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We measure XXX and the observable is
in agreement with the Standard Model 
predictions

EXP
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We measure XXX and the observable is
in agreement with the Standard Model 
predictions

EXP

We compute XXX at NiLO and find a 
considerable reduction in scale dependence
and a better description of the data 

TH
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perturbative partonic cross-section

non-perturbative parton distributions
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‣ In the LHC era, QCD is everywhere!
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H, �, Z,W

jet

‣ Require precision for perturbative and non-perturbative contribution
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LO, NLO
NNLO, N3LO

PS
Resummation

The perturbative toolkit for precision at colliders
Everything starts with a
 fixed order calculation

EW Automation



Fixed Order QCD corrections                          Daniel de Florian 5

LO, NLO
NNLO, N3LO

PS
Resummation

The perturbative toolkit for precision at colliders
Everything starts with a
 fixed order calculation

EW Automation
LO, NLO

NNLO, N3LO…

d�̂ = ↵n
s d�̂(0) + ↵n+1

s d�̂(1) + ...

‣Partonic cross-section: expansion in ↵s(µ
2
R) ⌧ 1
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‣ LHC incredibly successful at 7 , 8 & 13 TeV (Runs 1 and II)
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All results at: http://cern.ch/go/pNj7
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=n jet(s)

t-cht tW s-cht γtt tZq ttW ttZ tttt
σ∆ in exp. Hσ∆Th. 

ggH qqH
VBF VH ttH HH

CMS 95%CL limits at 7, 8 and 13 TeV

)-1 5.0 fb≤7 TeV CMS measurement (L 
)-1 19.6 fb≤8 TeV CMS measurement (L 
)-1 35.9 fb≤13 TeV CMS measurement (L 

Theory prediction

‣ Everything SM like (including Higgs)
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Why higher order corrections?

‣ Accurate Theoretical Predictions         

⇥(p1, p2) =
�

a,b

⇥ 1

0
dx1

⇥ 1

0
dx2 fa/h1(x1, µ

2
F ) fb/h2(x2, µ

2
F ) � ⇤̂ab(x1p1, x2p2,�s(µ2

R), µ2
R, µ2

F )

Scale dependence considerably 
reduced at higher orders

TH uncertainty

Anastasiou et al

Drell-Yan

‣ Large Corrections : check PT
      shape and normalization

↵s ⇠ 0.1 slow convergence
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‣ Extra radiation : more partons result in better TH/EXP matching

‣ Opening of new channels

๏Diboson production

Sometimes new channels at higher order provide large corrections 
due to parton luminosity (pdf, non-perturbative-pertubative interplay)

What NNLO might give you

✓ Reduced renormalisation scale dependence

✓ Event has more partons in the final state so perturbation theory can start to
reconstruct the shower
⇒ better matching of jet algorithm between theory and experiment

LO NLO NNLO
✓ Reduced power correction as higher perturbative powers of 1/ ln(Q/Λ) mimic

genuine power corrections like 1/Q
– p. 23

Description of jets, transverse momentum, etc

but      Luminosity O(↵2
s) ggO(↵0

s) but      Luminosity qq̄ but      Luminosity O(↵s) qg
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  Enormous progress in getting NLO predictions for 
2�(4,5,6!) processes over the last years 

  Made possible by   
  Improved techniques for loop amplitudes 
  Crucial: a high level of automation 

Brookhaven Forum 2013 5 Aude Gehrmann-De Ridder 

NLO Multi-parton production  
One-loop calculations

✤ These developments of one-loop technology lead to  
a serious accomplishment -- NLO QCD predictions 
are now available for major collider processes,  
making rich phenomenology possible 

✤ multiple jets ( up to 4)

✤ a gauge boson and up to 5 (!) jets

✤ multiple gauge bosons in association with up to 
2 jets ( up to VV+2jets)

✤ top quarks in association with jets (up to two) 
and gauge photons (W,Z,photon)

✤ Higgs and up to two jets

  

Progress with NLO computations

● In the past three-four years, dramatic developments occurred in the field of next-to-leading 
order calculations for the LHC.  We were so successful, that the famous NLO wish-list has 
been officially closed by Joey Huston as of May 2012

NLO predictions are currently available  for 
major production channels: 

 1) multiple jets (up to 4 jets )

2)  a gauge boson and up to 5 jets

3) multiple gauge bosons in association with 
jets ( up to VV + 2j)

4)  top quarks in association with jets (up to 
two) and gauge bosons (W,Z, photon)

5) Higgs and jets

Bern, Dixon, Kosower, Berger, Forde, Maitre, Febres-Cordero, Bern, Dixon, Kosower, Berger, Forde, Maitre, Febres-Cordero, 

Gleisberg, Papadopoulos, Ossola, Pittau, Czakon, Worek, Gleisberg, Papadopoulos, Ossola, Pittau, Czakon, Worek, 
Bevilacqua, Ellis, Kunszt, Giele, Zanderighi, Melia, Rountsh, Bevilacqua, Ellis, Kunszt, Giele, Zanderighi, Melia, Rountsh, 

Denner, Dittmaier, Pozzorini, KallweitDenner, Dittmaier, Pozzorini, Kallweit

C
L
O
S
E
D

Wednesday, March 20, 13

K. Melnikov,  MITP, 2013 
 

13 2012:  NLO  W+5j [BlackHat, preliminary] [unitarity] 

G. Salam, La Thuile 2012 

The NLO revolution

NLO
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‣Bottleneck was in the virtual contribution : large multiplicities

Revolution in calculation of 1-loop amplitudes

Feynmanian approach

 Improvements in decomposition and reduction
Denner, Dittmaier; Pozzorini; Binoth, Guillet, Heinrich, Pilon, Schubert + 
many others

Unitarian approach

 Use multi-particle cuts from generalized unitarity 
Bern, Dixon, Dunbar, Kosower; Britto, Cachazo, Feng; Mastrolia; Forde; 
Badger; Ellis, Giele, Kunszt, Melnikov + many others

OPP Ossola, Papadopoulos, Pittau decomposition at the integrand level

+
X

i

ai+
X

i

bi+
X

i

ci=
X

i

di +
x

y

J. Henn QCD@LHC17
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‣ Final goal: Really automatic NLO calculations zero cost for humans
•  Specify the process (input card)
•  Input parameters
•  Define final cuts

• in a few years a number of codes 

• compete on precision, flexibility, speed, stability, ...

‣ Automatic NLO calculation “conceptually” solved

• many features : uncertainties, Parton shower, …

HELAC-NLO, Rocket, BlackHat+SHERPA, GoSam+SHERPA/MADGRAPH,
NJet+SHERPA, Madgraph5-aMC@NLO, RECOLA, OpenLoops+SHERPA
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‣ Final goal: Really automatic NLO calculations zero cost for humans
•  Specify the process (input card)
•  Input parameters
•  Define final cuts

• in a few years a number of codes 

• compete on precision, flexibility, speed, stability, ...

‣ Automatic NLO calculation “conceptually” solved

• many features : uncertainties, Parton shower, …

HELAC-NLO, Rocket, BlackHat+SHERPA, GoSam+SHERPA/MADGRAPH,
NJet+SHERPA, Madgraph5-aMC@NLO, RECOLA, OpenLoops+SHERPA

Example: pp→tt+j

How easy is NLO these days?

[Dittmaier, Uwer, Weinzierl (2007)]

(+ decays) [Schulze, Melnikov (2009)]

e.g. MadGraph5_aMC@NLO v2.1.1 
[Alwall et al. 1405.0301]
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Example: pp→tt+j

How easy is NLO these days?

