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Motivation

as is a fundamental parameter of the SM and must be determined precisely

At colliders: obtained from fits to data

High precision measurements demand highly accurate theoretical predictions

+

One option: from 3-jet event shapes in e" e~ collisions:

> extensively measured by multiple collaborations
» the Born contribution is proportional to asg

> state-of-the-art theory: NNLO fixed-order and NNLL resummation (N3LL
for thrust and C-parameter)
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Energy-energy correlation

Energy-energy correlation is the normalized energy-weighted cross section:

1
e m = —/Z Jdae+e Sij+x0(cos x + cosby)

E; and E; are particle energies, Q is the center-of-mass energy and 6;; = m — x
is the angle between the two particles

Was measured at LEP, SLC and PETRA
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[OPAL Collaboration, P.D. Acton et al. Z. Phys. C59 (1993)]



Energy-energy correlation

Goal: produce precise theoretical predictions for EEC

Fixed-order calculation:

> valid for medium angles
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To obtain a prediction valid on a wide kinematic range these computations
must be combined through a matching procedure



Fixed-order calculation

The fixed-order expansion of EEC is

1 dx _as dA as 2 dB as 3 dC 4
[OT dcosx}(fo_) T 2w dcosy + (E) d cos x + (Z) d cos x +0O(as)

We performed perturbative calculations up to NNLO using the CoLoRFulNNLO
scheme [V. Del Duca, G. Somogyi, Z. Trécsanyi

The scheme was implemented in the MCCSM package [A. Kardos]

Has already been tested on H — bb and eTe™ — 3 jets



CoLoRFuINNLO scheme

Completely local subtraction for fully differential predictions at NNLO

The NNLO correction contains three separately divergent terms:

oNLOT ] = / dofRyImin + / do Y\ Jmi1 + / do ¥V I
m+2 m+1 m

In the m + 2 parton line subtractions are needed to regularize 1- and 2-parton
unresolved emissions:

NNLO _ RR RR,Ay RR,A; RR Alz
Omin = /+2 {dcrm+2Jm+2 do, 5% dm — |do, 5 Imi1 — do Im .
m —4

The m + 1 parton line collects 1-parton emissions from the real-virtual term:
Al
NNLO RR,A RV,A RR,A
Omt+1 = {( m+1 +/d Tmi2 1) m+1 — |:d0m+1 T+ (/d0m+21) }Jm}
m+1 1 d=4

The m parton line contains the double virtual term and integrated subtractions:

A1
oo = [ Lagew i [ [aoiee —aofes] o [ faoite s (son) "]}



CoLoRFuINNLO scheme

General features:

» fully local counterterms
(mathematically well defined)

» fully differential predictions
(with jet functions defined in four dimensions)

» explicit expressions including flavor and color
(using color space notation)

» completely general construction
(valid in any order of perturbation theory)

> option to constrain subtraction near singular regions (max)
(important check)



EEC at NNLO
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Higher order predictions improve agreement with data for medium angles
Sizable differences remain due to hadronization and resummation corrections

In the forward (x = 180°) and back-to-back (x = 0°) regions fixed-order
calculations diverge due to multiple soft emissions



Resummation

EEC resummation is known in the back-to-back region up to NNLL, [D. de
Florian, M. Grazzini, (2005)]

1 dx
ot dcosx

@ [
:|(res-) ~ 8 H( S)/O dbbJo(b Q\/y) S(Q,b)

where y = sin> (¥) and the Sudakov form factor collects all log-enhanced terms

s@.6)=e{ - [ Q/ & [Aas(@) Z+ Blase™)| }

0

The functions A(as), B(as) and H(ag) can be computed perturbatively



Resummation
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The pure resummed results capture the general behavior of the data for small

angles

Differences become sizable even for moderate values of x
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R matching (naive)

Resummed and fixed-order calculations are complementary to each other

One way of combining the two is naive R matching

idz_idz +id2 _idZ
o+ d cos y T oy dcosy (res.) o+ d cos x fo. o+ dcosx (res.)

