Heavy Quarks @ LHC

Carla Göbel PUC-Rio

on behalf of the LHCb Collaboration

presenting results also from ATLAS and CMS with mentions to BaBar, Belle, DO

Aug 28th - Sept 2nd 2017

Outline

Most recent/interesting/intriguing results on

- Heavy Flavour Production & Properties
- Rare decays & Lepton Universality
- Spectroscopy (including exotics)
- Highlights on CP violation

<u>Disclamer</u>: Impossible to cover everything!

- → I won't touch on Top Physics and Heavy Ions (dedicate plenaries)
- → Focus on most recent (≤ 1y) and/or significant results from ATLAS, CMS and LHCb
- Yet, some bias may appear: sorry if your preferred topic/result is not covered

Why study flavours....

- Standard Model (SM) alive and very well for half a decade!
- Yet, it cannot be all...

dark matter, fermion mass scales, baryon asymmetry, hierarchy problem, etc...

■ The quest for New Physics (NP) relies on complementary approaches

Energy Frontier

direct searches for new particles and interactions

Precision Frontier

look for deviations of the SM predictions: heavy particles affects lower energy processes

Why study flavours....

- Standard Model (SM) alive and very well for half a decade!
- Yet, it cannot be all...

dark matter, fermion mass scales, baryon asymmetry, hierarchy problem, etc...

The quest for New Physics (NP) relies on complementary approaches

Energy Frontier

direct searches for new particles and interactions

Precision Frontier

look for deviations of the SM predictions: heavy particles affects lower energy processes

The flavour sector in the richest and most puzzling part of

the Standard Model (SM)

20 parameters: masses and mixing of the 12 fermions

Why study flavours....

- Standard Model (SM) alive and very well for half a decade!
- Yet, it cannot be all...

dark matter, fermion mass scales, baryon asymmetry, hierarchy problem, etc...

The quest for New Physics (NP) relies on complementary approaches

Energy Frontier

direct searches for new particles and interactions

Precision Frontier

look for deviations of the SM predictions: heavy particles affects lower energy processes

The flavour sector in the richest and most puzzling part of

the Standard Model (SM) 20 parameters: masses and mixing of the 12 fermions

QUARK SECTOR

Study QCD in different regimes

a tool for:

New physics searches

Understand CP violation mechanisms

Flavour Physics @ the LHC

LHC is a flavour factory!

- Huge b cross section, and 20x higher for charm
- All types of b- and c-hadrons produced

* ATLAS, CMS

→ general purpose, "discovery machines"

 efficient di-muon trigger: great capabilities in b decays to μμ

maximal luminosity

- * ALICE
 - cleanly reconstruct heavy flavours
 - focused on quark-gluon plasma
 - contributing in heavy flavour production in pp collisions too (L. Vermunt, Tue 29/08)

Flavour Physics @ the LHC

LHC is a flavour factory!

- Huge b cross section, and 20x higher for charm
- All types of b- and c-hadrons produced

* LHCb is the dedicated flavour experiment

- forward detector (optimised geometry)
- → RICH particle ID $(K/\pi \text{ separation})$
- excellent vertexing
- dedicated b- and c- triggers (inclusive & exclusive)
- operates at lower luminosity

but lots and lots of flavour

- * ATLAS, CMS
 - general purpose, "discovery machines"
 - efficient di-muon trigger: great capabilities in b decays to µµ
 - maximal luminosity
- * ALICE
 - cleanly reconstruct heavy flavours
 - focused on quark-gluon plasma
 - contributing in heavy flavour production in pp collisions too (L. Vermunt, Tue 29/08)

CIVIS

Heavy Quarks @ LHC

Flavour Production & Properties

Heavy Flavour Production @ LHC

For pp collisions at LHC energies, the main mechanism for flavour production is gluon-gluon fusion

- Production measurements are fundamental for understanding of QCD
- x-section measurements and ratios sensitive to parton density functions (PDFs)
- MC tuning: inputs for precise flavour physics measurements
- NP searches: precise SM precisions are crucial

LHCb

JHEP

05

(2016)

JHEP 09

(2016)013

 $p_{\rm T} [{\rm GeV}/c]$

D⁰, D⁺, D_s⁺ and D^{*+} double differential cross-sections

GMVFNS: EPJC 72 (2012) 2082

LHCb

JHEP

05

(2016)

JHEP 09

(2016)013

 $p_{\rm T} [{\rm GeV}/c]$

D⁰, D⁺, D_s⁺ and D^{*+} double differential cross-sections

GMVFNS: EPJC 72 (2012) 2082

Open Charm: new @ 5 & 13 TeV (LHCb)

JHEP 03 (2016) 159, err. JHEP 09 (2016) 013 err. JHEP 05 (2017) 074

FONLL: EPJC 75 (2015) 610 POWHEG+NNPDF3.0L: JHEP 1511 (2015) 009 GMVFNS: EPJC 72 (2012) 2082

In general (all D species, all energies):

- agreement with predictions, although large uncertainties at low p_T
- data tends to lie at upper end of predictions
- \sqrt{s} = 13 TeV total c-cbar cross-section using fragmentation fractions:

$$\sigma(pp o car{c}X)_{
m p_T < 8\,GeV, 1.0 < y < 4.5} = 2369 \pm 3 \pm 152 \pm 118\,\mu{
m b}$$

Open Charm: new @ 5 & 13 TeV (LHCb)

J/ψ production @ 13 TeV - LHCb

- Double differential crosssections: $\frac{d^2\sigma(X_c)}{dp_T\,dy}$
- Separation of prompt from b-decays through pseudo decay time: $t_z = \frac{(z_{J/\psi} z_{\rm PV}) M_{J/\psi}}{p_z}$