[Dittmaier, Uwer, Weinzierl (2007)]

(+ decays) [Schulze, Melnikov (2009)]

e.g. MadGraph5_aMC@NLO v2.1.1 
[Alwall et al. 1405.0301]
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Example: pp→tt+j

How easy is NLO these days?

[Dittmaier, Uwer, Weinzierl (2007)]

(+ decays) [Schulze, Melnikov (2009)]

e.g. MadGraph5_aMC@NLO v2.1.1 
[Alwall et al. 1405.0301]
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How easy is NLO these days?
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(+ decays) [Schulze, Melnikov (2009)]
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+
, 2

+
, 3

+
; 4

+
, 5

+
) =

i

h12ih23ih34ih45ih51i
⇣
c431I431[F1]

+ c

T
431I431

⇥
F1 (k1 + p5)

2
⇤
+ c331;M1I331;M1 [F1] + c331;M2I331;M2 [F1] + c331;5LI331;5L [F1]

+ c430

�
s23I430

⇥
F3 ((k1 + k2)

2
+ s45)

⇤
+ I430

⇥
F3 ((k1 + k2)

2
+ s45) 2(k1 · !123)

⇤�

+ c330;M1I330;M1

⇥
F3 ((k1 + k2)

2
+ s45)

⇤
+ c330;M2I330;M2

⇥
F3 ((k1 + k2)

2
+ s45)

⇤

+ c

a
330;5LI330;5L [F3 N1(k1, k2, 1, 2, 3, 4, 5)] + c

b
330;5LI330;5L [F3 N2(k1, k2, 1, 2, 3, 4, 5)]

+ c

c
330;5LI330;5L [F3 N2(k2, k1, 5, 4, 3, 2, 1)] + c

d
330;5LI330;5L

⇥
F3 (k1 + k2)

2
⇤⌘

import model loop_sm-no_b_mass

define p = g u u~ c c~ d d~ s s~ b b~

define j = g u u~ c c~ d d~ s s~ b b~

generate p p > t~ t j [QCD]

output my_pp_ttj

calculate_xs NLO

p
s = 14TeV pT,j > 20GeV kT alg. R = 1

Nf = 5 mt = 174GeV CTEQ6M

�

NLO
pp!t̄tj(µR = µF = mt) = 687(7)

+23
�58 pb

How easy is NLO these days? 
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Dijet production

results for inclusive and two-jet distributions have been available since the early 1990’s [3–

6]. The first complete next-to-NLO (NNLO) QCD predictions have appeared only very

recently [7]. As a rule of thumb based on the values of the respective coupling constants,

NNLO QCD e↵ects (O(↵4
S)) have the same numerical impact as the so-called NLO ones

in the electroweak (EW) theory (O(↵2
S↵)). Partial pure-weak contributions to the latter

had been computed in refs. [8, 9], and the complete weak results published in ref. [10].

The rationale for ignoring the NLO EW corrections of electromagnetic origin, which to the

best of our knowledge have not been calculated so far, is the possible enhancement of weak

contributions due to the growth of logarithmic terms of Sudakov origin in certain regions

of the phase space associated with large scales [11–14], in particular at high transverse mo-

menta. Incidentally, such Sudakov e↵ects can also be responsible for large violations of the

natural hierarchy of QCD and EW corrections, with NLO EW ones becoming significantly

larger than their NNLO QCD counterparts and competitive with the NLO QCD results.

Motivated by the previous considerations, in this paper we present the computation

of all the leading and next-to-leading order contributions to the dijet cross section in a

mixed QCD-EW coupling scenario. In other words, we compute all the terms in the

perturbative series that factorise the coupling-constant combinations ↵n
S↵

m, with n+m = 2

(leading order, LO) and n +m = 3 (NLO). Thus, we calculate here for the first time the

O(↵2
S↵) electromagnetic contribution, and the two NLO terms of O(↵S↵

2) and O(↵3). Our

computations are carried out in the MadGraph5 aMC@NLO framework [15] (MG5 aMC

henceforth), and are completely automated; this work therefore constitutes a further step

in the validation of the MG5 aMC code, in a case that requires the subtraction of QED

infrared singularities which is significantly more involved than that studied in ref. [16]. We

also take the opportunity to discuss issues that arise when one defines jets in the presence

of final-state photon and leptons.

This paper is organised as follows. In sect. 2 we outline the contents of our computation

and the general features of the framework in which it is performed. The problem of the

definition of jets in the context of higher-order EW calculations is discussed in sect. 3.

Phenomenological results for the LHC Run II are given in sect. 4. Finally, we present our

conclusions in sect. 5.

2 Calculation setup

A generic observable in two-jet hadroproduction can be written as follows:

⌃(LO)
jj (↵S,↵) = ↵2

S ⌃2,0 + ↵S↵⌃2,1 + ↵2⌃2,2

⌘ ⌃LO1 + ⌃LO2 + ⌃LO3 , (2.1)

⌃(NLO)
jj (↵S,↵) = ↵3

S ⌃3,0 + ↵2
S↵⌃3,1 + ↵S↵

2⌃3,2 + ↵3⌃3,3

⌘ ⌃NLO1 + ⌃NLO2 + ⌃NLO3 + ⌃NLO4 , (2.2)

at the LO and NLO respectively. The notation we adopt throughout this paper is fully

analogous to that of refs. [15–17]. We refer the reader, in particular, to ref. [17] for a detailed

discussion on the physical meaning of the terms that appear in eqs. (2.1) and (2.2), and
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Figure 2. Single-inclusive transverse momentum.

was previously mentioned, a solid (dashed) pattern indicates that the corresponding result

is positive (negative). The three LO results are displayed as histograms overlaid with

symbols: red with full diamonds for ⌃LO1 , green with open boxes for ⌃LO2 , and brown

with open circles for ⌃LO3 . The four NLO results are associated with plain histograms:

blue for ⌃NLO1 , purple for ⌃NLO2 , yellow for ⌃NLO3 , and cyan for ⌃NLO4 ; the sum of all

contributions is represented by the black histogram. The middle inset presents the ratios

of the results shown in the upper inset, over the all-orders prediction; in other words, these

are the fractional contributions of the ⌃LOi and ⌃NLOi terms to the most accurate result

obtained from our simulations. The patterns employed in the middle inset are identical

to those of the upper inset. Finally, the bottom inset presents the relative theoretical

– 12 –

‣QCD dominant (except very large pT)
‣Coupling hierarchy ~ respected
‣Large cancellations in EW contributions
‣No HB radiation
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Dijet production

results for inclusive and two-jet distributions have been available since the early 1990’s [3–

6]. The first complete next-to-NLO (NNLO) QCD predictions have appeared only very

recently [7]. As a rule of thumb based on the values of the respective coupling constants,

NNLO QCD e↵ects (O(↵4
S)) have the same numerical impact as the so-called NLO ones

in the electroweak (EW) theory (O(↵2
S↵)). Partial pure-weak contributions to the latter

had been computed in refs. [8, 9], and the complete weak results published in ref. [10].

The rationale for ignoring the NLO EW corrections of electromagnetic origin, which to the

best of our knowledge have not been calculated so far, is the possible enhancement of weak

contributions due to the growth of logarithmic terms of Sudakov origin in certain regions

of the phase space associated with large scales [11–14], in particular at high transverse mo-

menta. Incidentally, such Sudakov e↵ects can also be responsible for large violations of the

natural hierarchy of QCD and EW corrections, with NLO EW ones becoming significantly

larger than their NNLO QCD counterparts and competitive with the NLO QCD results.

