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Theoretical calculations can be performed in three different limits
of field theory

Fixed perturbation

theory & = 0

Logarithmic

. s — 0, L2 fixed
resummation

Kinematic expansion
(parton shower)

Gij—>0

Each expansion important in different regions



Theoretical calculations can be performed in three different limits
of field theory

Fixed order perturbation theory

Best precision for inclusive observables
(only one relevant scale in problem)

Logarithmic resummation

Best precision for semi-inclusive observables (large ratio(s)
of scale in problem)

Parton shower

Only tool for events with arbitrary multiplicity
(event simulation)



Lots of efforts to combine the various limits
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Lots of efforts to combine the various limits

| will use term
‘event generator”
to indicate fully
exclusive
predictions



Recent developments
in parton showers

Combining FO with showers

Combining all three types
of calculations




Recent developments
in parton showers




Parton showers need to describe many physics effects
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Three main multipurpose parton showers:
Herwig, Pythia, Sherpa



Initial hard interactions

Hard interaction described by differential cross section

dO’/dq)N

For simple 2 = 2 interactions at LO, cross section given by
very simple formula, and are known for essentially all
processes of interest

When producing unstable short-lived particles (top, W, Z) care
needs to be taken about the decays of these particles
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Initial hard interactions

Combination with more complex hard interactions
will be discussed later

Merging
Use hard interactions with various multiplicities

Matching
Use higher order hard interactions

Three main multipurpose generators have taken different
approaches to this topic



Initial hard interactions

Recent developments Maintained focus on
towards combining hard parton shower, with hard
Interaction with shower interactions provided by
“In house” others

Original focus of Sherpa
was combination of hard
Interaction and shower

New framework in

. . Provides tools Has both internal matrix
Herwig 7.1 built to
. (UserHooks) to allow element generators, as
perform matching / . .
neraing directly in interface through well as interface to
Ny Y standards such LHE external codes

Herwig



Radiation of additional partons

Parton shower creates additional radiation

All showers rely on collinear / soft limit of QCD,
combined with Unitarity (conservation of inclusive
Cross section)

In this collinear / soft limit, emissions can be treated
iNn a probabilistic manner, allowing for Markov
Process

Arbitrary number of emissions can be implemented
using simple and efficient algorithms



In the collinear / soft limit QCD cross sections simplify

One can easily show that in collinear / soft limit
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ON-| x > SP(t,z)

2
2

ON

igher multiplicities built recursively from lower
multiplicities



Unitarity is a simple statement about inclusive cross sections

Shower 2 — 2 process with cross section oo

Unitarity states that the inclusive cross section after the
shower should be unchanged

o251 g2 X P(Nn0 emiss
03”5 g2 X P(1 emissio
a4PS: o2 X P(2 emissio

ion)

)

NS)

Unitarity can be interpreted as “conservation of
probability”, namely
P(no emission) + P(>1 emissions) = 1



Combining this, one arrives at the general formula

The basic equation underlying a parton shower Is

(0) =GN (QN,O)

<O>: expectation value of observable
Gn: Shower generating functional
N: Multiplicity of hard interaction

Generating functional can symbolically be written as

t —

o [Tt t)(O)a + [ T (0,¢) SP() Gy (1, 0)

Gn(t,0O) = ——
~(t,0) iy | )

This gives recursive definition (with tc) being shower
cutoft



The basic idea of a parton shower
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Expand recursive definitions to a few orders (with N=2)
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A parton shower is probabilistic description that relies on

Iy (t,te): probability that N-body system does
not change between t1 and

SP(t): probability of one emission at scale t



Probabilistic evolution requires unitarity

The two main building blocks of a parton shower are

IIn (L, te): probability that N-body system does
not change between t1 and

SP(t): probability of one emission at scale t

Probability conservation (unitarity) requires

Pno branch — 1 - Pbranch

This gives a relation between the splitting function and no-
branching probability

HN(t,tC) = eXp { /ttdt’ ZSPi(t/)}



Radiation of additional partons

All showers rely on this basic recursive formula
, i

W (¢, £)(0) ey + / a¢' Ty (t, ¢') SP(t') Gy 11 (t', O)

Gny(t,0O) = —
n(t, O) iy | )

This gives predictions with the following accuracy

e Only correct in the large Nc limit
e Only correct for collinear / soft radiation
e | eading logarithmic resummation of logs

Ditferent shower algorithms make ditferent choices
about details of splitting probabilities P(t,z)

Ditferences between perturbative showers should
all be beyond the accuracy of the shower



Many ideas of how to go beyond the standard parton shower
picture discussed here. Two examples:

Implement Include higher
thresholad order splitting
resummation functions
Nagy, Soper ('16) Hoeche, Prestel ('17)
e Ratios of DrellVan cross setions o Jet resolution at parton Tevel (fr algorithm) e
} ] S 103 E PP e, @8 TeV 10 =l
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1.2 1.
10g,0(dyns1/GeV)

So far, these ideas have not increased the overall formal
accuracy of showers, but will probably see more ideas soon



Combining FO with showers




Extending the validity of parton showers

Goal of combination of FO and parton showers is

e [For given hard multiplicity, results correct to given FO
accuracy

e Higher mult only correct in large Nc¢ limit

e Higher mult only correct for collinear / soft radiation

e | eading logarithmic resummation of logs

LO match LO Merge NLO Match

Lowest Several L owest
multiplicity multiplicities multiplicity
correct to LO correct to LO correct to NLO



LO matching included in essentially every shower

Start again from the expanded parton shower expression

do Q

(0) = - [(@.£)(0)a, + [ 411 1a(Q,1) SP(1) Ma(t1,1:) (O + .