JHEP 10 (2015) 172; Erratum JHEP 1705 (2017) 063

 $\sigma(J/\psi \text{-from-}b, p_T < 14 \text{ GeV}/c, 2.0 < y < 4.5) =$

 $2.25 \pm 0.01 \pm 0.14 \,\mu b$

J/ψ production @ 13 TeV - LHCb

JHEP 10 (2015) 172; Erratum JHEP 1705 (2017) 063

NRQCD describes data well; FONLL with tendency below data

extrapolation to total 4π bb X-sec using PYTHIA 6:

$$\sigma(pp \to b\bar{b}X)_{13\text{TeV}} = 495 \pm 2 \pm 52\mu\text{b}$$

QCD@LHC 2017 - Debrecen

Carla Göbel

11

Onia production@13TeV-CMS

■ CMS measures differential cross-sections for J/ψ , $\psi(2S)$ and $\Upsilon(nS)$ (n=1,2,3) for |y|<1.2

Cross sections ratios 13/7 TeV:

Y and open charm @ 7 & 8 TeV - LHCb

 $\Upsilon(nS)(\rightarrow \mu\mu)$ associated with D^0 , D^+ , D_{s}^+

LHCb

10.5

10

 $m_{\mathfrak{u}^+\mathfrak{u}^-}$

- sensitive to mechanism: single (SPD) vs. double parton scattering (DPS)
- $\sigma^{\Upsilon \mathrm{c}\overline{\mathrm{c}}} = \frac{\sigma^{\Upsilon}}{-} \times \sigma^{\mathrm{c}\overline{\mathrm{c}}}$ for DPS:

$$R_{\sqrt{s}=8\,\mathrm{TeV}}^{\Upsilon(1\mathrm{S})\mathrm{c}\bar{\mathrm{c}}} = \left. \frac{\sigma^{\Upsilon(1\mathrm{S})\mathrm{c}\bar{\mathrm{c}}}}{\sigma^{\Upsilon(1\mathrm{S})}} \right|_{\sqrt{s}=8\,\mathrm{TeV}} = (8.0\pm0.9)\,\%$$

Results indicate dominance of production via DPS

 $\sigma_{\rm eff}$

Candidates/ $(20\,{
m MeV}/c^2)$

[mb]

J/ψ pair production

LHCb @ 13 TeV

- $p_T < 10 \text{ GeV}, 2.0 < y < 4.5$
- Both SPS and DPS are found to contribute: fit cannot be described by only one of them

 $\sigma(J/\psi J/\psi)_{13 \text{ TeV}} = 15.2 \pm 1.0 \pm 0.9 \text{ nb}$

ATLAS @ 8 TeV

- $p_T > 8.5 \text{ GeV}, |y| < 2.1$
- for $|y(J/\psi_2)| < 1.05$:

 $\sigma(J/\psi J/\psi)_{8 \text{ TeV}} = 82.2 \pm 8.3_{\text{stat}} \pm 6.3_{\text{syst}} \pm 0.9_{\text{BF}} \pm 1.6_{\text{lumi}} \text{ pb}$

• for $1.05 < |y(J/\psi_2)| < 2.1$:

 $\sigma(J/\psi J/\psi)_{8 \text{ TeV}} = 78.3 \pm 9.2_{\text{stat}} \pm 6.6_{\text{syst}} \pm 0.9_{\text{BF}} \pm 1.5_{\text{lumi}} \text{ pb}$

 $\Delta y(J/\psi,J/\psi)$

EPJC 77 (2017) 76

QCD@LHC 2017 - Debrecen Carla Göbel 1

more pair productions

Y(1s) pair production @ 8 TeV - CMS

JHEP 05 (2017) 013

- probe QCD at both pertubative and non-perturbative regimes
- both $\Upsilon(1s)$ reconstructed as a $\mu+\mu^-$
- Fiducial X-section: $|y^{\Upsilon}| < 2.0$

$$\sigma_{\rm fid}(\Upsilon(1S)\Upsilon(1S)) = 68.8 \pm 12.7_{\rm stat} \pm 7.4_{\rm syst} \pm 2.8_{\mathcal{B}} \, \rm pb$$

b-hadron pair @ 8 TeV - ATLAS

- b-hadron pairs investigated through
 - ▶ One b decays to $J/psi(\mu\mu) + X$;
 - ▶ the other to μ + Y
 - ▶ A three µ final state

$$\sigma(B(\to J/\psi(\mu\mu) + X)B(\to \mu + X)) = 17.7 \pm 0.1_{\rm stat} \pm 2.0_{\rm syst} \, \mathrm{nb}$$

results compared with predictions from many generators

arXiv:1705.03374 (2017)

J/ψ in jets @ 13 TeV - LHCb

- $2.5 < \eta(\text{jet}) < 4.0 \text{ and } p_T(\text{jet}) > 20 \text{ GeV}$
- measure momentum fraction of J/ψ n the jet:

$$z = p_T(J/\psi)/p_T(jet)$$

again, J/ψ prompt and from-b separated by pseudo-decay time

- b-hadron results consistent with PYTHIA8
- results from prompt do not agree with LO NRQCD (as implemented in PYTHIA8)
- prompt J/ψ less isolated than predicted: big contribution from parton shower

Production of X(3872) and ψ (2S) - ATLAS

- The nature of X(3872) is an open subject!
- **ATLAS** studies through final state $J/\psi(\mu\mu)\pi^{+}\pi^{-}$
- 11.4 fb⁻¹ from 2012 data, |y|<0.75, 10 < p_T <
 70 GeV
- separate prompt, short- and long-lived contributions through pseudo-decay time

For X(3872):

JHEP

(2017)117

FONLL overestimated data for non-prompt

prompt data well described by NLO NRQCD

B⁺production@13TeV(CMS)

- B⁺ production for: $10 < p_T^B < 17 \text{ GeV}, |y^B| < 1.45$ $17 < p_T^B < 100 \text{ GeV}, |y^B| < 2.10$
 - Uses $B^+ \rightarrow J/\psi(\mu^+\mu^-) K^+$
 - lacksquare Measured for the 1 $^{
 m st}$ time at 13 TeV

$$\sigma(pp \to B^+ X) = 15.3 \pm 0.4_{\rm stat} \pm 2.1_{\rm syst} \pm 0.4_{\rm lumi} \ \mu b$$

- Shape and normalisation in reasonable agreement with FONLL and PYTHIA
- 13 to 7 TeV ratio tend to prefer higher values wrt predictions

in pp collisions, production asymmetries can arise due to the valence quark content of the proton

$$A_{\rm P} \equiv \frac{\sigma(\bar{X}_b) - \sigma(X_b)}{\sigma(\bar{X}_b) + \sigma(X_b)}$$