Motivated by the previous considerations, in this paper we present the computation

of all the leading and next-to-leading order contributions to the dijet cross section in a

mixed QCD-EW coupling scenario. In other words, we compute all the terms in the

perturbative series that factorise the coupling-constant combinations ↵n
S↵

m, with n+m = 2

(leading order, LO) and n +m = 3 (NLO). Thus, we calculate here for the first time the

O(↵2
S↵) electromagnetic contribution, and the two NLO terms of O(↵S↵

2) and O(↵3). Our

computations are carried out in the MadGraph5 aMC@NLO framework [15] (MG5 aMC

henceforth), and are completely automated; this work therefore constitutes a further step

in the validation of the MG5 aMC code, in a case that requires the subtraction of QED

infrared singularities which is significantly more involved than that studied in ref. [16]. We

also take the opportunity to discuss issues that arise when one defines jets in the presence

of final-state photon and leptons.

This paper is organised as follows. In sect. 2 we outline the contents of our computation

and the general features of the framework in which it is performed. The problem of the

definition of jets in the context of higher-order EW calculations is discussed in sect. 3.

Phenomenological results for the LHC Run II are given in sect. 4. Finally, we present our

conclusions in sect. 5.

2 Calculation setup

A generic observable in two-jet hadroproduction can be written as follows:

⌃(LO)
jj (↵S,↵) = ↵2

S ⌃2,0 + ↵S↵⌃2,1 + ↵2⌃2,2

⌘ ⌃LO1 + ⌃LO2 + ⌃LO3 , (2.1)

⌃(NLO)
jj (↵S,↵) = ↵3

S ⌃3,0 + ↵2
S↵⌃3,1 + ↵S↵

2⌃3,2 + ↵3⌃3,3

⌘ ⌃NLO1 + ⌃NLO2 + ⌃NLO3 + ⌃NLO4 , (2.2)

at the LO and NLO respectively. The notation we adopt throughout this paper is fully

analogous to that of refs. [15–17]. We refer the reader, in particular, to ref. [17] for a detailed

discussion on the physical meaning of the terms that appear in eqs. (2.1) and (2.2), and
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Figure 2. Single-inclusive transverse momentum.

was previously mentioned, a solid (dashed) pattern indicates that the corresponding result

is positive (negative). The three LO results are displayed as histograms overlaid with

symbols: red with full diamonds for ⌃LO1 , green with open boxes for ⌃LO2 , and brown

with open circles for ⌃LO3 . The four NLO results are associated with plain histograms:

blue for ⌃NLO1 , purple for ⌃NLO2 , yellow for ⌃NLO3 , and cyan for ⌃NLO4 ; the sum of all

contributions is represented by the black histogram. The middle inset presents the ratios

of the results shown in the upper inset, over the all-orders prediction; in other words, these

are the fractional contributions of the ⌃LOi and ⌃NLOi terms to the most accurate result

obtained from our simulations. The patterns employed in the middle inset are identical

to those of the upper inset. Finally, the bottom inset presents the relative theoretical

– 12 –

‣QCD dominant (except very large pT)
‣Coupling hierarchy ~ respected
‣Large cancellations in EW contributions
‣No HB radiation

dash=negative

Off-shell effects

‣Large corrections in kinematical edges

e.g., ttj Bevilaqua et al (2015)
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‣  Better stability

‣NLO in very good
  agreement with data!

Multi-jet production
Njet+Sherpa (Badger, Biedermann, Uwer, Yundin) 

pp ! 5 jets atNLO

4

FIG. 1. Same as Fig. 2 but using the NLO setup in LO.

the two bands, LO and NLO, nicely overlap. Note however
that we have used the NLO setup in the leading order calcu-
lation. In particular the NLO PDFs with the corresponding as
are employed. In Fig. 2 we show the scale dependence using

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

x, µR = x bHT

0

500

1000

1500

�
(p

b)

NJet + Sherpa
pp ! 5 jet at 7 TeV

LO

NLO

FIG. 2. Residual scale dependence of the 5-jet cross section in lead-
ing and next-to-leading order.

in the leading order prediction LO PDFs with the respective
as. Compared to Fig. 1 we observe in Fig. 2 a much larger dif-
ference between the LO and NLO prediction. To some extend
the difference is due to the change in as. Similar to what has
been found in Ref. [6] we conclude that using the NLO PDFs
in the LO predictions gives a better approximation to the full
result compared to using LO PDFs.

Although not a physical observable it is interesting to ask
how the different partonic channels contribute to the inclusive
5-jet rate. Ignoring different quark flavours we distinguish
nine partonic channels in LO:

gg ! 5g, gg ! qq+3g, qg ! q+4g,
qq ! 5g, gg ! 4q+g, qg ! 3q+2g,
qq ! qq+3g, qg ! 5q, qq ! 4q+g,

where q may be any quark or anti-quark with exception of the
top-quark i.e. qq = {uu,uū,ud,ud̄, . . .}. In Tab. I the indi-
vidual contribution of each channel is presented. The most

TABLE I. Contribution of individual partonic channels.

qg ! q+4g 39.2%
gg ! 5g 27.3%
qq ! 2q+3g 13.5%
qg ! 3q+2g 9.0%
gg ! 2q+3g 8.5%
qq ! 4q+g 1.8%
gg ! 4q+g 0.5%
qg ! 5q 0.2%
qq ! 5g 0.04%

important contribution is provided by the qg initial state. Al-
most 50% of the cross section can be attributed to this chan-
nel. This is a consequence of the large parton luminosity in
combination with the sizeable cross sections. Among the qg
initiated reactions the qg ! q+4g channel is with about 40%
of the cross section the most important process. Replacing
the quark line in this process by a gluon will still lead to large
partonic cross sections. However the gg parton flux is reduced
compared to the qg initial state. As a consequence the purely
gluonic reaction leads to a slightly smaller contribution and is
responsible for about 25% of the cross section. The composi-
tion of the cross section may provide useful information when
jet rates are used to constrain the PDFs. Since the luminosity
functions

Li j(ŝ,shad,µ f ) =
1

shad

shadZ

ŝ

ds
s

Fi/p

⇣
µ f ,

s
shad

⌘
Fj/p

⇣
µ f ,

ŝ
s

⌘
(8)

depend on the partonic centre-of-mass energy, the composi-
tion may be different for different kinematical configurations.
We come back to this point when we discuss differential dis-
tributions.

In Tab. II we show for completeness the cross sections for
two, three and four-jet production as calculated with NJET
using the same setup as in the five jet case. The real correc-
tions to five-jet production allow us to calculate also the cross
section for six jet production, however only in leading order
QCD. The result is given by

3

ds̄V
n denotes the finite part of the virtual corrections, ds̄I

n the
finite part of the integrated subtraction terms together with the
contribution from the factorization and dsRS

n+1 the real cor-
rections combined with the subtraction terms. For the com-
putation of ds̄I

n and dsRS
n we use Sherpa which provides a

numerical implementation of the Catani-Seymour subtraction
scheme. The required tree-level amplitudes are, as in the LO
case, computed with Comix as part of the Sherpa framework.

