

H → ττ Analyses at ATLAS and CMS

Peter Wagner on behalf of the ATLAS and CMS Collaborations

QCD @ LHC, 29.8.2017

Overview

- Why $H \rightarrow \tau\tau$?
- ATLAS and CMS
- SM $H \rightarrow \tau\tau$ analysis overview
- Background estimates
- Conclusion

Why $H \rightarrow \tau \tau$?

- SM Higgs-to-lepton coupling largest for τ (BR ~ 6%)
 - → only accessible leptonic decay channel so far
 - → first observation of Higgs Yukawa couplings
- Mainly ggF and VBF production Strong constraints on VBF cross section
- Future: Possibility to measure CP phase in $H \rightarrow \tau\tau$ coupling

LHC Conditions

- Proton-proton collider
- Collision energy: 7 and 8 TeV up to Feb 2013, since then 13 TeV
- Up to ~45 pile-up collisions per event

Detectors

- Proton-proton collider
- Collision energy: 7 and 8 TeV up to Feb 2013, since then 13 TeV
- Up to ~45 pile-up collisions per event
- ATLAS and CMS
 - cover similar kinematic phase space for τ 's: $p_{\tau} > 20$ GeV, $|\eta| < \sim 2.3-2.5$
 - have similar MVA-based τ identification performance

29.8.2017 PW, Q0

τ Reconstruction

- Proton-proton collider
- Collision energy: 7 and 8 TeV up to Feb 2013, since then 13 TeV
- Up to ~45 pile-up collisions per event
- ATLAS and CMS
 - cover similar kinematic phase space for τ 's: $p_{\tau} > 20$ GeV, $|\eta| < \sim 2.3-2.5$
 - have similar MVA-based τ identification performance
 - have different τ reconstruction

τ Reconstruction

- Proton-proton collider
- Collision energy: 7 and 8 TeV up to Feb 2013, since then 13 TeV
- Up to ~45 pile-up collisions per event
- ATLAS and CMS
 - cover similar kinematic phase space for τ 's: $p_{\tau} > 20$ GeV, $|\eta| < \sim 2.3-2.5$
 - have similar MVA-based τ identification performance
 - have different τ reconstruction

EPJ C76 (5) 1 (2016)

Particle flow

ττ Mass

- Proton-proton collider
- Collision energy: 7 and 8 TeV up to Feb 2013, since then 13 TeV
- Up to ~45 pile-up collisions per event
- ATLAS and CMS
 - cover similar kinematic phase space for τ 's: $p_{\tau} > 20$ GeV, $|\eta| < \sim 2.3-2.5$
 - have similar MVA-based τ identification performance
 - have different τ reconstruction
 - ττ mass estimator

CMS method "SVFit": ATLAS method "MMC":

CMS-PAS-HIG-12-043

ATLAS arXiv:1012.4686

- τ decay contains invisible neutrinos
- Estimate $\tau\tau$ mass using likelihood fit to τ kinematics
- Z/H separation superior to m_{vis} , m_{coll} , ...

Various SM $H \rightarrow \tau\tau$ analyses in both experiments:

ATLAS

- SM $H \rightarrow \tau\tau$ evidence
- CP Violation in VBF production using H → ττ
- Search for LFV in $H \rightarrow \tau + e/\mu$
- Search for VH production with $H \rightarrow \tau \tau$

CMS

- SM Higgs observation CMS-PAS-HIG-16-043
- Search for LFV in $H \rightarrow \tau + e/\mu$

CMS-PAS-HIG-17-001

PRD 93 092005 (2016)

JHEP 04 (2015) 117

EPJC 76 (2016) 658

EPJC 77 (2017) 70

• CMS+ATLAS Combination of Run 1 SM $H \rightarrow \tau\tau$ analyses

JHEP 08 (2016) 045

In addition: searches for BSM Higgs and di-Higgs production with $\tau\tau$ in the final state

Various SM $H \rightarrow \tau\tau$ analyses in both experiments:

In addition: searches for BSM Higgs and di-Higgs production with $\tau\tau$ in the final state