- important for understanding production mechanisms as well as input for CP violation studies
- LHCb measures production asymmetries for B^0 , B^+ , B_s^0 @ 7 and 8 TeV (full run I data) as a function (p_T , η) and determine Λ_{b^0} as function of the others

Tanana Tanana		$A_{ m P} \sqrt{s} = 7 { m TeV}$	$A_{ m P} \sqrt{s} = 8 { m TeV}$
ALEXANDER CONTRACTOR	B^+	$-0.0023 \pm 0.0024 \pm 0.0037$	$-0.0074 \pm 0.0015 \pm 0.0032$
and the second	B^0	$0.0044 \pm 0.0088 \pm 0.0011$	$-0.0140 \pm 0.0055 \pm 0.0010$
-	B_s^0	$-0.0065 \pm 0.0288 \pm 0.0059$	$0.0198 \pm 0.0190 \pm 0.0059$
	Λ_b^0	$-0.0011 \pm 0.0253 \pm 0.0108$	$0.0344 \pm 0.0161 \pm 0.0076$

all values consistent with zero within 2.5σ

QCD@LHC 2017 - Debrecen Carla Göbel 19

$B^0 - \overline{B}^0$ width difference: $\Delta \Gamma_d$ (ATLAS)

■ Eigenstates H (heavy) and L (light) have different widths. Value is well predicted in the SM:

$$\Delta\Gamma_d/\Gamma_d(\mathrm{SM}) = (0.42 \pm 0.08) \times 10^{-2}$$
 Lenz & Niesrte, arXiv:1102.4274

$$|B_d^H\rangle = p|B^0\rangle - q|\bar{B}^0\rangle$$
$$|B_d^L\rangle = p|B^0\rangle + q|\bar{B}^0\rangle$$
$$\Delta\Gamma_d = \Gamma_d^L - \Gamma_d^H$$

ATLAS measures $\Delta\Gamma_d$ with run I data:

Obtains B⁰ production asymmetry

$$A_P(B^0) = (+0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

• Get $\Delta\Gamma_d$ by the ratio of to J/ψ K_s and $B \rightarrow J\psi K^*$ yields as a function of $L_{prop} = ct$

$^{\circ}$ – B $^{\circ}$ width difference: $\Delta\Gamma_{\rm d}$ (ATLAS)

Eigenstates H (heavy) and L (light) have different widths. Value is well predicted in the SM:

$$\Delta\Gamma_d/\Gamma_d({\rm SM}) = (0.42 \pm 0.08) \times 10^{-2}$$

Lenz & Niesrte, arXiv:1102.4274

$$|B_d^H\rangle = p|B^0\rangle - q|\bar{B}^0\rangle$$
$$|B_d^L\rangle = p|B^0\rangle + q|\bar{B}^0\rangle$$
$$\Delta\Gamma_d = \Gamma_d^L - \Gamma_d^H$$

ATLAS measures $\Delta \Gamma_d$ with run I data:

 $m(J/\psi K^{*0})$ [MeV]

(Data - Fit)/σ

Obtains B^o production asymmetry

$$A_P(B^0) = (+0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

Get $\Delta\Gamma_d$ by the ratio of to J/ψ K_s and B $\rightarrow J\psi$ K^{*}

 $\Delta\Gamma_d/\Gamma_d(SM) = (-0.1 \pm 1.1 \pm 0.9) \times 10^{-2}$

yields as a function of $L_{prop} = ct$

Carla Göbel QCD@LHC 2017 - Debrecen 20

Bs and Ds lifetimes (LHCb)

- run I data, 3fb⁻¹
- tests for HQE: validation and refinement using lifetime measurements
- "Flavour-specific" B_s⁰ lifetime: single exponential fit in flavour specify final state
- so far, best measurement from LHCb using $B_s^0 \rightarrow D_s^- \pi^+$
- Semi-lep: higher yields, but with large systematics
- Novel Method! Use ratio of yields of $B_s^0 \rightarrow D_s^{(*)} \mu^+ \nu$ wrt to $B^0 \rightarrow D^{(*)} \mu^+ \nu$ as a function of decay time
 - $^{\odot}$ get both B_s^0 and D_{s^+} lifetimes by $\Delta\Gamma$ obtained from

LHCb

Bs and Ds lifetimes (LHCb)

Candidates per 55 MeV/ c^2

LHCb

1705.03475,

- run I data, 3fb⁻¹
- tests for HQE: validation and refinement using lifetime measurements
- "Flavour-specific" B_s^o lifetime: single exponential fit in flavour specify final state
- so far, best measurement from LHCb using $B_s^0 \rightarrow D_{s^-} \pi^+$
- Semi-lep: higher yields, but with large systematics
- Novel Method! Use ratio of yields of $B_s^0 \to D_s^{(*)-} \mu^+ \nu$ wrt to $B^0 \to D^{(*)-} \mu^+ \nu$ as a function of decay time
 - $^{\odot}$ get both B_s^0 and D_{s^+} lifetimes by $\Delta\Gamma$ obtained from

$$\tau_{B_s^0}^{\text{fs}} = 1.547 \pm 0.013_{\text{stat}} \pm 0.010_{\text{syst}} \pm 0.004_{\tau_B} \text{ ps}$$

$$\tau_{D_s^-}^{\text{fs}} = 0.5064 \pm 0.0030_{\text{stat}} \pm 0.0017_{\text{syst}} \pm 0.0017_{\tau_D} \text{ ps}$$

b-hadron lifetimes (CMS)

CMS-PAS-BPH-13-008 (2017)