The necessary one-loop matrix elements for the virtual cor-
rections ds̄V

n are evaluated with the publicly available NJET1

package [1]. NJET uses an on-shell generalized unitarity
framework [30–33] to compute multi-parton one-loop prim-
itive amplitudes from tree-level building blocks. An accu-
rate numerical implementation is achieved using the integrand
reduction procedure of OPP [34]. The algorithm is based
on the NGLUON library [11] following the description of D-
dimensional generalized unitarity presented in Refs. [35, 36]
and using Berends-Giele recursion [37] for efficient numer-
ical evaluation of tree-level amplitudes. For a more detailed
description of the employed methods and the usage of the pro-
gram, we refer to Refs. [1, 11]. The scalar loop integrals are
obtained via the QCDLOOP/FF PACKAGE [38, 39]. We note
that NJET is so far the only publicly available tool that is able
to compute all one-loop seven-point matrix-elements that con-
tribute to five-jet production in hadronic collisions. For refer-
ence numerical evaluations of the one-loop matrix elements at
a single phase-space point have been presented previously [1].

III. RESULTS FOR 5-JET PRODUCTION AT THE LHC AT
7 AND 8 TEV

A. Numerical setup

As mentioned earlier we use the Sherpa Monte-Carlo event
generator [26] to handle phase-space integration and gen-
eration of tree-level and Catani-Seymour dipole subtraction
terms using the colour dressed formalism implemented in
Comix [27, 28]. The virtual matrix elements are interfaced
using the Binoth Les Houches Accord [40, 41].

To combine partons into jets we use the anti-kt jet clustering
algorithm as implemented in FASTJET [42, 43]. Furthermore
asymmetric cuts on the jets ordered in transverse momenta,
pT , are applied to match the ATLAS multi-jet measurements
[7]:

p j1
T > 80 GeV, p j�2

T > 60 GeV, R = 0.4. (6)

The PDFs are accessed through the LHAPDF interface
[44] with all central values using NNPDF2.1 [45] for LO
(as(MZ) = 0.119) and NNPDF2.3 [46] for NLO (as(MZ) =
0.118) if not mentioned otherwise.

Generated events are stored in Root Ntuple format [47]
which allows for flexible analysis. Renormalization and fac-
torization dependence can be re-weighted at the analysis level

1 To download NJET visit the project home page at
https://bitbucket.org/njet/njet/.

as well as the choice of PDF set. Since the event generation
of high multiplicity processes at NLO is computationally in-
tensive analysis of PDF uncertainties and scale choices would
be prohibitive without this technique.

B. Numerical results

In this section we present the numerical results for total
cross sections and selected2 distributions at centre-of-mass
energies of 7 and 8 TeV. Within the setup described in the
previous section we have chosen the renormalization and fac-
torization scales to be equal µr = µ f = µ and use a dynamical
scale based on the total transverse momentum bHT of the final
state partons:

bHT =
Nparton

Â
i=1

pparton
T,i . (7)

We then obtain the 5-jet cross section at 7 TeV,

µ s7TeV-LO
5 [nb] s7TeV-NLO

5 [nb]
bHT/2 0.699(0.004) 0.544(0.016)
bHT 0.419(0.002) 0.479(0.008)
bHT/4 1.228(0.006) 0.367(0.032)

where numerical integration errors are quoted in parentheses.
We show the values of the cross section at three values of the
renormalization scale, µ = x bHT/2 where x = 0.5,1,2. We ob-
serve significant reduction in the residual scale dependence
when including NLO corrections. Within the chosen scale
band, the LO predictions lie within a range of 0.810 nb while
at NLO the range is 0.177 nb. The analagous results at 8 TeV
are shown below.

µ s8TeV-LO
5 [nb] s8TeV-NLO

5 [nb]

bHT/2 1.044(0.006) 0.790(0.021)
bHT 0.631(0.004) 0.723(0.011)
bHT/4 1.814(0.010) 0.477(0.042)

In Fig. 1 the scale dependence of the leading order and next-
to-leading order cross section is illustrated. The dashed black
line indicates µ = bHT/2. The horizontal bands show the vari-
ation of the cross section for a scale variation between bHT/4
and bHT . The uncertainty due to scale variation is roughly
reduced by a factor of one third. Furthermore we see that
around µ = bHT/2 the NLO cross section is flat indicating that
µ = bHT/2 is a reasonable choice for the central scale. This is
further supported by the fact that for µ = bHT/2 the NLO cor-
rections are very small. It is also interesting to observe that

2 The complete set of results presented in this section together with ad-
ditional distributions for 7 and 8 TeV can be obtained from https://

bitbucket.org/njet/njet/wiki/Results/Physics.

5

µ s7TeV-NLO
2 [nb] s7TeV-NLO

3 [nb] s7TeV-NLO
4 [nb]

bHT /2 1175(3) 52.5(0.3) 5.65(0.07)

bHT 1046(2) 54.4(0.2) 5.36(0.04)

bHT /4 1295(4) 33.2(0.4) 3.72(0.12)

TABLE II. Results for two, three and four-jet production with the
same setup as in the five-jet case. All values in units of nb.

µ s7TeV-LO
6 [nb] s8TeV-LO

6 [nb]

bHT/2 0.0496(0.0005) 0.0844(0.0010)
bHT 0.0263(0.0003) 0.0452(0.0005)
bHT/4 0.0992(0.0011) 0.1673(0.0021)

where the NNPDF2.3 NLO PDF set with as = 0.118 has been
used. The jet rates have been measured recently by ATLAS
using the 7 TeV data set [7]. In Fig. 3 we show the data
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FIG. 3. Cross sections for 2-, 3-, 4-, 5- and 6-jet production in
leading and next-to-leading order as calculated with NJET as well
as results from ATLAS measurements [7]. All LO quantities use
NNPDF2.1 with as(MZ) = 0.119. NLO quantities use NNPDF2.3
with as(MZ) = 0.118, the 6-jet cross section is only avaiable LO
accuracy.

together with the theoretical predictions in leading and next-
to-leading order. In case of the six jet rate only LO results
are shown. In the lower plot the ratio of theoretical predic-
tions with respect to data is given. With exception of the two
jet cross section the inclusion of the NLO results improves
significantly the comparison with data. For the higher mul-
tiplicities where NLO predictions are available the ratio be-
tween theory and data is about 1.2�1.3. Given that inclusive

cross sections are intrinsically difficult to measure we con-
sider this agreement as remarkable good. In particular for
three-, four- and five-jet production the theoretical predictions
agree within the uncertainties with the data. One should also
keep in mind that a one per cent uncertainty of the collider en-
ergy may lead to sizeable changes in the cross sections. (For
example, the inclusive cross section for top-quark pair produc-
tion changes by about 3% when the energy is changed from
7 TeV to (7±0.07) TeV.) Instead of studying inclusive cross
sections it is useful to consider their ratios since many theo-
retical and experimental uncertainties (i.e. uncertainties due
to luminosity, scale dependence, PDF dependence etc.) may
cancel between numerator and denominator. In particular one
may consider

Rn =
s(n+1)-jet

sn-jet
. (9)

This quantity is in leading order proportional to the QCD cou-
pling as and can be used to determine the value of as from
jet rates. In Fig. 4 we show QCD predictions in NLO using

FIG. 4. Theoretical predictions for the jet ratios Rn compared with
recent ATLAS measurements [7]. Theoretical predictions are made
with the central values of the 4 listed PDF sets with NLO as running.
as(mZ) = 0.118 for NNPDF2.3, CT10 and ABM11 and as(mZ) =
0.120 for MSTW2008

different PDF sets together with the results from ATLAS. The
results obtained from NNPDF2.3 are also collected in Tab. III
where, in addition, the ratios at leading order (using the LO
setup with NNPDF2.1) are shown. In case of R3 and R4 per-
turbation theory seems to provide stable results. The leading
order and next-to-leading order values differ by less than 10%.
In addition NNPDF [46], CT10 [48] and MSTW08 [49] give
compatible predictions. ABM11 [50] gives slightly smaller
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FIG. 7. The pT distribution of the leading jet. Both LO and NLO use
the NNPDF2.3 PDF set with as(MZ) = 0.118

