
Parton shower and top-quark mass effects  
in Higgs pair production

Matthias Kerner 

QCD@LHC 2017 

Debrecen — 28 August 2017

In collaboration with 
Borowka, Greiner, Heinrich, Jones, Luisoni, Schlenk, Schubert, Vryonidou, Zirke

JHEP 1708 (2017) 088 [1703.09252] 
JHEP 1610 (2016) 107 [1608.04798] 
PRL 117 (2016) 012001, Erratum 079901 [1604.06447] 



2

Motivation
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→ Higgs pair production

Measurements of Higgs couplings 
agree with SM predictions, but

Test of Higgs potential & 
EW symmetry breaking

not established yet
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Now that the LHC has discovered a Higgs-like particle, next steps: 

a) Measure precisely its couplings 

b) Explore in detail distributions 
(e.g. invariant mass,      )

Motivation
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Figure 19: Best fit values as a function of particle mass for the combination of ATLAS and CMS data in the case of
the parameterisation described in the text, with parameters defined as F · mF/v for the fermions, and as

p
V · mV/v

for the weak vector bosons, where v = 246 GeV is the vacuum expectation value of the Higgs field. The dashed
(blue) line indicates the predicted dependence on the particle mass in the case of the SM Higgs boson. The solid
(red) line indicates the best fit result to the [M, ✏] phenomenological model of Ref. [129] with the corresponding
68% and 95% CL bands.

6.3.2. Probing the lepton and quark symmetry

The parameterisation for this test is very similar to that of Section 6.3.1, which probes the up- and down-
type fermion symmetry. In this case, the free parameters are �lq = l/q, �Vq = V/q, and qq = q ·q/H ,
where the latter term is positive definite, like uu. The quark couplings are mainly probed by the ggF
process, the H ! �� and H ! bb decays, and to a lesser extent by the ttH process. The lepton couplings
are probed by the H ! ⌧⌧ decays. The results are expected, however, to be insensitive to the relative
sign of the couplings, because there is no sizeable lepton–quark interference in any of the relevant Higgs
boson production processes and decay modes. Only the absolute value of the �lq parameter is therefore
considered in the fit.

The results of the fit are reported in Table 19 and Fig. 22. The p-value of the compatibility between
the data and the SM predictions is 79%. The likelihood scan for the �lq parameter is shown in Fig. 23
for the combination of ATLAS and CMS. Negative values for the parameter �Vq are excluded by more
than 4�.

45

Several important Higgs channels in 
the SM are loop induced, known with 
full top quark mass dependence only at 
LO (1-loop)

Using the HEFT approximation we expect large NLO/LO ≈ 2 

Can expect higher orders to significantly modify distributions 

Need higher order predictions
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Motivation
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Most calculations are done in               limit (Higgs EFT) mt ! 1

HEFT valid for 
p
s ⌧ 2mT

2mH <
p
sHiggs pair production:

full top quark mass dependence required for accurate predictions

→ only small validity range  
of HEFT approximation

LO QCD

NNLO QCD

NLO QCD

NLO QCD

qq/gg → tt̄HH

qq̄ → ZHH
qq̄′ → WHH

qq′ → HHqq′

gg → HHMH = 125 GeV
σ(pp → HH+X) [fb]

√
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Baglio, Djouadi, Gröber,  
Mühlleitner, Quevillon, Spira

gluon fusion is dominant 
production mechanism
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Overview

• Motivation 
• Higgs pair production @NLO with full mt dependence 

• details of the calculation 
• results 

• Parton shower effects 
• interface of virtual amplitude via grid  
• results 

• Outlook
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gg→HH calculations

1. LO, including full        dependence        
  Glover, van der Bij `88 

2. NLO, (Born-improved) HEFT  
  Dawson, Dittmaier, Spira `98 

• including full         dependence in real 
radiation (FT approx.)  
Maltoni, Vryonidou, Zaro `14 

• including             expansion  
Grigo, Hoff, Melnikov, Steinhauser `13;  
Grigo, Hoff, Steinhauser `15  
Degrassi, Giardino, Gröber `16  

3. NLO, including full          dependence  
  Borowka, Greiner, Heinrich, Jones, MK,   
  Schlenk, Schubert, Zirke `16  

• NLO matched to parton shower  
Heinrich, Jones, Luisoni, MK, Vryonidou `17 

• transverse momentum NLL+NLO  
Ferrera, Pires `16 

1/mT

5

K ≈ 2

+20%

this talk

1/mT

mT

mT

mT

±10%

-10%

4. NNLO  (HEFT)  
  de Florian, Mazzitelli `13 

• including all matching coefficients 
Grigo, Melnikov, Steinhauser `14 

• including             expansion 
Grigo, Hoff, Steinhauser `15 

• NNLL soft gluon resummation  
Shao, Li, Li, Wang `13 

• NNLL + NNLO matching  
de Florian, Mazzitelli `15 

• fully differential 
de Florian, Grazzini, Hanga, Kallweit,  
Lindert, Maierhöfer, Mazzitelli, Rathlev `16
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Diagrams
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→ numeric calculation required
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Loop Integrals

SecDec 3 [Borowka, Heinrich, Jones, MK, Schlenk, Zirke]

• sector decomposition of loop integrals  
→ resolves overlapping singularities 

• expansion in  
• contour deformation 
→ Feynman parameter integrals finite for each order in  

[Binoth, Heinrich]

[Nagy, Soper]

numerical evaluation of loop integrals using 

"

"
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Loop Integrals

SecDec 3 [Borowka, Heinrich, Jones, MK, Schlenk, Zirke]

• sector decomposition of loop integrals  
→ resolves overlapping singularities 

• expansion in  
• contour deformation 
→ Feynman parameter integrals finite for each order in  

[Binoth, Heinrich]

[Nagy, Soper]

numerical evaluation of loop integrals using 

"

new version: pySecDec
[Borowka, Heinrich, Jahn, Jones, MK, Schlenk, Zirke]

• new implementation using python and FORM [Kuipers, Ueda, Vermaseren] 
• modular structure 
• generates library that can be linked to e.g. amplitude code 
• many improvements: 

• improved code optimization 
• improved symmetry finder 
• improved treatment of numerators 
• …

"

available at  
github.com/mppmu/secdec

http://github.com/mppmu/secdec


Amplitude evaluation

Numerical integration
• using Quasi-Monte-Carlo (QMC) integration 

           scaling of integration error 
• split each integral into sectors 
• dynamically set n for each integral, minimizing 
 
 

• avoid reevaluation of integrals for different 
orders in     and form factors 

• parallelization on gpu

{. . . } = fractional part

~g = generating vector

~
�k = randomized shift

~xi,k =

⇢
i · ~g
n

+ ~�k

�
I =

Z
d~xf(~x) ⇡ Ik =

1

n

nX

i=1

f(~xi,k)

QMC rank-1 lattice rule

m di↵erent estimates I1 . . . Im
! error estimate

O(n�1)

T =
X

integral i

ti + �

 
�2 �

X

i

�2
i

!