- CMS measures b-hadron lifetimes with 19.7 fb⁻¹ @ 8 TeV
- Uses final states with $J/\psi \rightarrow \mu^+\mu^-$


```
c	au_{
m B^0} = 453.0 \pm 1.6 \, ({
m stat}) \, \pm 1.5 \, ({
m syst}) \, \mu{
m m} \, ({
m in} \, {
m J/\psi K^*(892)^0})
c	au_{
m B^0} = 457.8 \pm 2.7 \, ({
m stat}) \, \pm 2.7 \, ({
m syst}) \, \mu{
m m} \, ({
m in} \, {
m J/\psi K_S})
c	au_{
m B^0_S} = 504.3 \pm 10.5 \, ({
m stat}) \, \pm 3.7 \, ({
m syst}) \, \mu{
m m} \, ({
m in} \, {
m J/\psi \pi^+ \pi^-})
c	au_{
m B^0_S} = 443.9 \pm 2.0 \, ({
m stat}) \, \pm 1.2 \, ({
m syst}) \, \mu{
m m} \, ({
m in} \, {
m J/\psi \phi}(1020))
c	au_{
m A^0_b} = 443.1 \pm 8.2 \, ({
m stat}) \, \pm 2.7 \, ({
m syst}) \, \mu{
m m}
c	au_{
m B^+_c} = 162.3 \pm 8.2 \, ({
m stat}) \pm 4.7 \, ({
m syst}) \pm 0.1 (	au_{
m B^+}) \, \mu{
m m}
```


Flavour & More Flavour: spectroscopy

Excited Ω_c States (LHCb)

■ Take a $\mathcal{E}_{c}^{+}(\rightarrow p K^{-}\pi^{+})$ and add a K^{-}

Excited Ω_c States (LHCb)

Excited Ω_c States (LHCb)

$\Omega_{c}(3000)$ $\Omega_{c}(3050)$ $\Omega_{c}(3066)$ $\Omega_{c}(3090)$ $\Omega_{c}(3119)$

- Quantum numbers yet to be determined
- ▶ multi-body decay or production via heavy hadron
- Also indication of a broader structure at ~3.2 GeV

3 weakly-decaying doubly charmed baryons predicted by constituent-

quark model

SELEX (2002,2005) claimed

observation of Ξ_{CC}^{+}

not confirmed by other experiments

Ξ⁺⁺_{cc} observation!

3 weakly-decaying doubly charmed baryons predicted by constituent-

quark model

SELEX (2002,2005) claimed

observation of Ξ_{cc}^+

not confirmed by other experiments

□ LHCb searches for $≡^{++}_{cc}$ through $Λ_c^+ (→ pK^- π^+) K^- π^+ π^+$

(run II data, 1.7 fb⁻¹)

reconstruct also "wrong-sign" Λ_c+K-π+ π -

lacksquare check of $\Lambda_{
m c}^+$ sidebands

clear structure appears at \sim 3620 GeV!

PRL 11 (2017) 180001

Ξ⁺⁺_{cc} observation!

PRL 11 (2017) 180001

- signal stays strong under decay-time cut: it's a weak decay!
- confirmed with run I data
- follow-up analyses are on their way!

$$m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72 \text{ (stat)} \pm 0.21 \text{ (syst)} \pm 0.14 (\Lambda_{c}^{+}) \text{ MeV}$$

E⁺⁺_{cc} observation!

PRL 11 (2017) 180001

- signal stays strong under decay-time cut: it's a weak decay!
- confirmed with run I data
- follow-up analyses are on their way!

Compared to SELEX "Etc":100MeV mass split inconsistent with being isospin partners

$$m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72 \text{ (stat)} \pm 0.21 \text{ (syst)} \pm 0.14 (\Lambda_{c}^{+}) \text{ MeV}$$

Study of $\Lambda_b{}^0 \rightarrow J/\psi p K^-$

115 (2015) 072001

(2016)

Initial observation of two pentaquark states back in 2015 \$\overline{\gamma}\$ 600

 $P_c(4550)^+$ – narrow $P_c(4380)^+$ - wider opposite parities

- In a model independent approach, data is inconsistent as being described by Λ^* resonances only
- Search in similar channel, $\Lambda_b^0 \rightarrow J/\psi p \pi^-$, show evidence for both states at ~30

not

quite news, still

• Study of $\Lambda_b{}^0 \rightarrow J/\psi p K^-$

115 (2015) 072001

(2016)

Initial observation of two pentaquark states back in 2015 \$\frac{2}{\overline{\textit{p}}}_{\overline{\textit{m}}}\$

 $P_c(4550)^+$ – narrow $P_c(4380)^+$ – wider opposite parities

- In a model independent approach, data is inconsistent as being described by Λ^* resonances only
- Search in similar channel, $\Lambda_b{}^0 \rightarrow J/\psi$ p π^- , show evidence for both states at ~3 σ

ccuud

What's next?

Exotic: $X \rightarrow J/\psi \phi$

- X(4140) first seen by CDF as a narrow state, and then by CMS and DO;
 CDF, PRL 102 (2009) 242002, arXiv:1101.6058
 CMS, PLB 734 (2014) 261; DO, PRD 89 (2014) 012004
- no evidence from BaBar, Belle, BESIII and LHCb (0.37 fb-1)

LHCb studies $\mathbf{B}^{\scriptscriptstyle +} \to \mathbf{J}/\psi$ ϕ $\mathbf{K}^{\scriptscriptstyle +}$

full run I data; 6D amplitude analysis

Data cannot be described by $K^{*+} \rightarrow \phi K^{+}$ resonances only

Exotic: $X \rightarrow J/\psi \phi$

- X(4140) first seen by CDF as a narrow state, and then by CMS and DO;
 CDF, PRL 102 (2009) 242002, arXiv:1101.6058
 CMS, PLB 734 (2014) 261; DO, PRD 89 (2014) 012004
- no evidence from BaBar, Belle, BESIII and LHCb (0.37 fb-1)

LHCb studies $B^+ \rightarrow J/\psi \phi K^+$

full run I data; 6D amplitude analysis

Data cannot be described by $K^{*+} \rightarrow \phi K^{+}$ resonances only

Four exotic states found:

 ▼ X(4140) 1⁺⁺ ▼ X(4500) 0⁺⁺

 ▼ X(4274) 1⁺⁺ ▼ X(4700) 0⁺⁺

tetraquarks or $D_s^*D_s^*$ molecules? X(4140) as a cusp effect?

Exotic: $X \rightarrow J/\psi \phi$

Rare Decays & Lepton Universality

Rare decays. Why?