For simplicity we do not expand the double ratio in as. Since
the NLO corrections are moderate in size we do not expect
a significant change in the prediction—the difference is for-
mally of higher order in as. As can be see in Fig. 9, the nor-
malized rapidity distribution changes by less than 5% when
going from 7 to 8 TeV. For the transverse momentum dis-
tribution we expect a harder spectrum for 8 TeV centre-of-
mass energy compared to 7 TeV. This is indeed observed in
Fig. 10. The fact that for low transverse momenta the ratios
are below one is an effect of the normalization to the total
cross section. For 8 TeV the regions where the inclusive cross
section gets significant contributions is extended to larger pT
leading to a ratio below one when comparing with the 7 TeV
case. Using data for jet production may provide useful in-
put to constrain PDFs. In this context it is very interesting to
study the decomposition of the jet rates with respect to indi-
vidual partonic channels not only for inclusive quantities but
also for differential distributions. In Fig. 11 the decomposition
of the rapidity distribution of the leading jet is shown. As in
the inclusive case we restrict the discussion to leading order.
Evidently we find again that the qg ! q + 4g channel is the
most important channel followed by the pure gluonic chan-
nel. Since the rapidity distribution is only mildly affected by
the partonic centre-of-mass energy we do not expect a strong
dependence of the composition with respect to the rapidity.
Indeed as can be seen from Fig. 11 the decomposition shows
only a weak dependence on the rapidity. This information
can be used to define control samples, when using jet data to
constrain the parton luminosities. In Fig. 12 the analogous re-
sults for the transverse momentum distribution is presented.
In difference to the rapidity distribution a significant depen-

FIG. 8. The rapidity distribution of the leading jet. Both LO and
NLO use the NNPDF2.3 PDF set with as(MZ) = 0.118

dence of the decomposition as function of the transverse mo-
mentum is visible. While at small transverse momentum the
gg ! 5g dominates over qq ! 2q + 3g the situation changes
at about 300 GeV and the qq ! 2q+3g becomes more impor-
tant than gg ! 5g. This behaviour is a direct consequence of
the fact that at high partonic centre-of-mass energy the quark
luminosity Lqq̄ dominates over the gluon flux Lgg. A simi-
lar pattern, although less pronounced, can also be observed in
the qq ! 5g and gg ! 4q + 1g channels. A cut in the trans-
verse momentum can thus be used to change the mixture of
the individual partonic channels and to provide additional in-
formation on specific parton luminosities. From the above
discussion we expect that different PDF sets should give very
similar results for the rapidity distribution since each bin is
rather inclusive with respect to the partonic centre-of-mass
energies where the luminosities are sampled. On the other
hand if any difference using PDF sets from different groups is
observed it will most likely show up in the transverse momen-
tum distribution. In Fig. 13 the rapidity distribution is shown
using four different PDF sets. The PDF sets NNPDF2.3,
CT10 and MSTW2008 lead to very similar results. A ma-
jor difference is observed comparing the aforementioned PDF
sets with ABM11. ABM11 leads to reduction of about 20%
with respect to NNPDF2.3, CT10 and MSTW2008. However
one can see that the shape for the distribution predicted by
ABM11 agrees well with the other PDF sets. In Fig. 14 and
Fig. 15 we show results for the normalized distributions. For
the rapidity distribution the four different PDF sets agree well
within ±5%. The rapidity distributions of the sub leading jets
show a similar behaviour. In Fig. 15 the transverse momen-
tum distribution is studied for different PDF sets. As expected

‣Still limitations in numerical accuracy for processes with many particles 
(>4) in final state
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NLO
Loop induced processes
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NLO
Loop induced processes

NLO = 2 loops for them…
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Loop induced Processes : start at one loop at LO

‣Enhanced by gluon luminosity
‣Corrections for gg channel usually large (color, logs)

‣Available only for massless partons @NLO (+1/mT expansion)
‣But mass effects not-negligible (helicity flip in interference)

gg ! V V gg ! (H) ! V V

H background signal-background interference

Higgs width F. Caola, et al (2015-2016)
J. Campbell, K. Ellis, M. Czakon, S. Kirchner (2015)
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C.Weber QCD@LHC17

H.Frellesvig QCD@LHC17
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Melnikov

Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke (2016)

4

As a further cross-check we have also calculated mass
corrections as an expansion in 1/m

2
t in the following way:

we write the partonic di↵erential cross section as

d�̂exp,N =
N
X

⇢=0

d�̂

(⇢)

✓

⇤

mt

◆2⇢

, (13)

where ⇤ 2
np

ŝ,

p
t̂,

p
û, mh

o

, and determine the first

few terms (up to N = 3) of this asymptotic series with the
help of qgraf [23], q2e/exp [38, 39] and Matad [40],
as well as Reduze [26] and Form [24, 25].

We applied the series expansion to the virtual correc-
tions, combined with the infrared insertion operator I,
such that the expression in brackets below is infrared fi-
nite,

d�̂

virt + d�̂

LO(✏) ⌦ I

⇡ �

d�̂

virt
exp,N + d�̂

LO
exp,N (✏) ⌦ I

�

d�̂

LO(✏)

d�̂

LO
exp,N (✏)

, (14)

such that we can set ✏ = 0 in d�̂

LO
/d�̂

LO
exp,N . There is

some freedom when to do the rescaling, i.e. before/after
the phase-space integration and convolution with the
PDFs. We opt to do it on a fully di↵erential level, i.e. the
rescaling is done for each phase-space point individually.
The comparison of this expansion with the full result is
shown in Fig. 2.

NUMERICAL RESULTS

In our numerical computation we set µR = µF = µ =
mhh/2, where mhh is the invariant mass of the Higgs
boson pair. We use the PDF4LHC15 nlo 100 pdfas [41–
44] parton distribution functions, along with the cor-
responding value for ↵s. The masses have been set to
mh = 125GeV, mt = 173GeV, and the top-quark width
has been set to zero. We use a centre-of-mass energy ofp

s = 14 TeV and no cuts except a technical cut in the
real radiation of p

min
T = 10�4 ·pŝ, which we varied in the

range 10�2  p

min
T /

p
ŝ  10�6 to verify that the contri-

bution to the total cross section is stable and independent
of the cut within the numerical accuracy.

Including the top-mass dependence, we obtain the to-
tal cross section

�

NLO = 32.80+13%
�12% fb ± 0.4% (stat.) ± 0.1% (int.).

In addition to the dependence of the result on the vari-
ation of the scales by a factor of two around the cen-
tral scale, we state the statistical error coming from the
limited number of phase-space points evaluated and the
error stemming from the numerical integration of the am-
plitude. The latter value has been obtained using error
propagation and assuming Gaussian distributed errors

and no correlation between the amplitude-level results.
The value of the cross section is 14% smaller than the
Born-improved HEFT result, �

NLO
HEFT = 38.32+18%

�15% fb.

The results for the mhh distribution are shown in
Fig. 1. We can see that for mhh beyond ⇠ 450 GeV,
the top-quark mass e↵ects lead to a reduction of the
mhh distribution by about 20-30% as compared to the
Born-improved HEFT approximation. We also observe
that the central value of the Born-improved HEFT re-
sult lies outside the NLO scale uncertainty band of the
full result for mhh & 450 GeV, while the FTapprox result,
where the real radiation contains the full mass depen-
dence, lies outside the scale uncertainty band for mhh

beyond ⇠ 550 GeV. The scale uncertainty of the Born-
improved HEFT and FTapprox does not enclose the cen-
tral value of the full result in the tail of the mhh distri-
bution.