�i = ci · t�e
i

�i = error estimate (including coe�cients in amplitude)

� = Lagrange multiplier � = precision goal

"

156 J. Dick, F. Y. Kuo and I. H. Sloan
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Figure 2.3. Applying a (0.1, 0.3)-shift to a 64-point lattice rule in
two dimensions: (a) original lattice rule, (b) moving all points by
(0.1, 0.3), (c) wrapping the points back inside the unit cube.

For a random shift ∆ ∈ [0, 1]s, the shifted QMC points {ti + ∆}, i =
0, 1, . . . , n− 1 are correlated. Therefore we cannot estimate the variance of
the shifted QMC rule using the sample variance as in (2.1). Instead, we
need to use a number of independent random shifts as follows.

(1) We generate q independent random shifts ∆0,∆1, . . . ,∆q−1 from the
uniform distribution on [0, 1]s.

(2) For a given QMC rule, we form the approximations Q(0)
n,s(f), Q

(1)
n,s(f),

. . . , Q(q−1)
n,s (f), where

Q(k)
n,s(f) =

1

n

n−1∑

i=0

f({ti +∆k}), k = 0, 1, . . . , q − 1,

is the approximation of the integral using a ∆k-shift of the original
QMC rule.

(3) We take the average

Q̄n,s,q(f) =
1

q

q−1∑

k=0

Q(k)
n,s(f)

as our final approximation to the integral.

(4) An unbiased estimate for the mean-square error of Q̄n,s,q(f) is given
by

1

q(q − 1)

q−1∑

k=0

(Q(k)
n,s(f)− Q̄n,s,q(f))

2.

Typically we take n in the thousands or more while keeping q small, say
around 10–50. To obtain a fair comparison between the MC method and

Li, Wang, Yan, Zhao `15 
Review: Dick, Kuo, Sloan

Form factor decomposition of amplitude 

Integral reduction using Reduze [von Manteuffel, Studerus]
• quite challenging, simplification: fix  
• didn’t achieve reduction of non-planar integrals → evaluated directly 
• planar integrals: use finite basis 

mT ,mH

[von Manteuffel, Panzer, Schabinger]

SecDec
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Phase Space Integration and Real Radiation

Fixed order calculation Combination with parton shower

• Phase space integration based on  
unweighted Born events 
→ close to perfect sampling  
 

virtual amplitude evaluated  
at ~1000 phase-space points 

• Real radiation amplitudes: 
GoSam 
Cullen, van Deurzen, Greiner, Heinrich, Luisoni, 
Mastrolia, Mirabella, Ossola, Peraro, Schlenk, 
von Soden-Fraunhofen, Tramontano 

• Dipole subtraction  
Catani, Seymour

• Interface of virtual amplitude via  
2-dimensional grid in s and t 

• Parton Shower frameworks: 
- POWHEG-BOX 

using GoSam amplitudes in real radiation 
- MadGraph5_aMC@NLO 

• Pythia 8 parton shower
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NLO Results — Invariant Mass
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LO 19.85+27.6%
�20.5% 731.3+20.9%

�15.9%

B.i. HEFT 38.32+18.1%
�14.9% 1511+16.0%

�13.0%

FT approx 34.26+14.7%
�13.2% 1220+11.9%

�10.7%

NLO full 32.91+13.6%
�12.6% 1149+10.8%

�10.0%

• basic HEFT leads to wrong shape 
• B.I. HEFT overestimates by 16% / 30% 
• FT approx closer to full result 

(difference increasing with         )mhh
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• basic HEFT leads to wrong shape 
• B.I. HEFT overestimates by 16% / 30% 
• FT approx closer to full result 

(difference increasing with         )

 top mass effects important, 
in particular at ps = 100TeV

ambiguity in rescaling real  
radiation with full Born

pT,h
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NLO Results — Modified Coupling

modified Higgs self-interaction: 
ghhh = � · gSM

hhh

� = 0 � = 2

destructive interferenceof     and     contributions  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Results - Combination with NNLOHEFT

Figure 3: Distributions in the rapidity of the harder (left) and the softer (right) Higgs boson. Curves
and bands as in Fig. 2.

Figure 4: Invariant-mass distribution mHH (left) and rapidity distribution yHH (right) of the produced
Higgs boson pair. Curves and bands as in Fig. 2. Additionally, in the left plot we show the mHH

distribution as obtained with the calculation of Ref. [31].

In the right plot of Fig. 4 predictions for the rapidity of the Higgs boson pair, yHH , are presented.
Again, we observe a mild phase-space dependence, with increasing NNLO corrections only for large
rapidities. In all distributions in Figs. 2–4, NNLO scale uncertainties are reduced to the level of
±(5%� 12%), compared to ±(15%� 20%) at NLO.

8

de Florian, Grazzini, Hanga, 
Kallweit, Lindert, Maierhöfer,  
Mazzitelli, Rathlev `16

combination of NLOfull with NNLOHEFT
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Figure 8: Rapidity distribution of the Higgs boson pair and the leading-pT Higgs

boson at
p

s = 14 TeV and
p

s = 100 TeV.

As a first attempt to achieve this, we take the NNLO to NLO ratio from Ref. [61] and

calculate

d� NLO-i. NNLO HEFT = d� NLO d� NNLO basic HEFT

d� NLO basic HEFT
(3.1)

bin by bin, where “NLO-i. NNLO HEFT” stands for NLO-improved NNLO HEFT.

Results for various distributions are shown in Fig. 11. The error band is the NLO-

rescaled scale uncertainty of the NNLO basic HEFT distributions, and the error on

the central value is due to the error on the full NLO result. Applying the same naive

rescaling on the total cross section, one obtains �NLO-i. NNLO HEFT = 38.67+5.2%
�7.6% for 14

– 25 –
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As a first attempt to achieve this, we take the NNLO to NLO ratio from Ref. [61] and

calculate

d� NLO-i. NNLO HEFT = d� NLO d� NNLO basic HEFT

d� NLO basic HEFT
(3.1)

bin by bin, where “NLO-i. NNLO HEFT” stands for NLO-improved NNLO HEFT.