- Rare or forbidden decays within the Standard Model pose ideal environments for the search of New Physics processes
- The b-hadron processes, in particular, access/probe different energy scales!

```
0.2GeV.....4GeV.....80GeV.....~ 100 TeV ?
Λος Λω Λω Λω Λην
(non-perturbative (b mass) (W mass) (new physics scale) regime)
```

- New particles and/or new interactions could significantly enhance (or decrease) the SM expectations
 - → this was the case of $K_L \rightarrow \mu^+ \mu^-$; its tiny rate led to the prediction of charm through the GIM mechanism
 - Not shown here (see backup): news from LHCb
 - → new limits on $K_S \rightarrow \mu^+ \mu^-$ and $B_{(s)} \rightarrow \tau^+ \tau^-$
 - 1st observation of $D^0 \rightarrow \pi\pi\mu\mu$ and $D^0 \rightarrow KK\mu\mu$

$$B_{(s)} \rightarrow \mu^{+} \mu^{-}$$

- very rare in the SM:
 - GIM, loop and helicity suppressed
- effects of NP could enhance rate considerably

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = (3.66 \pm 0.23) \times 10^{-9}$$

$B_{(s)} \rightarrow \mu^{+} \mu^{-}$

- very rare in the SM:
 - GIM, loop and helicity suppressed
- effects of NP could enhance rate considerably

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = (3.66 \pm 0.23) \times 10^{-9}$$

1st observation from a combined analysis of CMS and LHCb, full run I data:

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$$

$B_{(s)} \rightarrow \mu^{\dagger} \mu^{-}$

- very rare in the SM:
 - GIM, loop and helicity suppressed
- effects of NP could enhance rate considerably

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = (3.66 \pm 0.23) \times 10^{-9}$$

Ist observation from a combined analysis of CMS and LHCb, full run I data:

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$$

ATLAS recently joined the game

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (0.9_{-0.8}^{+1.1}) \times 10^{-9}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.2 \times 10^{-10} \text{ (95\%CL)}$

$B_{(s)} \rightarrow \mu^{\dagger} \mu^{-} : LHCb run I+II$

■ New LHCb measurement includes 3.0fb⁻¹ (run I) + 1.4 fb⁻¹ (run II)

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10} \text{ (95\%CL)}$$

7.8σ observation from a single experiment

First measurement of effective lifetime:

In the SM, only the heavy-mass B_s eigenstate decays to $\mu\mu$

$$\tau(B_s^0 \to \mu^+ \mu^-) = (2.04 \pm 0.44 \pm 0.05) \,\mathrm{ps}$$

Precision not yet sufficient for probing NP, but open path for future measurements

6000

 $[MeV/c^2]$

$B_{(s)} \rightarrow \mu^{\dagger} \mu^{-} : LHCb run I+II$

New LHCb measurement includes 3.0fb⁻¹ (run I) + 1.4 fb⁻¹ (run II)

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10} \text{ (95\%CL)}$$

7.80 observation

So far:

✓ all results compatible with SM ✓ can exclude large scalar contributions First mea

In the SM, only the heavy-mass B_s eigenstate decays to µµ

$$\tau(B_s^0 \to \mu^+ \mu^-) = (2.04 \pm 0.44 \pm 0.05) \,\mathrm{ps}$$

Precision not yet sufficient for probing NP, but open path for future measurements

$b \rightarrow s \ell^{\dagger} \ell^{-}$ processes

rare decays, occurring through effective FCNC at the SM

NP processes via new particles in loops or new interactions

theoretical description through effective Hamiltonian:

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_e}{4\pi} \sum_{i} \left[\underbrace{C_i(\mu) \mathcal{O}_i(\mu)}_{\text{Left-handed part}} + \underbrace{C_i'(\mu) \mathcal{O}_i'(\mu)}_{\text{Right-handed part}} \right]$$

- ightharpoonup Wilson coefficients C_i : short distance effects, sensitive to NP
- → Operators O₁: effective 4-fermion interactions

$b \rightarrow s \ell^{\dagger} \ell^{-}$ processes

- Measurement of differential branching fractions $d\Gamma/dq^2$
 - SM predictions suffer from hadronic uncertainties
 - ▶ regions of q² sensitive to different processes
- many decays to be studied:

Angular Analysis (eg $B^0 \rightarrow K^{*0} \mu^+ \mu^-$) with many observables sensitive to NP

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \Gamma)}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K \right]$$

- $+ \frac{1}{4}(1 F_{L})\sin^{2}\theta_{K}\cos 2\theta_{l}$ $F_{L}\cos^{2}\theta_{K}\cos 2\theta_{l} + S_{3}\sin^{2}\theta_{K}\sin^{2}\theta_{l}\cos 2\phi$ $+ S_{4}\sin 2\theta_{K}\sin 2\theta_{l}\cos \phi + S_{5}\sin 2\theta_{K}\sin \theta_{l}\cos \phi$ $+ \frac{4}{3}A_{FB}\sin^{2}\theta_{K}\cos \theta_{l} + S_{7}\sin 2\theta_{K}\sin \theta_{l}\sin \phi$ $+ S_{8}\sin 2\theta_{K}\sin 2\theta_{l}\sin \phi + S_{9}\sin^{2}\theta_{K}\sin^{2}\theta_{l}\sin 2\phi$
- F_L , A_{FB} , $S_i \rightarrow$ functions of Wilson coefficients and sensitive to NP
- to reduce hadronic uncertainties, redefine: (among others)

$$P'_{i=4,5,6,8} = -\frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$

$B^0 \rightarrow K^{0*} \mu^+ \mu^- dBR/dq^2$

LHCb run I analysis, 3fb⁻¹

CMS, 8 TeV, 20.5 fb⁻¹

C. Bobeth, G. Hiller, D. van Dyk, JHEP07 (2010) 098, PRD87 (2012) 034016

CMS, 8 TeV, 20.5 fb⁻¹

dBR/dq2, a pattern?