Various SM $H \rightarrow \tau\tau$ analyses in both experiments:

Topics of this talk

ATLAS

SM H → ττ evidence

CMS

SM Higgs observation

CMS-PAS-HIG-16-043

11

Analyses cover different data:

JHEP 04 (2015) 117

Run 1

 $4.5 \text{ fb}^{-1} \text{ at sqrt(s)} = 7 \text{ TeV}$

20 fb⁻¹ at sqrt(s)=8 TeV

(Run 2 analysis in preparation)

Run 2

35 fb⁻¹ at sqrt(s)=13 TeV

(Result also combined with Run 1)

- (1) Categorize into three di- τ decay channels
- dileptonic, leptonic-hadronic and di-hadronic
- different dominant backgrounds

- (1) Categorize into three di- τ decay channels
- (2) Require basic event selection to suppress backgrounds
- \bullet Isolated leptons & identified τ to suppress background from misidentified objects
- p_{τ} cuts as low as trigger allows \rightarrow configuration of di-hadronic trigger challenging!
- Kinematic requirements to suppress main backgrounds: Z/W+jets, tt

- (1) Categorize into three di- τ decay channels
- (2) Require basic event selection to suppress backgrounds
- (3) Kinematically separate two production modes (VBF vs. ggF)
- VBF: require 2 jets at high-rapidity / high m_{ii}
- ggF: require high $p_{\tau}(\tau\tau)$ to improve signal sensitivity

- (1) Categorize into three di- τ decay channels
- (2) Require basic event selection to suppress backgrounds
- (3) Kinematically separate two production modes (VBF vs. ggF)
- (4) Further selection into regions of varying signal sensitivity

CMS:

Profile Likelihood fit to "unrolled" $\tau\tau$ mass in 12 signal regions

	In-situ bkg calibration / 0-jet	Boosted / 1-jet	VBF / 2-jet
lep-lep	p _τ (μ) vs. m _{vis}	p _τ (ττ)	m(jj)
lep-had	Decay mode vs. m _{vis}	VS	VS
had-had	m(ττ) (1-dim)	m(ττ)	m(ττ)

0-jet:

- Choose fit variables to constrain backgrounds well, esp. simulated $Z \rightarrow \tau\tau$
- Better separation of

 $Z \rightarrow II in m_{vis}$

29.8.2017

15

- (1) Categorize into three di- τ decay channels
- (2) Require basic event selection to suppress backgrounds
- (3) Kinematically separate two production modes (VBF vs. ggF)
- (4) Further selection into regions of varying signal sensitivity

ATLAS:

Train 6 separate kinematic BDTs that include $\tau\tau$ mass Profile Likelihood fit to each BDT distribution

No 0-jet cat.

All major backgrounds estimated "datadriven"

Result & Backgrounds

Major backgrounds:

- $Z \rightarrow \tau \tau$
- Multijets
- W+jets
- tt̄ (in eμ channel only)

Different techniques in both experiments

→ Different resulting systematic uncertainties
 (For ATLAS focus on MVA strategy, not cut-based)

Z→ττ Background

Dominant in all regions/channels & irreducible

ATLAS

"Embedding" technique using $Z \rightarrow \mu\mu$ data

CMS

Simulated $Z \rightarrow \tau\tau$ corrected for Z-boson kinematics & jets using $Z \rightarrow \mu\mu$ control region (Run 1 analysis also used "embedding")

m_{rr} (GeV)

Backgrounds – Multijets

Major bkg in lep-had & had-had channels: jets misidentified as τ

lep-had

- Shape & normalization estimated from inverting opposite-sign requirement
- Scale factor to oppositesign region from events in 0-jet and boosted categories with relaxed identification on I and τ

had-had

- Shape & normalization from events with relaxed identification on τ
- Scale factor to nominal identification from events with same-sign requirement in each category

CRs with relaxed identification used in simultaneous fit

m_{ττ} (GeV)