Results for various distributions are shown in Fig. 11. The error band is the NLO-

rescaled scale uncertainty of the NNLO basic HEFT distributions, and the error on

the central value is due to the error on the full NLO result. Applying the same naive

rescaling on the total cross section, one obtains �NLO-i. NNLO HEFT = 38.67+5.2%
�7.6% for 14
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Monte Carlo Interface
Median 2 GPU hours per phase-space point 
Can not put directly into a Monte Carlo 
But: Virtual matrix element depends only on        (fixed              ) 
Can build 2D grid of our phase-space points and interpolate

ŝ, t̂ mT ,mH

3741 events used to construct grid for POWHEG/MG5_aMC@NLO

Parametrisation:

Choose          according to cumulative distribution function of phase 
space points used in the original calculation 
Obtain nearly uniform distribution in            unit square 

Interpolate with Clough-Tocher using the SciPy package

f(�)

(x, c✓)

Clough, Tocher 65

x = f(�(ŝ)), c✓ = | cos ✓ | =
����
ŝ+ 2

ˆ

t� 2m

2
H

ŝ�(ŝ)

���� , � =

✓
1� 4m

2
H

ŝ

◆ 1
2

15

Parton Shower Interface
2-loop amplitude too slow (median 2h on gpu) for direct interface to PS  
 → construct grid for interpolation of virtual amplitude

ŝ, t̂

 → nearly uniform distribution of phase space points in                     if               
     chosen according to cumulative distribution of points in original calculation 

(x, c✓) 2 [0, 1]2 f(�)

• included additional points in large mHH region (total of 3741 2-loop results used) 
• input parameters (     ) transformed to

• interpolation done in 2 steps: 
1. choose equidistant grid points, estimate result at each grid point with linear 

interpolation of amplitude results in vicinity 
2. Clough-Tocher interpolation (as implemented in SciPy)  

to estimate amplitude at arbitrary sampling points 
   → reduces sensitivity to uncertainties of input-data points 
• available at github.com/mppmu/hhgrid

http://github.com/mppmu/hhgrid
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Grid Validation
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Figure 1. Closure test of the grid interpolation. The left (right) plot shows the relative difference
of the grid results compared to a grid obtained from 50% (80%) of the input data points, evaluated
at the remaining data points. Differences are defined as positive (negative) if the full grid yields
larger (smaller) results. The outermost bins contain all results with differences larger than 20%.

virtual two-loop amplitude at any phase space point without having to do costly two-loop

integrations.

In more detail, we first transform the Mandelstam invariants ŝ and t̂ to new variables

x = f
(
β(ŝ)

)
, with β =

(
1−

4m2
h

ŝ

)1
2

(2.1)

cθ = | cos θ | =
∣∣∣∣
ŝ+ 2t̂− 2m2

h

ŝβ(ŝ)

∣∣∣∣ , (2.2)

where f can, in principle, be any strictly increasing function. Setting f(β) according to the

cumulative distribution function of the phase space points used in our original calculation,

we obtain a nearly uniform distribution of these points in the (x, cθ) unit square. Instead of

a direct interpolation of the phase space points, we chose to apply a two-step procedure:

first, we generate a regular grid with a fixed grid spacing in the variables x and cθ, where

we estimate the result at each grid point applying a linear interpolation of our original

results in the vicinity of the specific grid point. In a second step, we apply Clough-Tocher

interpolation [70] as implemented in the python SciPy package [71]. Applying this procedure

reduces the size of interpolation artefacts, which we obtain due to the numerical uncertainty

of our two-loop results. In figure 1 we test how omitting input data points influences

the results of the grid interpolation. Removing 20% of the input data points changes the

interpolation results by less than 0.25% for 70% of the tested points. Differences larger than

5% are obtained for 6% of the results.

We should point out that the grid is constructed from a sample of phase space points

which is based on runs at
√
s = 14TeV. Therefore, even though the grid is not explicitly

dependent on the centre-of-mass energy, one should be aware of the fact that for runs at

e.g. 100TeV, the grid may not be reliable for points with large ŝ due to a lack of statistics

in this region upon construction.

In our original calculation [20, 22], we used Catani-Seymour dipole subtraction [72] for

the real radiation. The finite combination of the renormalized virtual amplitude Vb with

– 4 –

closure test 
difference of grid results 
after removing 50% of 
input data points
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LHE Events in HEFT & comparison with NNLO
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Figure 4: Comparison of the default POWHEG predictions (hdamp = 1) at LHE level with predictions
in which we set hdamp = 250 for HEFT (left) and with full top-quark mass dependence (right).

particular for observables like phhT , where NLO is the first non-trivial order to describe the
distribution. Analogous effects have already been observed in several other similar processes
with large K-factors [96–98], and we refer the interested reader to Refs. [96, 97] for more
details. We have explored the possibility to limit the amount of hard radiation which is
exponentiated by changing the hdamp parameter in POWHEG. We recall that this allows to
divide the contributions of the real radiation R which are exponentiated in the Sudakov
factor into a singular part R

sing

and a regular part R
reg

, as follows:

R
sing

=R⇥ F , (3.1)
R

reg

=R⇥ (1� F ) , (3.2)

where the transition function F is chosen to be

F =

h2

(phhT )

2

+ h2
. (3.3)

In Fig. 4 we compare the default POWHEG choice setting, h = hdamp = 1, with predictions
in which we set hdamp = 250 GeV. The left plot shows predictions in the HEFT, whereas on
the right we show results in the full SM. We observe that in both cases above 500 GeV the
LHE curve with hdamp = 250 GeV reproduces the NLO results as expected. It is interesting
to study how this additional source of theoretical uncertainty is affecting other observables,
especially those for which our predictions are NLO accurate. To understand this better,
in Fig. 5 we show a similar comparison for m

hh

(left) and the transverse momentum of
a (randomly chosen) Higgs boson phT (right), with full top quark mass dependence. The
m

hh

observable is completely insensitive to additional radiation, and for this reason it is
unaffected by a modification of the hdamp factor. This is not true for phT , which is sensitive
to the recoil against additional jet activity. For this reason we observe deviations between
the NLO predictions and the LHE-level curves, the latter becoming slightly larger for harder
transverse momenta. The predictions for hdamp = 250 are in general closer to the NLO ones
over the whole kinematical range of phT . We stress however that, contrary to phhT , where the
differences between the predictions for hdamp = 1 and the one for hdamp = 250 GeV reach
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with

•           :    LHE level results close to NNLO 
•             :  LHE level approaches NLO in tail of         distribution 
h = 1

phhTh = 250
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Results including Parton Shower

Powheg + Pythia8

no effect on invariant mass parton shower enhances tails of  
             distributionspT

only small parton shower effects on NLO accurate observables
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• parton shower enhances tail of        distribution by factor of ~2 
• small difference between full NLO and FT approx. result 
• different behavior of Born-improved HEFT result 
→ top-mass effects in  real radiation important

phhT

Parton shower effects large for observables sensitive to real radiation, e.g.  phhT

Results including Parton Shower

Powheg MadGraph5_aMC@NLO
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Figure 20: Higgs boson pair transverse momentum distribution phhT comparing fixed order and
showered results. Left panel: POWHEG, right panel: MG5_aMC@NLO.