■ Various b→sµµ transitions from LHCb

measurements show tendency of values below SM predictions

$B^0 \rightarrow K^* \mu^+ \mu^-$ angular analysis - LHCb

JHEP 02 (2016) 104

$B^0 \rightarrow K^* \mu^+ \mu^-$ angular analysis - LHCb

JHEP 02 (2016) 104

$B^0 \rightarrow K^* \mu^+ \mu^-$ angular analysis - LHCb

JHEP 02 (2016) 104

$B^0 \rightarrow K^* \mu^{\dagger} \mu^{-}$ angular analysis - ATLAS and CMS

CMS and ATLAS have recently presented their results on this matter:

- ATLAS show this (same) tendency of higher P₅' within 4-6 GeV²
- CMS with better agreement SM predictions

Lepton Universality: R(K)

apart from the mass, the charged leptons are copies of one another in the SM \Rightarrow Lepton Universality (LU)

equal couplings of W and Z to e, μ , τ

- within the SM, amplitudes of processes involving leptons must be identical after correcting for phase space
- lepton universality might be broken by mass dependent couplings⇒ signs for NP
- For semileptonic decays, robust tests rely on ratio of branching ratios for same final state differing only on the lepton flavour

hadronic uncertainties cancel

LHCb 2014 (remembering):

$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)} = 1.000 + \mathcal{O}(m_\mu^2 / m_b^2)$$

measure through double ratio using B+ \to K+ $J/\psi(\ell^+\ell^-)$

$$R_K = 0.745^{+0.090}_{-0.074} \pm 0.036$$

 $(1 \text{ GeV}^2 < q^2 < 6 \text{ GeV}^2)$

R(K*) - LHCb

■ LHCb uses the same old $B^0 \rightarrow K^* \mu^+ \mu^-$, now together with $B^0 \rightarrow K^* e^+ e^-$ for LU studies

$$R_K * = \frac{\mathcal{B}(B^0 \to K^{*0}\mu^+\mu^-)}{\mathcal{B}(B^0 \to K^{*0}e^+e^-)}$$

■ take the double ratio using $B^+ \to K^+ J/\psi(\ell^+\ell^-)$ as control channels

Measures in two bins of q²

	5-18-18-18-18-18-18-18-18-18-18-18-18-18-	low- q^2	central- q^2
Marana and a	$R_{K^{*0}}$	$0.66^{+0.11}_{-0.07} \pm 0.03$	$0.69^{\ +\ 0.11}_{\ -\ 0.07} \pm 0.05$
40mm	95.4% CL	[0.52, 0.89]	[0.53, 0.94]
	99.7% CL	[0.45, 1.04]	[0.46, 1.10]

Global Fits

- Global fits to Wilson coefficients provide info on NP contributions
- Several attempts to interpret results
- Use available $B\rightarrow \mu\mu$, $b\rightarrow s\gamma$, $b\rightarrow s\ell\ell$ data: ~ 100 observables

B. Capdevila et al, arXiv:1704.05340

Altmannshofer et al. EPJC 77 (2017) 377

Hurth et al., arXiv:1705.06274

Preference for NP in C_9 at the $4-5\sigma$ level

LU: $B \rightarrow D^{(*)} \ell \nu$

 a tree-level process, abundant, but a challenge in a hadron machine due to the missing neutrinos (especially for the τ channel)

Measuring the ratio

$$R_{D^{(*)}} = \frac{\mathcal{B}(B^0 \to D^{(*)-}\tau^+\nu_{\tau})}{\mathcal{B}(B^0 \to D^{(*)-}\mu^+\nu_{\mu})}$$

very clean SM prediction:

$$R_{D^*}^{(SM)} = 0.252 \pm 0.003$$

 \bigcirc cancellation of $B \rightarrow D^*$ form factor uncertainties

(value differ from 1 due to phase space)

many NP scenarios could change this ratio, e.g. leptoquarks, charged Higgs

LU: $B \rightarrow D^{(*)} \ell \nu$

- Babar (2012) was the first to report results with some tension wrt SM
- This year inputs from Belle and LHCb

LHCb looks at $\tau \rightarrow \pi \pi \pi \nu$ final state

arXiv:1708.08856

 $R_{D^*} = 0.285 \pm 0.019 \pm 0.025 \pm 0.014$

new

 4.1σ level of discrepancy with the SM prediction

- Babar (2012) was the first to report results with some tension wrt SM
- This year inputs from Belle and LHCb

Highlights on CP violation

Highlights on CP violation

Highlights on CP violation

CP violation in one slide

In the Standard Model, CP violation rises by the CKM mechanism:

$$\begin{pmatrix} 1 - \lambda^{2}/2 & \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda & 1 - \lambda^{2}/2 & A\lambda^{2} \\ A\lambda^{3}(1 - \rho - i\eta) & -A\lambda^{2} & 1 \end{pmatrix} + O(\lambda^{4})$$

- The complex nature of the CKM matrix is responsible for sizeably CP violation effects in kaons and b-hadron processes
- Tiny effects predicted for charm!
- Angles α , β and γ follow from the orthogonality relation

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ "The unitary Triangle"

Over constraining the Unitary Triangle (sides and angles) is vital to test SM description of CP violation

γ is the least known angle accessible interference of tree decays

Progresses in angle γ

- its measurement relies on in the interference between $b\rightarrow u$ and $b\rightarrow c$ diagrams where D^0 and D^0 go to a common final state
- several methods exist (GLW, ADS, GGSZ,...) depending on the final state used
- need to combine many decay modes!

New results using $B^{\pm} \to D^{(*)0}K^{\pm}$ and $B^{\pm} \to DK^{*\pm}$ using full run I (3fb⁻¹) + run II data from LHCb

LHCb-PAPER-2017-030

Progresses in angle γ

Progresses in angle γ

- SM predicts $\phi_s = -36.3\pm1.3$ mrad
- Appears through the interference between mixing and decay in $B_s \to J/\psi \phi$
- Good place for search for NP in loops!
- Efforts from many experiments: DO, CMS, ATLAS, CMS and LHCb

New LHCb result: exploits m(KK) > 1.05 GeV

Parameter	Value
$\Gamma_s [ps^{-1}]$	$0.650 \pm 0.006 \pm 0.004$
$\Delta\Gamma_s$ [ps ⁻¹]	$0.066 \pm 0.018 \pm 0.010$
$\phi_s \; [\mathrm{mrad}]$	$119 \pm 107 \pm 34$
$ \lambda $	$0.994 \pm 0.018 \pm 0.006$

LHCb combined result adding J/ψ φ, J/ψ ππ:

$$\phi_s = 1 \pm 37 \text{ mrad}$$

arXiv:1704.08217

Mixing and OP in Bs: $\Delta\Gamma_s$ and phase

Carla Göbel

CP Violation in Baryons

LHCb studies the $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ and $\Lambda_b^0 \to p\pi^-K^+K^-$ (1st observation) in regions of the phase space

© Evidence for localised CP asymmetries at 3.3σ

Si

Nature Phys.