W+jets, tt Backgrounds

 $t\bar{t}$: dominant in lep-lep channel W+jets & $t\bar{t}$: jet misidentified as τ , dominant in lep-had

W+jets in lep-had

- Shape: simulation
- Normalization to data in high m_T sidebands in 0-jet and boosted
- → 4 CRs in final fit

tt in lep-lep & lep-had

- Shape: simulation
- Normalization to data in kinematically selected
 CR in eµ channel
- → 1 CR in final fit

Backgrounds – Jets misidentified as τ

lep-had

- "Fake Factor" method for all misidentified τ bkgs from multijet, Z/W+jets, $t\bar{t}$
- Extract ratio

number of jets that pass τ identification number of jets that fail

dep. on τ kinematics in CRs enriched in each bkg source

• Apply factors in signal regions with reverted τ identification

had-had

- Shape: data with inverted τ identification & opposite-sign requirement
- Normalization: fit to $\Delta \eta(\tau,\tau)$ in Rest category
 - → included in final fit

Z+jets, tt Backgrounds with real τ

- Shape: simulation
- Normalization from high purity CRs:
 - m_" consistent with Z mass
 - b-tagged jet requirement

lep-lep

$t\bar{t}$ and Z+jets \rightarrow real leptons from τ

lep-had

 $t\bar{t}$ with real lepton + τ

22

Systematic Uncertainties

Source of uncertainty	Magnitude		
-	Prefit	Postfit	
$ au_{ m h}$ energy scale	1.2% on energy scale	0.2-0.3%	
e energy scale	1-2.5% on energy scale	0.2-0.5%	
e misidentified as τ_h energy scale	3% on energy scale	0.6-0.8%	
μ misidentified as τ_h energy scale	1.5% on energy scale	0.3-1.0%	
Jet energy scale	27 sources, event-by-event	-	
E _T ^{miss} energy scale	Event-by-event	-	
τ _h ID & isolation	5% per τ _h	3.5%	
$ au_{ m h}$ trigger	5% per $\tau_{\rm h}$	3%	
$\tau_{\rm h}$ reconstruction per decay mode	3% migration between decay modes	2%	
e ID & isolation & trigger	2%	-	
μ ID & isolation & trigger	2%	-	
e misidentified as τ_h rate	12% per $\tau_{\rm h}$ decay mode	5%	
μ misidentified as τ_h rate	25% per τ_h decay mode	3-8%	
Jet misidentified as τ_h rate	20% per 100 GeV $\tau_{\rm h}$ $p_{\rm T}$	15%	
$Z \rightarrow \tau \tau / \ell \ell$ estimation	Normalization: 7-15%	3-15%	
	Uncertainty on $m_{\ell\ell/\tau\tau}$, $p_T(\ell\ell/\tau\tau)$,	-	
	and m_{ij} corrections		
W + jets estimation	Normalization, $e\mu$ and $\tau_h\tau_h$: 4-20%	-	
	Extrap. from high- m_T region, $e\tau_h$ and $\mu\tau_h$: 5-10%	-	
	Unc. from CR, $e\tau_h$ and $\mu\tau_h$: $\simeq 5-15\%$	-	
QCD multijet estimation	Normalization, eμ: 10-20%	5-20%	
-	Unc. from CR, $e\tau_h$, $\tau_h\tau_h$, and $\mu\tau_h$: $\simeq 5-15\%$	-	
	Extrap. from anti-iso. region, $e\tau_h$ and $\mu\tau_h$: 20%	7-10%	
	Extrap. from anti-iso. region, $\tau_h \tau_h$: 3-15%	3-10%	
Signal theoretical uncertainty	Up to 20%	-	

Object uncertainties strongly constrained, esp. dominant identification & energy scale → in agreement with dedicated perf.