Figure 21: phhT distribution comparing showered results with different values for hdamp in POWHEG
resp. the shower starting scale Q

sh

in MG5_aMC@NLO compared to the fixed order result.

4 Conclusions

We have presented the combination of the full NLO prediction for Higgs boson pair production,
including the top quark mass dependence at two loops, with a parton shower. This has
been implemented within two frameworks, POWHEG-BOX and MG5_aMC@NLO, using the same
Pythia 8.2 shower in both cases. Individual phase-space points of the two-loop amplitude,
which depends only on the two independent kinematic invariants ŝ and ˆt once the top-quark
and Higgs boson masses are fixed, have been used to create a grid and combined with an
interpolation framework, such that a value for the amplitude can be obtained at any phase
space point without re-evaluating the loop integrals.

We find that the impact of the parton shower on the transverse momentum distribution
of one Higgs boson, phT , is quite small and that the features of the various approximations
that have appeared previously in the literature are preserved by the shower.

The impact of the shower on the phhT , ��

hh and �Rhh distributions is fairly large, as
these are the distributions where the tail is predicted at the first non-trivial order in the fixed
order calculation. In the tail of the phhT distribution, around phhT ⇠ 400GeV, the showered
NLO results are larger than the fixed order results by more than a factor of two, within both
POWHEG and MG5_aMC@NLO. This feature is also present if Pythia 6 is used instead of Pythia

– 18 –
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pT,HH with Pythia 6 and Pythia 8
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Figure 13. Azimuthal angle separation ∆Φhh (left) and radial separation ∆Rhh (right) of the two
Higgs bosons, comparing fixed order and showered results.
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Figure 14. Higgs boson pair transverse momentum distribution phhT (left column with hdamp=∞,
right column with hdamp=250) comparing the fixed order result with showered results from both
Pythia 6 and Pythia 8 in the basic HEFT approximation (upper row) and in the full SM (lower
row).

this comparison for hdamp=∞ (left column) as well as for hdamp=250 (right column). In the

basic HEFT approximation the differences between Pythia 6 and Pythia 8 are small, and

setting hdamp to a finite value restores the agreement between the NLO and the NLO+PS

curves at large transverse momentum. The latter is also true in the full SM. However, in the

full SM, the difference between Pythia 6 and Pythia 8 is much larger, Pythia 8 showing a

considerably harder spectrum in the tail of the phhT distribution.

– 14 –
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Change of shower starting scale in MG5
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parton shower effects  
 up to factor of ~3

parton shower results agree 
with NLO at large pT,HH
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�Rhh

�Rhh < ⇡

• filled by real radiation  
only LO accurate 

• large parton shower corrections 
• differences due to matching  

method visible

Results including Parton Shower

�Rhh > ⇡

• NLO accurate 
• small dependence on 

parton shower / matching

Parton shower effects large for observables sensitive to real radiation, e.g.  
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Figure 17. Higgs boson pair transverse momentum distribution phhT (left) and pj1T distribution
(right), comparing showered results with POWHEG and MG5 aMC@NLO. For the pj1T distribution we used
a cut of pjetT,min = 20GeV.
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Figure 18. Azimuthal angle separation ∆Φhh (left) and separation ∆Rhh (right).

kinematic regions which are predicted at the first non-trivial order by the NLO fixed order

calculation. Focusing on the comparison between the POWHEG curve with hdamp=250, which

is our default, we can say that in general the two predictions agree well within the scale and

statistical uncertainties. The small ∆Rhh region, on the right of figure 18, shows the largest

differences, which is not surprising as it is dominated by (multi-)jet events. We should

also mention that the curve for hdamp=250 in these figures is close to the NLO curves by

construction, as can be seen by comparing to the fixed order results shown in the previous

subsection.

In figure 19 we vary the shower starting scale Qsh in MG5 aMC@NLO by a factor of two

around the default value. In the latest version of MG5 aMC@NLO (version 2.5.3 onwards),

the shower starting scale is picked with some probability distribution to be in the interval

shower scale factor ×[0.1HT /2, HT /2] with HT computed with Born kinematics, there-

fore to perform the scale variation we set the shower scale factor in the run card to 0.5,

1 and 2.

The mhh distribution can be considered as a control plot to demonstrate that, as

expected, this has no effect on the mhh distribution. In contrast, in the phhT distribution, the

differences due to variations of the matching scale start to exceed the scale uncertainties

towards larger phhT values.

– 16 –
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Summary & Outlook

Higgs pair production at NLO

Ongoing work
• comparison with Herwig and Sherpa parton shower 
• improve combination with NNLO HEFT 
• apply methods to other processes

• virtual corrections computed numerically 
• grid for virtual amplitude publicly available 
• top-quark mass effects important at large mHH

Parton shower effects for HH production
• using POWHEG-BOX and MadGraph5_aMC@NLO frameworks 
• for observables sensitive to real radiation: 

- large parton shower effects 
- large dependence on matching procedure
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Backup
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pT,HH in mHH bins
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Figure 9. Higgs boson pair invariant mass distribution mhh and transverse momentum distribution
of a (randomly chosen) Higgs boson at

√
s = 14TeV, comparing the fixed order result with showered

results from the POWHEG-BOX.
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Figure 10. Transverse momentum distribution of the leading (ph1
T ) and subleading (ph2

T ) Higgs
boson, comparing fixed order and showered results. The first bin in ph1

T in the fixed order NLO
calculation is negative and therefore does not appear in the upper part of the plot.

We should mention at this point that the distributions of the “harder” (ph1T ) and “softer”

(ph2T ) Higgs boson, calculated at fixed (NLO) order, are somewhat infrared sensitive if no

cuts are placed on the Higgs boson transverse momenta. The reason is that, if the transverse

momenta ph1T and ph2T are very close to each other, the available phase space for the extra

radiation in the real corrections is severely restricted, leading to large logarithms which are

not sufficiently balanced by the 2 → 2 contributions. To illustrate this fact, we consider the

total cross section as a function of ∆, with the kinematic requirements ph1T ≥ ∆, ph2T ≥ 0.