13 (2017)

CP Violation in Baryons

LHCb studies the $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$ and $\Lambda_b^0 \rightarrow p \pi^- K^+ K^- (1^{st} \text{ observation}) \text{ in}$ regions of the phase space

Evidence for localised CP asymmetries at 3.30

Charm Decays

- Tiny expectations within the SM model
- Sensitivities have reached 10^{-3} 10^{-4} level!

Not evidence yet for % in charm

Concluding ...

- Flavour Physics: a path into the PRECISION FRONTIER
 - → Precise measurements of flavour observables are a key element to test the Standard Model
- A comprehensive study in the heavy quark sector is emerging with many interesting results
 - → "just" QCD is still surprising us with new states
 - → CKM sector responding extremely well to the imposed tests
 - A few intriguing anomalies at the 2–4σ level in the b-sector involving leptons
- **A flavourful run I in LHC!** And run II is coming strong already

.... and no prejudices: LHC experiments experimenting all roles

- CMS and ATLAS contributing "beautifully" competitive in key measurements with di-muons
- LHCb empowering itself in EW bosons, Higgs, heavy ions,... (not mentioned here)
- ALICE with many results on flavour production in pp collisions (not shown here today)

Backups

J/ψ production @ 13 TeV - LHCb

13 to 8 TeV ratio – J/ψ -from-b

b-hadron cross-section at 7 and 13 TeV

Erratum being prepared, bug in simulation will affect low η @13 TeV, result will likely be in agreement with FONLL

Cancellation of uncertainties in x-section ratios

- Decay described by 6 form-factors
- In HQET, these are expressed by the Isgur-Wise (IW) function $\xi_B(w)$

$$\frac{d\Gamma}{dw} = GK(w)\xi_B^2(w) \qquad w = \frac{m_{\Lambda_b^0}^2 + m_{\Lambda_c^+}^2 - q^2}{2m_{\Lambda_b^0}m_{\Lambda_c^+}}$$

Slope of $\xi_B(w)$ at w = 1 (zero recoil) - ρ^2 : predictions coming from different approaches

Model	$ ho^2$
Lattice ¹	$1.2^{+0.8}_{-1.1}$
QCD sum rules 2	1.35 ± 0.13
$\mathrm{HQET}^{\ 2}$	1.51

LHCb obtains

$$\rho^2 = 1.63 \pm 0.07 \pm 0.08$$

- agrees well with predictions
- Lattice (grey) provides very good description, as well as single form-factor (blue, HQET)
- Precise determination of $|V_{cb}|$ in the future, with normalisation channel

■ Higher expected branching ratios than $B_{(s)} \rightarrow \mu \mu$

$$\mathcal{B}(B^0 \to \tau^+ \tau^-)_{\rm SM} = (2.22 \pm 0.19) \times 10^{-8}$$

 $\mathcal{B}(B_s^0 \to \tau^+ \tau^-)_{\rm SM} = (7.73 \pm 0.49) \times 10^{-7}$

PRL 118 (2017) 251802

- But very challenged due to the neutrinos in the final state
- LHCb reconstruct as $\tau \rightarrow \pi \pi \pi \nu$, with full run I data

▶ Best limit for $B^0 \rightarrow \tau^+ \tau^-$ and First limit for $B_s \rightarrow \tau^+ \tau^-$:

$$\mathcal{B}(B_s^0 \to \tau^+ \tau^-) < 6.8 \times 10^{-3} @ 95\% CL$$

$$\mathcal{B}(B^0 \to \tau^+ \tau^-) < 2.1 \times 10^{-3} @ 95\% CL$$

QCD@LHC 2017 - Debrecen Carla Göbel 55

$K_S \rightarrow \mu^+ \mu^-$ search - LHCb

K_S has a very tiny BR predicted by the SM

$$\mathcal{B}(K_{\rm S}^0 \to \mu^+ \mu^-)_{\rm SM} = (5.0 \pm 1.5) \times 10^{-12}$$

Isidori et al, JHEP 01(2004) 009

- → a flavour-changing neutral current (FCNC) process, further supressed due to small CP violation; dominated by long-distance effects
- New Physics (NP) with scalars could enhance the BR up to 10⁻¹⁰, with a 10⁻¹¹ observation not conflicting with present bounds in other FCNC processes
- Previous best limit set by LHCb (1 fb⁻¹): 9.0×10⁻⁹ (90%CL)

New LHCb analysis: full run I data (3 fb⁻¹)

LHCb 0.95 0.85 0.80 1 2 $B(K_S^0 \rightarrow \mu^+\mu^-) \times 10^9$

 $\mathcal{B}(K_{\rm S}^0 \to \mu^+ \mu^-) < 1.0 \times 10^{-9} \ (95\% \, {\rm CL})$

arXiv:1706.00758

Observation of $D^0 \rightarrow h^+h^-\mu^+\mu^-$ - LHCb

■ $D^0 \rightarrow K^+K^-\mu^+\mu^-$ and $D^0 \rightarrow \pi^+\pi^-\mu^+\mu$ searched for with 2 fb⁻¹ @ 8 TeV

- In the SM, short-distance contributions (away from resonances) expected at $O(10^{-2})$
- but long-distance effects, with resonances decaying to $\mu\mu$, can enhance rates considerably

First observation reported by LHCb!