In Fig. 2, we show the results for the renormalized
virtual amplitude including the I-operator as defined in
Ref. [34] and compare it to various orders in an expan-
sion in 1/m

2
t , see Eqs. (13),(14). In the upper panel we

normalize to the virtual HEFT result, while in the lower
panel we normalize to the Born-improved HEFT result,
i.e. V

0
N = VN B/BN . The upper panel shows that the

agreement of the full result with the HEFT result is only
good well below the threshold at 2mt. The lower one
demonstrates that the deviations between the full result
and the Born-improved HEFT result are more than 30%
for mhh & 480 GeV.
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FIG. 1. Comparison of the full calculation to various approxi-
mations for the Higgs pair invariant mass distribution. “NLO
HEFT” denotes the e↵ective field theory result, i.e approxi-
mation (i) above, while “FT

approx

” stands for approximation
(ii), where the top-quark mass is taken into account in the real
radiation part only. The band results from scale variations by
a factor of two around the central scale µ = m

hh

/2.

‣Full NLO calculation
‣2 loop amplitudes computed numerically with SecDec

‣-14% wrt EFT / bigger for large invariant masses
‣NNLO available in EFT (learn about approx.)
‣Technique applicable for other observables?

HH production in gg fusion

• 2-loop reduction/integrals out of analytic reach

φ1

φ2

φ, Z

g

g

t, b

φ1

φ2g

g

t, b

Figure 2: Generic diagrams describing neutral Higgs-boson pair production in gluon–
gluon collisions (φ, φi = h, H, A).

where θ is the scattering angle in the partonic c.m. system with invariant mass Q, and

λ(x, y, z) = (x − y − z)2 − 4yz. (13)

The integration limits

t̂± = −
1

2

[
Q2 − m2

1 − m2
2 ∓

√
λ(Q2, m2

1, m
2
2)
]

(14)

in Eq. (11) correspond to cos θ = ±1. The scale parameter µ is the renormalization scale.
The complete dependence on the fermion masses is contained in the functions F△, F✷, and
G✷. The full expressions of the form factors F△, F✷, G✷, including the exact dependence
on the fermion masses, can be found in Ref. [10].

The couplings C△ and C✷ and the form factors F△, F✷, G✷ in the heavy-quark limit
are given by:

(i) SM:

C△ = λHHH
M2

Z

ŝ − M2
H + iMHΓH

, C✷ = 1,

F△ →
2

3
, F✷ → −

2

3
,

G✷ → 0, (15)

with the trilinear coupling λHHH = 3M2
H/M2

Z .

(ii) MSSM:

The couplings for the processes gg → φ1φ2 are generically defined as (φ, φi =
h, H, A)

Cφ
△ = λφ1φ2φ

M2
Z

ŝ − M2
φ + iMφΓφ

gφ
t , C✷ = gφ1

t gφ2
t , (16)

where φ denotes the Higgs particles of the s-channel contributions. The trilinear
couplings λφ1φ2φ and the normalized Yukawa couplings gφ

t can be found in Ref. [10].
The individual expressions in the heavy-quark limit can be summarized as:
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deF, Mazzitelli (2014), deF et al (2016)
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NNLO

NNLO hadron-collider calculations v. time

10

���� ���� ���� ���� ���� ���� ���� ����

��� ������ � ������ ���������� �������

� ������ ����������� ��������

� ������ ���������� ������ ��� �������

�� ������ ������ �������� ���������

� ������ ����������� ��������� ���������

� ������ ����������� ��������� ���������

� ������ ��������� ���������

��� ������ ��������� ���������

� ������ ������� ��������

��� ������ ������ �� ���

��� ������ �������� �������� ����� ����

�� ������ �������� ��������� ����������

���� ������ �� ���

�� ���������� ��������� �� ���

����� ������ ������� �������� �����

���� ��������� ��������� �������� �����

�� ���������� ������� ����������� ������� ������� �����

��� �������� �� �� ���

�� ������ �������� ��������� ����������

�� � �������� �� ���

����� ������ ������� �������� �����

���� ���� ��������� ��������� �������
��� ��������� �� ���

��� ���������� ������ ���� ���������
��� ��������� �� ���
��� ������ �������� �� ���
��� ����������� ������ �� ���
��� ��������� ��������� �������
��� ������ ��������� �������

��� ��������� �� ���
�� ������ �� ������ ��������� ������ ��������
���� ��������� ������ ��� ��������

��� ��������� ��������� �������� ���������
�� � �������� �� ���

���� �� ����� ��������� �� ���
���� ����������� ������ �� ���

explosion of calculations  
in past 18 months

 let me know of any significant omissions

The NNLO revolution

G. Salam LHCP16



Fixed Order QCD corrections                          Daniel de Florian 18

Degree of complexity at NNLO
‣ 2 loop

loop integrals explicit infrared poles
1

✏4

“NLO complexity” :  loop 1

✏2

1

✏2
singular emission 

Tree level Trivial to compute Amplitudes
a Hell of infrared singularities

1

✏4
poles

after integration over
 unresolved partons

available (even for VV production)2 ! 2

Bottleneck for larger multiplicities?

Bottleneck for larger multiplicities?

‣ 1 loop + single emission

‣ Double real emission

Anatomy of a NNLO calculation e.g. pp to JJ

✓ double real radiation matrix elements dσ̂RR
NNLO

✓ implicit poles from double unresolved emission

✓ single radiation one-loop matrix elements dσ̂RV
NNLO

✓ explicit infrared poles from loop integral
✓ implicit poles from soft/collinear emission

✓ two-loop matrix elements dσ̂V V
NNLO

✓ explicit infrared poles from loop integral
✓ including square of one-loop amplitude

dσ̂NNLO ∼
∫

dΦ
m+2

dσ̂RR
NNLO +

∫

dΦ
m+1

dσ̂RV
NNLO +

∫

dΦm

dσ̂V V
NNLO

– p. 25
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Z
S dPS +

Z
|MV |2dPS0

Subtraction Method : need local subtraction counter-term

Finite Computed “analytically”
cancel divergences

Z
|MR|2dPS =

Z 1

�
|MR|2dPSHandling singularities

Z 1

0
(|MR|2 � S)dPS
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‣The method used at NLO
‣Subtraction can be fully local (better convergence, but not all)
‣At NNLO many more singular configurations 
‣Integration of subtraction term quite complicated (can be numerical) 
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‣At NNLO many more singular configurations 
‣Integration of subtraction term quite complicated (can be numerical) 

Sector decomposition

Antennae subtraction

Sector-Improved residue subtraction

CoLorFul subtraction
Projection-to-Born

Anastasiou, Melnikov, Petriello; Binoth, Heinrich

Gehrmann, Gehrmann-de Ridder, Glover
Czakon, Boughezal, Melnikov, Petriello

Del Duca, Somogyi, Trocsanyi
Cacciari, Dreyer, Karlberg, Salam, Zanderighi

different
approaches
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Z
|MR|2dPS =

Z 1

�
|MR|2dPS +

Z �

0
|MR|2dPS +

Z
|MV |2dPS0

Phase space slicing : split phase space according to singular configurations

Can be obtained from 
resummation framework

Regularized by cut-off 
(numerically involved)
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Phase space slicing : split phase space according to singular configurations