The cross section shows an unphysical behaviour as ∆ → 0, see figure 11: the total cross

section as a function of ∆ peaks around ∆ = 14GeV and then decreases for smaller values

of ∆, even though the available phase space for ph1T is larger. This behaviour is an artifact

of the fixed order calculation and is the reason why “symmetric cuts” (i.e. the same pT,min

values for both final state particles in a 2 → 2 calculation at NLO) should be avoided. For

a more detailed discussion of this point we refer to refs. [106–108]. Here we only note that

this is the reason why, with “symmetric” cuts ph1T,min = ph2T,min = 0 and fine binning, the first

bin(s) of the ph1T distribution are negative at fixed order, while this behaviour is cured by

the Sudakov factor, so it is absent in the LHE level and showered results.

– 12 –
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Figure 17. Higgs boson pair transverse momentum distribution phhT (left) and pj1T distribution
(right), comparing showered results with POWHEG and MG5 aMC@NLO. For the pj1T distribution we used
a cut of pjetT,min = 20GeV.
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Figure 18. Azimuthal angle separation ∆Φhh (left) and separation ∆Rhh (right).

kinematic regions which are predicted at the first non-trivial order by the NLO fixed order

calculation. Focusing on the comparison between the POWHEG curve with hdamp=250, which

is our default, we can say that in general the two predictions agree well within the scale and

statistical uncertainties. The small ∆Rhh region, on the right of figure 18, shows the largest

differences, which is not surprising as it is dominated by (multi-)jet events. We should

also mention that the curve for hdamp=250 in these figures is close to the NLO curves by

construction, as can be seen by comparing to the fixed order results shown in the previous

subsection.

In figure 19 we vary the shower starting scale Qsh in MG5 aMC@NLO by a factor of two

around the default value. In the latest version of MG5 aMC@NLO (version 2.5.3 onwards),

the shower starting scale is picked with some probability distribution to be in the interval

shower scale factor ×[0.1HT /2, HT /2] with HT computed with Born kinematics, there-

fore to perform the scale variation we set the shower scale factor in the run card to 0.5,

1 and 2.

The mhh distribution can be considered as a control plot to demonstrate that, as

expected, this has no effect on the mhh distribution. In contrast, in the phhT distribution, the

differences due to variations of the matching scale start to exceed the scale uncertainties

towards larger phhT values.
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Figure 17. Higgs boson pair transverse momentum distribution phhT (left) and pj1T distribution
(right), comparing showered results with POWHEG and MG5 aMC@NLO. For the pj1T distribution we used
a cut of pjetT,min = 20GeV.
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Figure 19. mhh and phhT distributions comparing showered results based on the same matrix
elements (NLO with full top quark mass dependence), varying the shower starting scale Qsh in
MG5 aMC@NLO by a factor of two up and down. The ratio plot is normalized to the POWHEG result for
hdamp=250. The bands show the envelope of the variation of the renormalisation and factorisation
scales.

Figure 20. Higgs boson pair transverse momentum distribution phhT comparing fixed order and
showered results. Left panel: POWHEG, right panel: MG5 aMC@NLO.

Because of the fact that for the phhT distribution, the tail is predicted at the first non-

trivial order, the effect of the shower on this distribution is rather large, exceeding a factor

of two beyond phhT ∼ 300GeV, as shown in figure 20. However, as can also be seen from

figure 20, the differences due to the shower are still much smaller than the difference between

the full calculation and the Born-improved HEFT approximation, which is off by an order

of magnitude for phhT > 500GeV. Figure 20 also shows that FTapprox does a good job for

this observable, as the tail of the phhT distribution is determined by the real radiation. In

the POWHEG case, the FTapprox curve still lies above the full result because the differences in

the virtual part enter the B̄ function in POWHEG, which determines the overall normalisation

for the shower.

Finally, we compare in figure 21 the fixed order result to showered results using different

values for hdamp in POWHEG and for the shower starting scale Qsh in MG5 aMC@NLO. The new

shower starting scale in MG5 aMC@NLO is picked in some interval with HT /2 as its maximum

as stated above, while the old shower starting scale was picked in the interval [0.1
√
ŝ,
√
ŝ].

One can observe that with the new shower starting scale in MG5 aMC@NLO, Qsh = Qnew
def , the

– 17 –
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Two Loop Amplitude

choose tensor decomposition such that

Glover, van der Bij ‘88

amplitude structure:

example gg ! hh

(independent of #loops) 

diagrams with trilinear couplings 
enter only here

• tensor structure  Glover, van der Bij `88
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with
choose tensor decomposition such that

Glover, van der Bij ‘88

amplitude structure:

example gg ! hh

(independent of #loops) 

diagrams with trilinear couplings 
enter only here

• projectors

construct Pµ⌫
i =

X

j

cijT
µ⌫
j such that

form factors/reduction

construct projectors such thatPµ⌫
j

current status:
projectors as input to GoSam-2L 
algebra done automatically by GoSam-2L (FORM)

interface to Reduze to identify integral symmetries

reduction: interface to Reduze, LiteRed, FIRE

triangle diagrams gg→H→HH  
only contribute to A1
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Amplitude Structure

and the mass counter-term in the on-shell scheme is given by

�m2
t =

✓

m2
t

µ2
R

◆�✏

m2
t CF

✓

�3

✏
� 4

◆

+O(✏) . (2.25)

The integrals Ir,s(s, t,m2
h,m

2
t ) appearing in the coe�cients (2.17), (2.18) have mass

dimension [Ir,s] = DL � 2r + 2s, with L the number of loops. We may therefore

factor a dimensionful parameter M out of each integral such that they depend only on

dimensionless ratios

Ir,s(s, t,m
2
h,m

2
t ) = (M2)�L✏(M2)2L�r+sIr,s

✓

s

M2
,

t

M2
,
m2

h

M2
,
m2

t

M2

◆

. (2.26)

The renormalized amplitude may then be written as

Avirt =
Y

n
g

Z
1
2
A AB

�

a0 ! aZa

�

µ2
R/µ

2
0

�✏
,m2

t0 ! m2
t + a �m2

t

�

= aA(1) + a2(
ng

2
�ZA + �Za)A(1) + a2�m2

tAct,(1) + a2A(2) +O(a3), (2.27)

A(1) =

✓

µ2
R

M2

◆✏
h

b(1)0 + b(1)1 ✏+ b(1)2 ✏2 +O(✏3)
i

, (2.28)

Act,(1) =

✓

µ2
R

M2

◆✏
h

c(1)0 + c(1)1 ✏+O(✏2)
i

, (2.29)

A(2) =

✓

µ2
R

M2

◆2✏
"

b(2)�2

✏2
+

b(2)�1

✏
+ b(2)0 +O(✏)

#

, (2.30)

where

b̃(L) = (M2)�L✏b(L) , c̃(L) = (M2)�L✏c(L). (2.31)

Since �m2
t contains poles of O(✏�1) the coe�cient c of the top mass counter-term must

be expanded to O(✏). It is obtained by insertion of a mass counterterm into heavy

quark propagators.