$D^0 o \pi^+\pi^-\mu^+\mu^-$			
$m(\mu^+\mu^-)$ region	$[\mathrm{MeV}/c^2]$	$\mathcal{B} \ [10^{-8}]$	
Low mass	< 525	$7.8 \pm 1.9 \pm 0.5 \pm 0.8$	
η	525 – 565	< 2.4(2.8)	
$ ho^0/\omega$	565 – 950	$40.6 \pm 3.3 \pm 2.1 \pm 4.1$	
ϕ	950 – 1100	$45.4 \pm 2.9 \pm 2.5 \pm 4.5$	
High mass	> 1100	< 2.8 (3.3)	
$D^0 o K^+K^-\mu^+\mu^-$			
$m(\mu^+\mu^-)$ region	$[\mathrm{MeV}/c^2]$	$\mathcal{B} \ [10^{-8}]$	
Low mass	< 525	$2.6 \pm 1.2 \pm 0.2 \pm 0.3$	
η	525 – 565	< 0.7 (0.8)	
$ ho^0/\omega$	> 565	$12.0 \pm 2.3 \pm 0.7 \pm 1.2$	

$$\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7}$$

$$\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7}$$

The puzzled X(5568): new $B_s^0 \pi^{\pm}$ state?

■ D0 observed a peak in the B_s^0 ($\rightarrow J/\psi \varphi$) π^{\pm} mass spectrum:

$$m = 5567.8 \pm 2.9^{+0.9}_{-1.9} \,\text{MeV}$$
 $\Gamma = 21.9 \pm 6.4^{+5.0}_{-2.5} \,\text{MeV}$

almost 9% of total B_s production coming X(5568)!

Recently also seen using $B_s^0(\to D_{s^-}\mu^+X)$ π^+ :

The puzzled X(5568): new $B_s^0 \pi^{\pm}$ state?

■ D0 observed a peak in the B_s^0 ($\rightarrow J/\psi \varphi$) π^{\pm} mass spectrum:

$$m = 5567.8 \pm 2.9^{+0.9}_{-1.9} \,\text{MeV}$$
 $\Gamma = 21.9 \pm 6.4^{+5.0}_{-2.5} \,\text{MeV}$

almost 9% of total B_s production coming X(5568)!

The puzzled X(5568): new $B_s^{\circ} \pi^{\pm}$ state?

D0 observed a peak in the $B_s^0(\to J/\psi \varphi) \pi^{\pm}$ mass spectrum:

$$m = 5567.8 \pm 2.9^{+0.9}_{-1.9} \,\text{MeV}$$
 $\Gamma = 21.9 \pm 6.4^{+5.0}_{-2.5} \,\text{MeV}$

almost 9% of total B_s production coming X(5568)!

[GeV/c2]

5.6

 $m (B_s^0 \pi^{\pm})$

Not seen by LHCb, not seen by CMS!

Carla Göbel 58 QCD@LHC 2017 - Debrecen

. and also in $sin(2\beta)$

The discovery mode of CP violation in B mesons (BaBar and Belle) was $B^0 \rightarrow J/\psi K_S$: interference of mixing and decay

$$\mathcal{A}(t) \equiv \frac{\Gamma(\bar{B}^{0}(t) \to J/\psi K_{S}^{0}) - \Gamma(B^{0}(t) \to J/\psi K_{S}^{0})}{\Gamma(\bar{B}^{0}(t) \to J/\psi K_{S}^{0}) + \Gamma(B^{0}(t) \to J/\psi K_{S}^{0})}$$

$$-\underbrace{S\sin(\Delta mt) - C\cos(\Delta mt)}_{C \approx 0}$$

$\sin(2\beta) \equiv \sin(2\phi_1)$ Summer 2016

. and also in $sin(2\beta)$

The discovery mode of CP violation in B mesons (BaBar and Belle) was $B^0 \rightarrow J/\psi K_S$: interference of mixing and decay

$$\mathcal{A}(t) \equiv \frac{\Gamma(\bar{B}^{0}(t) \to J/\psi K_{S}^{0}) - \Gamma(B^{0}(t) \to J/\psi K_{S}^{0})}{\Gamma(\bar{B}^{0}(t) \to J/\psi K_{S}^{0}) + \Gamma(B^{0}(t) \to J/\psi K_{S}^{0})}$$

$$-\underbrace{S\sin(\Delta mt) - C\cos(\Delta mt)}_{C \approx 0}$$

LHCb now includes $J/\psi(\rightarrow e^+e^-)K_S$ and ψ (2S) ($\rightarrow \mu^{\dagger} \mu^{-}$) K_{S}

LHCb-PAPER-2017-029

- \rightarrow mild tension (2 σ) with sin(2 β) from the B-factories
- → improves the overall consistency with the CKM sector

$\sin(2\beta) \equiv \sin(2\phi_1)$ Summer 2016

 $S = +0.758 \pm 0.034$ $C = -0.017 \pm 0.029$

CP violation in charm

- CP violation in charm occurs in Cabibbo suppressed decays in the SM
- Tiny effects! Tree diagram largely dominates over penguin
- Observation of asymmetries O(%)
 points towards NP long-distance effects
 difficult to estimate though

LHCb has huge charm samples unprecedent sensitivities

CP violation in charm

- CP violation in charm occurs in Cabibbo suppressed decays in the SM
- Tiny effects! Tree diagram largely dominates over penguin
- Observation of asymmetries O(%)
 points towards NP long-distance effects
 difficult to estimate though

LHCb has huge charm samples unprecedent sensitivities

Sensitivities have reached $10^{-3} - 10^{-4}$ level!

CP violation in charm

CP violation in charm occurs in Cabibbo suppressed decays in the SM

Tiny effects! Tree diagram largely dominates over penguin

Observation of asymmetries O(%) points towards NP long-distance effects difficult to estimate though

LHCb has huge charm samples unprecedent sensitivities

Sensitivities have reached $10^{-3} - 10^{-4}$ level!

CP violation in baryons

- CP violation was not yet observed in baryon decays
- LHCb studies the $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ and $\Lambda_b^0 \to p\pi^-K^+K^-$ decays (1st observation)
- CP observables: asymmetries in triple products of the type $C_{\hat{T}} = \vec{p}_p \cdot \left(\vec{p}_{h_1^-} \times \vec{p}_{h_2^+} \right)$

Nature Phys. 13 (2017) 391

no evidence for integrated
 CP asymmetries in both
 channels

 $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ studied in regions of the phase space:

Evidence for localised

CP asymmetries at 3.3σ