a_{2}=0.31_{-0.05}^{+0.27} \mathrm{GeV}
$$

$$
\operatorname{corr}\left(\alpha_{\mathrm{S}}, a_{1}, a_{2}\right)=\left(\begin{array}{ccc}
1 & 0.05 & -0.97 \\
0.05 & 1 & -0.07 \\
-0.97 & -0.07 & 1
\end{array}\right)
$$