⇧�m
ab (p) =

i�ac
6 p�m

(�i�m)
i�cb

6 p�m
, (2.32)

where a, b, c are colour indices in the fundamental representation. Alternatively, the

mass counterterm can be obtained by taking the derivative of the one-loop amplitude

with respect to m.

It is clear that renormalizing the one-loop real radiation amplitudes and expanding the

renormalization constants to O(a) generates terms of O(a
5
2 ) which do not contribute

at NLO, their renormalization is therefore trivial.

– 10 –

rewrite loop integrals with r propagators and s inverse propagators as

and write renormalized form factors as

F virt = aF (1) + a2(
ng

2
�ZA + �Za)F

(1) + a2�m2
tF

ct,(1) + a2F (2) +O(a3)

F (1) =

✓
µ2
R

M2

◆" h
b(1)0 + b(1)1 "+ b(1)2 "2 +O("3)

i
,

F ct,(1) =

✓
µ2
R

M2

◆" h
c(1)0 + c(1)1 "+O("2)

i
,

F (2) =

✓
µ2
R

M2

◆2"
"
b(2)�2

"2
+

b(2)�1

"
+ b(2)0 +O(")

#
,

(1-loop)

(mass counter-term)

(2-loop)

arbitrary scale

→ scale variations do not require re-computation of b(n)i , c(n)i
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Amplitude Evaluation — Example

k1

p2

g

H

g

H

sector integral value error time [s] #points

5 (-1.34e-03, 2.00e-07) (2.38e-07, 2.69e-07) 0.255 1310420

6 (-1.58e-03, -9.23e-05) (7.44e-07, 5.34e-07) 0.266 1310420

. . .

41 (0.179, -0.856) (1.10e-05, 1.22e-05) 29.484 79952820

42 (0.359, -1.308) (1.40e-06, 1.58e-06) 80.24 211436900

44 (0.0752, -1.185) (5.44e-07, 6.76e-07) 99.301 282904860

1

integral value error time [s]

. . .

F1 011111110 ord0 (0.484, 4.96e-05) (4.40e-05, 4.23e-05) 11.8459

. . .

N3 111111100 k1p2k2p2 ord0 (0.0929, -0.224) (6.32e-05, 5.93e-05) 235.412

N3 111111100 1 ord0 (-0.0282, 0.179) (8.01e-05, 9.18e-05) 265.896

N3 111111100 k1p2k1p2 ord0 (0.0245, 0.0888) (5.06e-05, 5.31e-05) 282.794

N3 111111100 k1p2 ord0 (-0.00692, -0.108) (3.05e-05, 3.05e-05) 433.342

1

⇡ 700
integrals

I(s, t,m2
t ,m

2
h) = �

✓
µ2

M2

◆2"

�(3 + 2✏)M�4

✓
A�2

✏2
+

A�1

✏1
+A0 +O(✏)

◆

}
p
s = 327.25GeV,

p
�t = 170.05GeV, M2 = s/4

contributing integrals:

sector decomposition

30
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Results - Combination with NNLOHEFT

Figure 3: Distributions in the rapidity of the harder (left) and the softer (right) Higgs boson. Curves
and bands as in Fig. 2.

Figure 4: Invariant-mass distribution mHH (left) and rapidity distribution yHH (right) of the produced
Higgs boson pair. Curves and bands as in Fig. 2. Additionally, in the left plot we show the mHH

distribution as obtained with the calculation of Ref. [31].

In the right plot of Fig. 4 predictions for the rapidity of the Higgs boson pair, yHH , are presented.
Again, we observe a mild phase-space dependence, with increasing NNLO corrections only for large
rapidities. In all distributions in Figs. 2–4, NNLO scale uncertainties are reduced to the level of
±(5%� 12%), compared to ±(15%� 20%) at NLO.

8
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Figure 12: Total cross sections for various values of the triple Higgs coupling. Panel

(b) zooms into the region around the minimum. The curves are the result of an inter-

polation of integer values for � 2 {�1, . . . , 5}.

given e.g. by vacuum stability), do not lead to destructive interference and therefore

result in a much larger cross section. For large positive values, � ⇠ 5, the total cross

section is of comparable size to the one for � ' 0, but the shape of the mhh distribution

is completely di↵erent. This can be seen in Fig. 13, where we show the Higgs boson

pair invariant mass distribution for various values of the Higgs boson self-coupling, atp
s = 14 TeV and

p
s = 100 TeV. For � = 5, the di↵erential cross section is mainly

dominated by contributions containing the Higgs boson self coupling and peaks at low

mhh values. In contrast, the � = 0 case, which does not contain any triple Higgs

coupling contribution, peaks shortly beyond the 2mt threshold at mhh ⇠ 400 GeV, as

does the case � = �1. In the latter case, however, the total cross section is much larger.

The case � = 2 shows a dip at mhh ⇠ 300 GeV, which is due to destructive interference

e↵ects as mentioned above. At 100 TeV, the shape of the distributions is very similar.

However, the fact that the cross sections are much larger can be exploited to place cuts

which enlarge the sensitivity to the Higgs boson self coupling. For example, one can try

to enhance the self-coupling contribution by cuts favouring highly boosted virtual Higgs

bosons, decaying into a Higgs boson pair which could be detected in the bb̄ bb̄ channel.

A highly boosted virtual Higgs boson must recoil against a high-pT jet. Therefore,

an enhancement of the boosted component could be achieved by imposing a pmin
T,jet cut

on the recoiling jet in Higgs boson pair plus jet production [110, 111]. An additional

advantage of boosted Higgs bosons is the fact that they lend themselves to the use

of the bb̄bb̄ rather than the bb̄�� decay channel, as the decay channel into b-quarks is

accessible through boosted techniques. This leads to a gain in the rate which easily

makes up for the loss in statistics due to a high pmin
T,jet cut.