The fixed-order expansion of the NNLL does not contain all logarithms of the
NNLO result

f.o.

The naively R-matched NNLL+NNLO distribution contains non-expanentiated
subleading logarithmic terms

The naively R-matched NNLL+NNLO is unphysical (divergent) in the
back-to-back region
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log-R matching

In this scheme we consider the cumulative event shape distribution

This has the following fixed-order exansion

Reo. _1+—A+(‘2";) B+(g‘jr) C+ O(ad)

The formulae in the literature pertain to observables that can be resummed in
a completely exponentiated form

Riesy = (1 +asCi + Oés G+...)e La(ast)te(asitases(ash)+-. | O(asy)

The function g, can be expanded in powers of ag and L = logy

gn(asl) = Z Giion (Zﬁ) Li+2=n
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log-R matching

In the log-R scheme we take
1
In Ries) = Le1(asL) + g(asL) + asgs(asl) + asCi + af (Cz — ECI)
1
+ad (63 -GG+ gq”) +0(ad)
and replace the terms up to O(ad) with those of the fixed-order

InR = Lgi(asl) + g(asl) + asgs(asl)
as (1 2
+ 22 (A- 6uL - Gul?)

2 _ —
+ (;’—;) (B - %A2 — Gl — Gpl® — G23L3>
3/ __ 1-
+ (%Sr) (c ~BA+ 38— Gal® — Gul’ - G34L4>

The C, do not appear since constant terms of the form C,ad must be
factorized with respect to the form factor and should not be exponentiated
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log-R matching

In our case, there are two difficulties with this method:

> the fixed-order expansion of the event shape diverges for both small and
large angles, so the cumulants cannot be determined reliably

> the resummed distribution is not in a completely exponentiated form

To solve the first issue, we consider a linear combination of moments:

1= 1 /X o dY
—3 = — dy' (1
o (x Ut/o X (1 + cosx’) dx

The singularity of the differential distribution at x = 7 is suppressed

1z 1 E:E;
—X(7) = — (1 - 0;) d —Liwx=1 (i I CD
o () - / E,-J- ag (1 —cosbj) doete— i1 x (in massless QCD)

This condition fixes the integration constants in the fixed-order coefficients A,
BandC
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log-R matching

Second issue: the formulae do not translate to our case exactly but we can
repeat the constructions

Non-logarithmically enhanced constant terms from H(as) must not be

exponentiated and thus should not appear in the formula for the matched
expression

We compute

e R i N S ErelEd
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NNLL+4NLO, R vs log-R
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The difference of the two matched distributions is ~ 2% for small angles and
< 1% for the bulk of the region
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NNLL+NNLO, log-R
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Sizable difference between NNLL+NLO and NNLL+NNLO for y > 40°

Reduced uncertainty band from scale variation at NNLL+NNLO (not apparent

on plot due to normalization)
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Comparison to data

» Predictions compared to OPAL and SLD data

» We use x° analysis

> Virtually no information available on the correlation of uncertainties in
measurements

> The uncertainties are determined by adding statistical and systematic
uncertainties in quadrature and treating them as uncorrelated between all
data points

» Theoretical uncertainties are obtained by varying the renormalization scale
in the region [Q/2,2Q)] and repeating the fits

» Two ways of treating non-perturbative corrections:
> omitting entirely
> using analytic model
19



Fit to data: no NP corrections

Fit to OPAL and SLD data, no hadronization corrections

Fit ranges chosen as in [D. de Florian, M. Grazzini, (2005)]

Fit range NNLL+NLO (R) NNLL+NLO (log-R) NNLL+NNLO (log-R)
ag(Myz) x2/d.of. ag(My) x2/d.of. ag(Myz) x2/d.of.
0° < x < 63° 0.133 4 0.001 1.96 0.131 = 0.003 1.21 0.129 + 0.003 4.13
15° < x < 63° 0.132 4 0.001 0.59 0.131 = 0.003 0.54 0.128 4 0.003 1.58
15° < x < 120° 0.135 + 0.002 3.96 0.134 4 0.004 5.12 0.127 + 0.003 1.12