Can be obtained from 
resummation framework

Regularized by cut-off 
(numerically involved)

‣Not used at NLO
‣Generates large cancellations on cut-off (has to be checked)
‣Simpler to implement (resummation)
‣Count with faster computers for “smaller” correction
‣Can use precise NLO calculations as basis (X+jet)
‣Use local subtraction for NLO-like singularities
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• qT and Jettiness to characterize “pure” NNLO configurations 

• So far only “simpler”configurations : one/zero colored particle in f.s.

qT-subtraction

N-jettiness subtraction

Catani, Grazzini; Catani, Cieri, deF, Ferrera, Grazzini

Boughezal, Focke, Liu, Petriello; Gaunt, Stahlhofen, Tackmann, Walsh
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J.Currie, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A.Huss, J.Pires (2017)

pp ! 2 jets
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FIG. 3: NLO/LO (blue), NNLO/NLO (red) and NNLO/LO
(purple) K-factors double di↵erential in mjj and |y⇤|. Bands
represent the scale variation of the numerator. NNLO PDFs
are used for all predictions.

the data across the entire kinematic range in mjj and
|y⇤|, with up to seven orders of magnitude variation in
the cross section. The total NNLO prediction shown in
Fig. 2 is the sum of LO, NLO and NNLO contributions.
We can understand the relative shift in the theoretical
prediction from each perturbative correction by examin-
ing the K-factors shown in Fig. 3. We observe moderate
NLO/LO corrections from +10% at low mjj and |y⇤| to
+50-70% at highmjj and high |y⇤|. The NNLO/NLOK-
factors are typically < 10% in magnitude and relatively
flat, although they alter the shape of the prediction at
low mjj and low |y⇤|.

To emphasize the size and shape of the NNLO correc-
tion, in Fig. 4 we show the distributions normalized to
the NLO prediction. On the same plot we show the pub-
lished ATLAS data, also normalized to the NLO theory
prediction. We observe good agreement with the NNLO
QCD prediction across the entire dynamical range in mjj

and |y⇤| and a significant improvement in the description
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FIG. 4: The NLO (blue) and NNLO (red) theory predictions
and ATLAS data normalized to the NLO central value. The
bands represent the variation of the theoretical scales in the
numerator by factors of 0.5 and 2. Electroweak e↵ects are
implemented as a multiplicative factor and shown separately
as the green dashed line.

of the data for low mjj and |y⇤|, where NLO does not
adequately capture the shape nor the normalization. We
include the electroweak e↵ects as a multiplicative factor,
as calculated in [12], and note that in the region where
they are non-negligible (|y⇤| < 0.5, mjj > 2 TeV) they
improve the description of the data.
We generally observe a large reduction in the scale vari-

ation and small NNLO corrections. An exception to this
conclusion is found at low mjj and |y⇤| < 1.0; in this
case we observe NNLO scale bands of similar size to the
NLO bands, and a negative correction of approximately
10% such that the NNLO and NLO scale bands do not
overlap. To understand this behaviour in more detail we
investigate specific bins of mjj and |y⇤| and study the
scale variation inside that bin, as shown in Fig. 5.
The left pane of Fig. 5 shows the scale variation in the

bin 370 GeV < mjj < 440 GeV and 0.0 < |y⇤| < 0.5,
which is the region where the NLO and NNLO scale

‣Moderate NNLO corrections (<10%)
‣Improve description of data for low Mjj/y* 
‣Invariant mass natural scale (better convergence)
‣Cures pathological NLO behavior for <pT>
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FIG. 1: Ratio of theory predictions to data for 0.0 < |y⇤| < 0.5 (left) and 1.5 < |y⇤| < 2.0 (right) for the scale choices µ = mjj

(top) and µ = hpT i (bottom) at LO (green), NLO (blue) and NNLO (red). Scale bands represent variation of the cross section
by varying the scales independently by factors of 2 and 0.5.

was done for dijet studies at the DØ experiment [20], or
the triply di↵erential distribution in pT1 , y1 and y

2

(or
alternatively, average jet pT , |y⇤| and |ȳ|) [21, 22], which
would provide more specific information on the x-values
probed.

The data sample we compare to is the ATLAS 7 TeV
4.5 fb�1 2011 data [19]. This constitutes the recording
of all events with at least two jets reconstructed in the
rapidity range |y| < 3.0 using the anti-kt algorithm with
R=0.4 such that the leading and subleading jets satisfy
a minimum pT cut of 100 GeV and 50 GeV respectively.

As detailed in [15], we include the leading colour
NNLO corrections in all partonic sub-processes. The cal-
culation is performed in the NNLOJET framework, which
employs the antenna subtraction method [24, 25] to re-
move all unphysical infrared singularities from the matrix
elements [26–28]. We use the MMHT2014 NNLO parton
distribution functions [30] with ↵s(MZ) = 0.118 for all
predictions at LO, NLO and NNLO to emphasize the role
of the perturbative corrections at each successive order.

At any given fixed order in perturbation theory, the
predictions retain some dependence on the unphysical
renormalization and factorization scales. The natural
physical scale for dijet production is the dijet invariant
mass, µ = mjj , which has not been widely used in di-
jet studies to date. Another scale, which was used at
DØ [20] and is currently used by CMS [18] is the average
pT of the two leading jets, µ = hpT i = 1

2

(pT1 + pT2).

In Fig. 1 we show the predictions at LO, NLO and
NNLO for these two scale choices at small and large |y⇤|.
For small |y⇤|, both scale choices provide reasonable pre-
dictions with largely overlapping scale bands, reduced
scale variation at each perturbative order, convergence of
the perturbative series and good description of the data.
For the larger |y⇤| bin we see significant di↵erences in the
behaviour of the predictions for the two scales. For the
µ = mjj scale choice, the behaviour is qualitatively sim-
ilar to what is seen at small |y⇤|; in contrast, the NLO
prediction with µ = hpT i falls well away from the LO

prediction and is even outside the LO scale band. For
this scale choice, the NLO contribution induces a large
negative correction, which brings the central value in line
with the data but with a residual scale uncertainty of up
to 100%. Indeed for |y⇤| >2.0 the scale band for µ = hpT i
widens further and even includes negative values of the
cross section. These issues are resolved by the inclusion of
the NNLO contribution such that the NNLO prediction
is positive across the entire phase space and provides a
good description of the data. With the issue of unphysi-
cal predictions resolved, we are free to make a scale choice
based upon more refined qualities such as perturbative
convergence and residual scale variation. On this basis
we choose the theoretical scale µ = mjj and present de-
tailed results using this scale choice throughout the rest
of this letter.

In Fig. 2 we present the absolute cross section as a
function of mjj for each |y⇤| bin, compared to NNLO-
accurate theory. We observe excellent agreement with
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‣NNLO scale dep. smaller than EXP errors
‣NLO underestimates uncertainty 

‣ Leading color using antenna subtraction : NNLOJET (1 and 2 jets)
J.Currie, E.W.N. Glover, J.Pires (2016)
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Figure 4: The normalised double-differential transverse momentum distribution for the Z boson in windows
of invariant mass of the leptons, m``, with a rapidity cut on the Z boson of |yZ| < 2.4. The ATLAS data is
taken from [12]. The green bands denote the NLO prediction with scale uncertainty and the blue bands show
the NNLO prediction with scale uncertainty.

accuracy by using the Z+ jet inclusive cross section at NNLO with pZ
T > 45 GeV,

s
��

pZ
T>45 GeV =

Z •

45 GeV

ds
dpZ

T
dpZ

T =
�
sZ+jet

LO +sZ+jet
NLO +sZ+jet

NNLO
���

pZ
T>45 GeV +O(a4

s ). (3.4)

The result for the fiducial cross section obtained using Eq. (3.4) are shown as the turquoise curve
in Fig. 3 (right). The scale uncertainty is reduced by more than a factor of two compared to
the only NLO-accurate prediction and, moreover, we observe a shift of the central value towards
the measured cross section values. In the remainder of this section we will restrict ourselves to
the discussion of normalised distributions where we use the improved normalisation of Eq. (3.4)
for the three lowest-mass bins of the ATLAS measurement. For the respective comparison of
unnormalised distributions and further results we refer to Ref. [11], where also more details are
given.