Fig. 14 shows a comparison to the di↵erent approximations for various values of �, as

– 28 –
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Figure 13: NLO and LO results with full top quark mass dependence for the mhh

distribution at 14 TeV and 100 TeV, for various values of the triple Higgs coupling,

where � = 1 corresponds to the Standard Model value.

well as the K-factors. For all values of �, the K-factors are far from being uniform,

while the HEFT approximation suggests almost uniform K-factors for �  1. For

� = 2, we see a pronounced “interference dip” at mhh ⇠ 330 GeV, which is present at

LO already. We can get an idea about the destructive interference e↵ect by observing

the following: In the basic HEFT approximation, the squared Born amplitude is given

by Eq. (2.14) This expression has a double zero at ŝ = m2
h(1 + 3�). Therefore, the

re-weighting factor BFT /BHEFT can get large when BHEFT approaches zero, i.e. atp
s ' 330.72 GeV for � = 2,

p
s ' 395.29 GeV for � = 3,

p
s ' 450.7 GeV for � = 4

and 500 GeV for � = 5. In the full theory, the amplitude does not vanish completely at

these points, but nonetheless also gets small, which should be the reason for the dips

in the mhh distributions for � = 2 and 3.
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LO calculation

unweighted events

sampling points 
virtual amplitude

• Importance  
sampling:

~1000 phase-space points

�V with 2.5% accuracy} using

• Accuracy goal: - 3% for form factor F1 
- 5-20% for form factor F2 (depending on F2/F1)

• Run time:
(gpu time)

- 80 min - 2 d  (≙wall-clock limit)  
- median: 2h

Calculation of σV
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Figure 2: Partonic cross section as a function the center-of-mass energy including various
orders in the inverse top quark mass. The dashed and solid curves correspond to the
factorization for the total and differential cross section, respectively. The colour coding
is taken over from Fig. 1.

Note that in Ref. [15] it has been observed that the soft-virtual approximation constructed
in Mellin space approximates the full (effective-theory) result with an accuracy of 2%.

It is interesting to look at the partonic K factor which is defined via

KNLO =
σLO + δσNLO

σLO
. (20)

Results for the two methods to factorize the exact LO term are plotted in Fig. 3 as a
function of

√
s where the dashed curves are already shown in Ref. [12]. One observes that

DF leads to a lower K factor and that the spread among the various ρ orders is smaller.
Furthermore, it is interesting to note that for DF the top quark pair threshold behaviour
of the LO term is not washed out in contrast to the dashed curves. It is common to
both factorization methods that there is a strong raise when approaching the threshold
for Higgs boson pair production (see also discussion in Ref. [12]).

Fig. 4 shows the hadronic cross section σH for Higgs boson pair production including
NLO corrections as a function of

√
scut which is a technical upper cut on the partonic

center-of-mass collision energy. It is introduced via

σH(sH , scut) =

∫ 1

4m2
H/sH

dτ

(

dLgg

dτ

)

(τ) σ(τsH) θ(scut − τsH) , (21)

9
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Figure 3: Partonic NLO K factor for the factorization performed at the level of the total
(dashed) and differential (solid) cross section.

where the luminosity function is given by
(

dLgg

dτ

)

(τ) =

∫ 1

0

dx1

∫ 1

0

dx2fg(x1)fg(x2)δ(τ − x1x2) . (22)

fg(x) are the gluon distribution functions in the MS scheme. Note that in the soft limit√
scut is a good approximation to Q2. The various lines in Fig. 4 correspond to the

inclusion of different orders in ρ at NLO. For convenience we show on the right end of
Fig. 4 the total cross section for

√
sH = 14 TeV. Note that the approximation used for

the computation of the ρn terms is not valid for large values of
√
scut (neither is the

effective-theory result). However, it can be used as an estimate of the mass correction
terms. Using the spread as an estimate for the uncertainty we conclude that a finite top
mass induces a ±10% uncertainty on top of the infinite top quark mass result.

The lower panel of Fig. 4 shows the hadronic K factor which is obtaind from Eq. (20)
by replacing σ by σH and using NLO PDFs in the numerator and LO PDFs in the
denominator. KNLO raises close to threshold, however, for

√
scut ∼> 500 GeV one observes

a flat behaviour of KNLO ≈ 1.6 (for µ = 2mH).

Top quark mass effects to double Higgs boson production have also been considered in
Ref. [13]. In the approximation used in that reference the real corrections are treated
exactly, however, the infinite top quark mass approximation is used for the virtual cor-
rections. A decrease of the cross section by about 10% due to finite top quark mass is

10

Grigo, Hoff, Steinhauser `15
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Differential Cross Section
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Figure 4. The differential Higgs pair production cross-section at leading order for the triangle,
box, and both diagrams (including their interference). All contributions are obtained using both
EFT and exact calculations (see legend).
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Figure 5. Left plot: comparison between the distributions of the opening angle between the two
Higgs momenta in EFT (thin lines) and exact calculation (thick lines) for the triangle (red lines) and
box (green lines). Right plot: Comparison between the inclusive Higgs pseudorapidity distributions
for EFT (thin light line) and exact (thick dark line) calculation.

reproduce the kink at 2 ⇥mq (which is the result of using the approximate form factor of
eq. (2.8) instead of the one in eqs. (2.4) and (2.5), see Fig. 2). In the left plot in Fig. 5
we compare the angle between the two Higgses in the laboratory frame (exact– thick lines,
EFT– thin lines) for the box (dotted) and triangle (dashed-dotted) contributions. For the
triangle, both approaches give similar shapes. For the box, the difference between exact and
EFT calculations decreases when the Higgses get more back-to-back. The exact calculations
show a larger preference for the two Higgses to have a small opening angle. This effect is less
pronounced in the EFT calculations and can be explained by analysing the right graph in
Fig. 5. Here, the rapidity of each Higgs is presented. Loop calculations result in a broader
distribution which, is caused by larger differences between the Bjorken x of the colliding

– 7 –
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NNLO and NNLL results
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Figure 1: The Higgs pair invariant mass distribution for Ecm = 14 TeV and the central scale µ0 = Q, for
the fixed order (left) and resummed (right) predictions. In the left (right) we show the LO (LL), NLO
(NLL) and NNLO (NNLL) curves, with blue dotted, red dashed and black solid lines respectively.
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Figure 2: The Higgs pair invariant mass distribution for Ecm = 14 TeV and the central scale µ0 = Q/2,
for the fixed order (left) and resummed (right) predictions. The color coding is the same of Figure 1.

3 NNLL phenomenology

We present in this section the phenomenological results. For the computation we take the Higgs
mass to be MH = 125 GeV. All the results are normalized by the exact LO top mass dependence,
with Mt = 173.21 GeV. For the parton luminosities and strong coupling we use the MSTW2008
sets, consistently at each perturbative order (i.e. LO PDFs and one-loop ↵S evolution for LO
and LL cross sections, etc.). The scale uncertainty was evaluated by varying independently the
renormalization and factorization scales in the range µ0/2  µR, µF  2µ0 with the constraint
1/2  µR/µF < 2, where µ0 is the central scale. The analysis was performed for two choices of
the central scale: µ0 = Q and µ0 = Q/2, being Q the invariant mass of the Higgs pair system.