LO matching included in essentially every shower

Start again from the expanded parton shower expression

do @
<O> @HQ(Q, )< >q>2—|—/t dtlﬂg(Q,tl SP(tl)Hg(tl,tc)<O>q>3—|—...}



LO matching included in essentially every shower

Start again from the expanded parton shower expression

(0) = Hg(Qt - /dt1 SP(t W51, £.) 0>¢3+...}
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LO matching included in essentially every shower

Start again from the expanded parton shower expression

(0) = Hg(Qt - /dt1 SP(t W51, £.) 0>¢3+...}

Separate the fixed order pieces from the resummed pieces

P> O

dO'Q dO’g
——SP(t
dd, d<I>QS (1)

II>(Q,t.) II5(Q, t1) 3(t1, te)



LO matching included in essentially every shower

Start again from the expanded parton shower expression

(0) = Hg(Qt - /dt1 SP(t W51, £.) 0>¢3+...}

Separate the fixed order pieces from the resummed pieces

P> D3
dO'Q dO’g

< ——SP(t
d®ds dCIDQS ( )

II>(Q,t.) II5(Q, t1) 3(t1, te)

Lowest multiplicity always correct at LO



LO merging requires combination of FO with LL resummation
Catani, Krauss, Kuhn, Webber ('01)

Change the fixed order pieces in the original expression

(O] P

dos dos

a%y ESP(tl)
II>(Q,t.) o (Q, t1) Is(t1,te)

to something that has LO correct for both @2 and @3

P> P
dO’g
dO'Q Eﬁ(tl > tM)
d®; | jg)z SP(t1)0(t1 < tar)
y
I15(Q, t¢) Is(Q,t1) (21, tc)

both multiplicities correct at LO (at large t4)



NLO matching can be obtained by a “simple replacement” in the

original formula Frixione, Webber (102)
, Nason ('04)
For NLO matching
P> O
d0'2 d0'2
aD, ESP(tl)
II5(Q, tc) I (Q,t1) Us(ty,t:)

need to change both fixed order and resummed pieces

0 D3
dod O dodtO [dos / doo
H?(QatC) H?(Qvtl)HB(tlatC)

Inclusive 2-jet at NLO, 3-jet at LO



Another recent development is NNLO + PS

There are three main methods available at this point

MINLO-NNLOPS
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Another recent development is NNLO + PS
NNLO + PS predictions are already being used by

Prediction

e

do

[pb / GeV]

Data

experimental collaborations

_ ATLAS
- V/s=8TeV, 20.2 fb™
e /—¢e'e,R=04

—+ Data (2012)
S MEPS@NLO

" E L NNLOPS
2 N+
-
oL | S — Y
1 10 102 103
ATLAS (1704.01530) \|d, [GeV]

Some questions as to why NNLOPS and MEPS@NLO

disagree for +/do



Recently resonant aware NLO matching schemes have been
developed Jezo, Lindert, Nason, Oleari, Pozzorini ('16)

The problem can easily by understood from the previous table

¢2 ¢3 “d>3” “@2”
dO‘QNLO _dO'g/dO'Q_ ; 0 ;b
d@z _d@g d@Q | =

H?(@? tc) H?(Qa tl)HS (tla tc)

Unless one is careful, mapping from “@3” onto “®,” does not
maintain resonance, such that [do3/d®s/ dos/dDs | can be
large away from collinear / soft limit

With resonance aware mapping, this problem is avoided



Recently resonant aware NLO matching schemes have been
developed Jezo, Lindert, Nason, Oleari, Pozzorini ('16)

The problem can easily by understood from the previous table
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Combining all three calculations




Merging higher logarithmic resummation with parton showers
has received less attention Alioli. CWB, Tackmann ('14-'17)

For several observables both higher fixed order as well as
higher resummed order is important for precise predictions
and reduced theoretical uncertainties

Geneva event generator combines NNLO calculations with
NNLL resummation and a parton shower

One calculates jet cross sections at high order in perturbation
theory and then lets a parton shower fill jets with radiation

Higher logarithmic resummation means that expressions can
no longer be expressed as FO x Sudakov



Merging higher logarithmic resummation with parton showers
has received less attention Alioli, CWB. Tackmann ('14-17)

To get combined higher fixed and resummed orders
D, OF!
dos dos

dop] 24Pt
dd, d<I>2S (1)

can not separate the two pieces any longer

Combining FO with resummed accuracy gives the right result



Merging higher logarithmic resummation with parton showers
has received less attention Alioli. CWB, Tackmann ('14-'17)

Z — y+y_, 7 TeV, Transverse region
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In conclusion, the development of event generators is a very
active field of research

Many ideas of including new effects in parton showers

Merging with fixed order calculations is becoming ever more
sophisticated

Combination of all three types of approximations is becoming
a reality
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