→ Benefit from

studies

- large number of regions, esp. 0-jet region
- multiple decay channels

"-": not further constrained

Systematic Uncertainties

Source of Uncertainty	Uncertainty on μ		
Signal region statistics (data)	+0.27 -0.26		
Jet energy scale	± 0.13		
Tau energy scale	$\pm \ 0.07$		
Tau identification	$\pm \ 0.06$		
Background normalisation	$\pm \ 0.12$		
Background estimate stat.	± 0.10		
BR $(H \to \tau \tau)$	± 0.08		
Parton shower/Underlying event	$\pm \ 0.04$		
PDF	± 0.03		
Total sys.	+0.33 -0.26		
Total	$^{+0.43}_{-0.37}$		

Major uncertainties:

jet & tau energy scale

 $Z \rightarrow \tau \tau$ and $t\bar{t}$ normalization

Results

CMS (Run 2):
$$\mu = \frac{\sigma_{meas}}{\sigma_{SM}} = 1.06 \pm 0.25$$

Observed excess 4.9 σ
Combined with Run 1: 5.9 σ

Most sensitive production mode: **VBF**

Best fit $\mu = \sigma/\sigma_{SM}$

Most sensitive decay channel: **CMS**: had-had

& comb. lep-had

ATLAS: lep-had

ATLAS (Run 1): $\mu = \frac{\sigma_{meas}}{\sigma_{SM}} = 1.4 \pm 0.4$ Observed excess 4.5 σ

Results

Split in production mechanism:

$$\kappa_f^2 \sim \mu_{ggF}^{\tau \tau}$$
 $\kappa_V^2 \sim \mu_{VBF+VH}^{\tau \tau}$

Consistent with SM

(Note: Axes are flipped!)

... added but not specifically targeted

Contribution from VH production ...

... searched for in separate analysis PRD 93 092005 (2016)

 \rightarrow 95% upper limit on μ : 5.6 (exp. 3.7)

27

Conclusion & Outlook

- Presented SM H $\rightarrow \tau\tau$ analyses from CMS and ATLAS
- Different background estimation techniques with different impact on analysis result
- Status: CMS observed Yukawa couplings in $H \rightarrow \tau\tau$ (5.9 σ combined with Run 1)
- ATLAS and CMS results consistent with SM expectations
- Looking forward to Run 2 results from ATLAS

Tau Lepton – Specifications

- Mass ~ 1.8 GeV: much heavier than $\mu(0.105 \text{ GeV})$ or e(0.00511 GeV)
- Proper decay length ~ 87 μm: similar to c-quark
- Weak decays:

 $\tau \to \pi \nu$, $\tau \to \pi \pi^0 \nu$, ...

Decay modes:

29

ATLAS Preselection

Channel	Preselection cuts			
	Exactly two isolated opposite-sign leptons			
	Events with $\tau_{\rm had}$ candidates are rejected			
	30 GeV $< m_{\tau\tau}^{\text{vis}} < 100$ (75) GeV for DF (SF) events			
	$\Delta \phi_{\ell\ell} < 2.5$			
	$E_{\rm T}^{\rm miss} > 20~(40)~{\rm GeV}$ for DF (SF) events			
$\tau_{\mathrm{lep}}\tau_{\mathrm{lep}}$	$E_{\rm T}^{\rm miss, HPTO} > 40 \text{GeV}$ for SF events			
	$p_{\rm T}^{\ell_1} + p_{\rm T}^{\ell_2} > 35 \text{ GeV}$			
	Events with a b-tagged jet with $p_{\rm T} > 25$ GeV are rejected			
	$0.1 < x_{\tau_1}, x_{\tau_2} < 1$			
	$m_{\tau\tau}^{\rm coll} > m_Z - 25 \text{ GeV}$			
	Exactly one isolated lepton and one medium τ_{had} candidate with opposite charges			
$\tau_{\rm lep} \tau_{\rm had}$	$m_{\mathrm{T}} < 70 \; \mathrm{GeV}$			
	Events with a b-tagged jet with $p_T > 30$ GeV are rejected			
	One isolated medium and one isolated tight opposite-sign τ_{had} -candidate			
	Events with leptons are vetoed			
	$E_{\mathrm{T}}^{\mathrm{miss}} > 20 \text{ GeV}$			
	$E_{\rm T}^{\rm miss}$ points between the two visible taus in ϕ , or $\min[\Delta\phi(\tau, E_{\rm T}^{\rm miss})] < \pi/4$			
$\tau_{\rm had} \tau_{\rm had}$	$0.8 < \Delta R(\tau_{had_1}, \tau_{had_2}) < 2.4$			
	$\Delta \eta(\tau_{\mathrm{had_1}}, \tau_{\mathrm{had_2}}) < 1.5$			
Channel	VBF category selection cuts			
	At least two jets with $p_T^{j_1} > 40$ GeV and $p_T^{j_2} > 30$ GeV			
$\tau_{\mathrm{lep}}\tau_{\mathrm{lep}}$	$\Delta \eta(j_1, j_2) > 2.2$			
	At least two jets with $p_T^{j_1} > 50$ GeV and $p_T^{j_2} > 30$ GeV			
$\tau_{\rm lep}\tau_{\rm had}$	$\Delta \eta(j_1, j_2) > 3.0$			
	$m_{\tau\tau}^{\rm vis} > 40~{ m GeV}$			
	At least two jets with $p_{\rm T}^{j_1} > 50$ GeV and $p_{\rm T}^{j_2} > 30$ GeV			
$\tau_{\rm had}\tau_{\rm had}$	$p_{\mathrm{T}}^{j_2} > 35$ GeV for jets with $ \eta > 2.4$			
	$\Delta \eta(j_1, j_2) > 2.0$			
Channel	Boosted category selection cuts			
$\tau_{\rm lep} \tau_{\rm lep}$	At least one jet with $p_T > 40 \text{ GeV}$			
Δ11	Failing the VBF selection			
All	$p_{\rm T}^{H} > 100 \; {\rm GeV}$			

ATLAS BDT Variables

Variable	VBF		Boosted			
	$\tau_{\mathrm{lep}}\tau_{\mathrm{lep}}$	$\tau_{\rm lep}\tau_{\rm had}$	$\tau_{\rm had}\tau_{\rm had}$	$\eta_{\rm ep}\eta_{\rm ep}$	$\tau_{\rm lep}\tau_{\rm had}$	$\tau_{\rm had}\tau_{\rm had}$
$m_{\tau\tau}^{\mathrm{MMC}}$	•	•	•	•	•	•
$\Delta R(\tau_1, \tau_2)$	•	•	•		•	•
$\Delta\eta(j_1,j_2)$	•	•	•			
m_{j_1,j_2}	•	•	•			
$\eta_{\mathcal{J}_1} imes \eta_{\mathcal{J}_2}$		•	•			
$p_{ m T}^{ m Total}$		•	•			
Sum p_T					•	•
$p_{\mathrm{T}}^{ au_1}/p_{\mathrm{T}}^{ au_2}$					•	•
$E_{\mathrm{T}}^{\mathrm{miss}}\phi$ centrality		•	•	•	•	•
m_{ℓ,ℓ,j_1}				•		
m_{ℓ_1,ℓ_2}				•		
$\Delta \phi(\ell_1, \ell_2)$				•		
Sphericity				•		
$p_{\mathrm{T}}^{\ell_1}$				•		
$p_{\mathrm{T}}^{j_1}$				•		
$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{\ell_2}$				•		
$m_{ m T}$		•			•	
$\min(\Delta \eta_{\ell_1 \ell_2, \text{jets}})$	•					
$C_{\eta_1,\eta_2}(\eta_{\ell_1})\cdot C_{\eta_1,\eta_2}(\eta_{\ell_2})$	•					
$C_{\eta_1,\eta_2}(\eta_\ell)$		•				
$C_{\eta_1,\eta_2}(\eta_{j_3})$	•					
$C_{\eta_1,\eta_2}(\eta_{\tau_1})$			•			
$C_{\eta_1,\eta_2}(\eta_{\tau_2})$			•			

ATLAS Systematics

ATLAS Result (BDT)

CMS Result

CMS Result

ATLAS Particle Flow details

ATLAS Particle Flow details