Taking NNLO corrections into account, the values for as(Mz) get closer to the
world average 0.1181 £ 0.0011 (Particle Data Group)

NNLO is especially relevant for describing data at intermediate x values
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Fit to data: analytic NP correction

We have repeated the analysis by taking hadronization into account through an
analytic model

Multiply the Sudakov with

_1
Syp=e" 2

28 (1 _ 2a,b)

Fit for the parameters a; and a» [Y. L. Dokshitzer, G. Marchesini, B. R.
Webber, (1999)]

Using R-matching at NNLL+NLO the best fit is

as(Mz) = 0.1341’%‘_%%%;, a = 1.55ﬂ'§3 GeV?, a = _0.131—%._%% GeV

with x?/d.o.f. = 38.7/48 = 0.81



Fit to data: analytic NP correction

Using log-R matching:
» NNLL+NLO:
as(Mz) = 0128092 | a1 = 1.1775%5 GeV?,  a = 0.135%18 GeV

with x?/d.o.f. = 40.8/48 = 0.85

» NNLL+NNLO:
as(Mz) = 01217559 a =2.4779% GeV?, 2, = 0.31792% GeV

with x?/d.o.f. = 56.7/48 = 1.18

as(Mz): closer to the world average and its uncertainty is reduced

ai, a»: not determined very well, strong anticorrelation between a, and ag
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Fit to data: analytic NP correction

2 T T T T T T 2 T T T T T T
Q=912GeV Q=91.2GeV
— lLr as(Q) = 0.134 (R) E| — 1 as(Q) = 0.121 E
] as(Q) = 0.128 (log-R) z
= =
= 5 1 = 5 * OPAL 1
> * OPAL = *x SLD
= x SLD =
2 2 F 2 2
Lot L
- ----- B NNLL +\u,<) NP (n) - — O NNLL+NNLO+NP
5| C ] s ]
+ + + + + + + + + + + +
1.05 1.05 -I ]
2 2 i ll
£ 10 £ 10 { h‘ﬂ i l}{{i
0.95 Ff 0.95 ]{ 1
\ , , , , , . . . . . \
0 10 20 30 10 50 60 0 10 20 30 10 50 60
X [deg] X [deg]

The shape is better modelled by the NNLL4+NNLO prediction

The renormalization scale band becomes narrower for NNLL+NNLO implying
smaller theoretical uncertainty



Summary

Theoretical predictions for EEC in e*e™ collisions at NNLL+NNLO accuracy
were presented

Log-R matching was used to obtain physical predictions over a wide kinematic
range

We performed a comparison to data and extracted as(Mz)

Using an analytic hadronization model the best fit is as(Mz) = 0.12179%%

Impact of NNLO corrections:
> better modelling of the shape of the distribution, better fit quality
> theoretical uncertainties are reduced

> the extracted value of as(Mz) is closer to the world average

= NNLO must be included in a precise measurement of ag from EEC
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Correlations
NNLL+NLO (R):

as(My) = 01347385 . an = 15545 GeV? & — ~0.13%5% Gev

1 0.04 —0.70
corr(ag, a1, a2) = [ 0.04 1 —0.03
—0.70 -0.03 1

NNLL+NLO (log-R):
as(Mz) = 01281092 | &) = 1.1774% GeV?, a = 0.1375 5% GeVv
1 —0.17 —0.98

corr(as, a1, a) = | —0.17 1 0.08
—0.98 0.08 1

NNLL+NNLO (log-R):
as(Mz) = 0.12179%% 3 — 2.4779% GeV?, a, = 0.317%% GeV

1 0.05 —0.97
corr(ag,ai,a2) = [ 0.05 1 —0.07
-0.97 -0.07 1 26