The contributions from all the relevant partonic channels are always included in our numerical
results. As described in the previous section, the threshold resummation only applies for the gg
channel. With the corresponding matching we also account for the other partonic subprocesses at
the corresponding fixed order accuracy.

We start by showing the Higgs pair invariant mass distribution for a collider center of mass
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Figure 3: The K-factors for the fixed order and resummed cross sections as a function of the Higgs pair
invariant mass, for Ecm = 14 TeV. The left (right) panel shows the results for µ0 = Q (µ0 = Q/2). The
color coding is the same of Figure 1.

energy Ecm = 14 TeV. In Figure 1 we present the results corresponding to the central scale
µ0 = Q, while in Figure 2 the ones corresponding to µ0 = Q/2 are shown. For both figures, in the
left plot we present the fixed order prediction (at LO, NLO and NNLO) while in the right one we
show the resummed cross section (at LL, NLL and NNLL). ‡

In the first place we can observe that, with the exception of the µ0 = Q/2 resummed distribu-
tions, there is no overlap between the LO (LL) and NLO (NLL) bands, and it is only at second
order that a sensible superposition of the bands occurs. We can also see from the plots that at
every order the inclusion of the resummed contributions results in an increase of the cross section.
Also, we can observe that the size of the uncertainty band at NNLL is always smaller than the
corresponding NNLO one. This e↵ect is more clear with the choice µ0 = Q, for which also a better
overlap between the NNLL and NLL bands is observed, with respect to the NNLO and NLO ones.
The fixed order and resummed distributions have less di↵erences for µ0 = Q/2, as was already
observed for single Higgs production, where the choice µ0 = MH/2 partially mimics some of the
threshold resummation e↵ects. Regarding the shape of the distributions, we observe very small
di↵erences after the resummation is performed. This is due to the fact that the relative size of
the resummed contributions has a rather small dependence on the Higgs pair invariant mass.

In Figure 3 we present the K-factors, defined as the ratio between a given prediction and the
LO one. For the denominator we fix µR = µF = µ0. We observe, in more detail, the same features
described above at the level of the cross section. In particular, it is visible that the resummed
series has a better convergence than the fixed order one, exhibiting a larger overlap between the

‡For simplicity, we always label our resummed predictions as LL, NLL and NNLL. As explained before, these
results include the matching to the fixed order cross section, so they should be interpreted as LL+LO, NLL+NLO
and NNLL+NNLO respectively.
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Figure 4: The ratio between the NNLL and the NNLO predictions as a function of the Higgs pair
invariant mass, for the scales µ = Q (left) and µ = Q/2 (right). Results are shown for center of mass
energies of 8 TeV (orange solid), 14 TeV (magenta dashed), 33 TeV (purple dot-dashed) and 100 TeV
(black dotted).

µ0 = Q NNLO (fb) scale unc. (%) NNLL (fb) scale unc. (%) PDF unc. (%) PDF+↵S unc. (%)
8 TeV 9.92 +9.3� 10 10.8 +5.4� 5.9 +5.6� 6.0 +9.3� 9.2

13 TeV 34.3 +8.3� 8.9 36.8 +5.1� 6.0 +4.0� 4.3 +7.7� 7.5
14 TeV 40.9 +8.2� 8.8 43.7 +5.1� 6.0 +3.8� 4.0 +7.5� 7.3
33 TeV 247 +7.1� 7.4 259 +5.0� 6.1 +2.2� 2.8 +6.1� 6.1
100 TeV 1660 +6.8� 7.1 1723 +5.2� 6.1 +2.1� 3.0 +5.7� 5.8

µ0 = Q/2 NNLO (fb) scale unc. (%) NNLL (fb) scale unc. (%) PDF unc. (%) PDF+↵S unc. (%)
8 TeV 10.8 +5.7� 8.5 11.0 +4.0� 5.6 +5.8� 6.1 +9.6� 9.3

13 TeV 37.2 +5.5� 7.6 37.4 +4.2� 5.8 +4.1� 4.3 +7.8� 7.6
14 TeV 44.2 +5.5� 7.6 44.5 +4.2� 5.9 +3.9� 4.1 +7.6� 7.4
33 TeV 264 +5.3� 6.6 265 +4.6� 6.1 +2.4� 2.7 +6.3� 6.1
100 TeV 1760 +5.3� 6.7 1762 +4.9� 6.4 +2.2� 3.1 +6.2� 7.0

Table 1: The total cross section and theoretical uncertainties for di↵erent center of mass energies, at
NNLO and NNLL, for µ0 = Q and µ0 = Q/2. PDF and PDF+↵S uncertainties correspond to the
resummed predictions, and are estimated using the sets of MSTW2008 at 90% confidence level.

first and second order bands.

In Figure 4 we show the ratio between the NNLL and the NNLO predictions, again as a
function of the Higgs pair invariant mass, for di↵erent collider energies. The ratio shows an
almost linear dependence on Q, increasing for higher invariant masses. Actually, this is expected
because resummation contributions are enhanced when the process becomes closer to the partonic
threshold. The same feature is reflected by the fact that the resummation contributions are
relatively smaller for larger collider energies. We can also observe, as it was already clear from
Figures 1 and 2, that the ratio between NNLL and NNLO is significantly smaller for the scale
choice µR = µF = µ = Q/2. At the total cross section level, for example, we find that the increase
in the NNLL result with respect to the NNLO prediction is of 6.8% for Ecm = 14 TeV and µ = Q,
while it drops down to 0.65% for µ = Q/2.

We focus now on the theoretical uncertainty arising from the missing higher order contributions,
which is estimated by the scale variation indicated above. In Table 1 we present the total cross
section predictions at NNLO and NNLL, together with the scale uncertainty. We can observe
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Analytically known integrals

3-point, 1 off-shell leg 3-point, 2 off-shell leg

Gehrmann, Guns, Kara `15

→HPLs
→ generalized HPLs, 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Amplitude StructureAmplitude Structure (II)

Form factors are sums of rational functions multiplied by integrals that 
depend on ratios of the scales                    and the arbitrary scale     

Additionally, all   -loop form factors are computed simultaneously 
without re-evaluating common integrals

18

Note:                  is a loop induced process, real subtraction and mass 
factorisation contained in             operators (not discussed here)
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Phase-Space SamplingPhase-Space Sampling

Phase-space implemented by hand  
limited to 2-3 w/ 2 massive particles 

Events for virtual: 

1) VEGAS algorithm applied to LO 
matrix element               events 
computed  

2) Using LO events unweighted 
events generated using accept/reject 
method             events remain 

3) Randomly select 666 Events 
(woops), compute at NLO, exclude 1

20

O(100k)

O(30k)

Note: No grids used either for integrals or phase-space
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