In Fig. 4 we present the normalised double-differential distribution with respect to the trans-
verse momentum of the Z boson and the invariant mass of the lepton pair, m``, normalised to the
NLO prediction and compare it to the ATLAS data [12]. Tension between the NLO prediction and
the data is seen in the three higher mass bins where the data is significantly overshooting the theory
prediction. The NNLO corrections in these bins are not uniform and have a large positive correc-
tion at small pZ

T. This is particularly apparent for the m`` bin containing the Z-boson resonance.1

1Note that the bin including the Z resonance given by the middle frame in the right column of Fig. 4 corresponds to
the normalised distribution of the associated unnormalised distribution shown in the left plot of Fig. 3.

5

5

Figure 5: Plot of the lepton rapidity distribution at LO, NLO
and NNLO in QCD perturbation theory, for 13 TeV collisions

with the central scale µ0 =
q

m2
ll +

P
pjet,2T . The K-factors

are shown in the lower inset.

we have developed will become increasingly important
for theoretical predictions to match the ever-improving
quality and precision of high energy collider data.

CONCLUSIONS

In this manuscript we have presented the complete
NNLO corrections to the Z+jet process in hadronic col-
lisions. Our calculation utilizes the N -jettiness subtrac-
tion scheme, which has proven to be a powerful tool for
obtaining higher-order QCD cross sections. We have
given phenomenological results for 13 TeV LHC colli-
sions. The NNLO corrections are small throughout most
studied regions of phase space, and are at or below the
percent level for pT values up to 100 GeV. However, they
reach up to 10% in the tails of the jet and Z-boson trans-
verse momentum distributions, and must be included in
any comparison of theory with experiment in this region.
The corrections to the rapidity distributions of the jet,
Z-boson and leptons are flat, and are at or below the
few-percent level for all scale choices. The Z+jet predic-
tion exhibits an extremely stable perturbative expansion,
and upon inclusion of the complete NNLO corrections is
ready for a precision comparison with LHC Run II data.

The N -jettiness subtraction scheme has now been ap-
plied to obtain the complete NNLO results for several
important LHC processes. One great virtue of this ap-
proach is its simplicity: all complications associated with
the double-unresolved singular limit of QCD are handled
by the factorization theorem of Eq. (3). Another advan-
tage of this approach is the ease with which the necessary
numerical integrations can be e�ciently run on massively
parallel computing platforms. Only the real-radiation in-

tegration in the region TN > T cut
N is computationally ex-

pensive. The calculational method scales to the largest
available computing platforms. The conceptual appeal,
simplicity and computational advantages of N -jettiness
subtraction will make it a powerful tool whenever preci-
sion predictions for scattering processes are required.
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13 TeV

3

The primary check of the N -jettiness formalism is that
the logarithmic dependence on T cut

N that occurs sepa-
rately in the low and high TN regions cancels when they
are summed. This requires that almost all parts of the
calculation are implemented correctly and consistently;
the beam, soft, and jet functions, as well as the NLO
corrections to Z+2-jets, are probed by this check. We
show in Fig. 1 the results of this validation for the ratio
�NNLO/�NLO in 13 TeV proton-proton collisions (we note
that NNLO PDFs are used in the numerator, while NLO
PDFs are used in the denominator). We have checked
that the NLO cross section obtained with N -jettiness
subtraction agrees with the result obtained with stan-
dard techniques. These cross sections are obtained us-
ing CT14 parton distribution functions [27] at the same
order in perturbation theory as the partonic cross sec-
tion, and contain the following fiducial cuts on the lead-
ing final-state jet and the two leptons from CMS [5]:
pjetT > 30 GeV, |⌘jet| < 2.4, plT > 20 GeV, |⌘l| < 2.4
and 71GeV < mll < 111GeV. The ATLAS analysis is
similar but with slightly di↵erent cuts [4]. We reconstruct
jets using the anti-kT algorithm [28] with R = 0.5. A dy-

namical scale µ0 =
q
m2

ll +
P

pjet,2T is chosen to describe

this process, where the sum is over the transverse mo-
menta of all final-state jets, and mll the invariant mass
of the di-lepton pair arising from the Z-boson decay. In
this validation plot we have set the renormalization and
factorization scales to µR = µF = 2 ⇥ µ0; since the cor-
rections are larger for this scale choice, it is easier to
illustrate the important aspects of the T cut

1 variation.

Figure 1: Plot of the NNLO cross section over the NLO result,
�NNLO/�NLO, as a function of T cut

1 , for the scale choice µ =
2 ⇥ µ0. The vertical bars accompanying each point indicate
the integration errors.

A few features can be seen in Fig. 1. First, in the re-
gion T cut

1 < 0.08 GeV the result becomes independent
of the particular value of the cut chosen within the nu-
merical errors. The NNLO correction for µ = 2 ⇥ µ0

corresponds to an almost +5% shift in the cross sec-
tion. The plot makes clear that we have numerical control
over the NNLO cross section to the per-mille level, com-
pletely su�cient for phenomenological predictions. We
observe an approximately linear dependence of �NNLO

on ln (T cut
1 ) in the region 0.1GeV < T cut

1 < 0.5GeV,
indicating the onset of the power corrections neglected
in Eq. (3). These power corrections have the form
(TN/Q) lnn(TN/Q), where n  3 at NNLO [8] and Q
is a hard scale such as pjetT .

The other possible checks of the N -jettiness formalism
involve comparison with other NNLO results obtained us-
ing di↵erent techniques. We have previously checked that
the agreement between Higgs+jet production as com-
puted with N -jettiness and with other techniques [10]
agree at the per-mille level [9]. A selection of processes
without final-state jets have also been computed with
both N -jettiness subtraction and other techniques, and
show a similar level of agreement [8, 14].

NUMERICAL RESULTS

We present here numerical results for Z-boson produc-
tion in association with a jet at NNLO. Our central scale
choice is the dynamical scale µ = µ0, as described in the
previous section. To obtain an estimate of the theoret-
ical errors we vary µ away from this choice by a factor
of two. We use the same cuts on the jets and leptons as
described in the previous section. We include the con-
tributions from both the Z-boson and a virtual photon
decaying to leptons in our numerical results.

Figure 2: Plot of the Z-boson pT distribution at LO, NLO
and NNLO in QCD perturbation theory, for 13 TeV collisions

with the central scale µ0 =
q

m2
ll +

P
pjet,2T . The K-factors

are shown in the lower inset.

We note that the cross sections at each order in per-

‣significant reduction in scale dependence
‣substancial improvement in agreement with data
‣W+ jet available R. Boughezal, X. Liu, F. Petriello(2016)

‣Experimental Uncertainties at the 1% level or below

‣Phenomenological interest : PDF’s, luminosity normalization, (W mass)
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Antennae subtraction

‣Within approx. of EFT : missing HQ effects
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Figure 11. Transverse momentum distribution of the Higgs boson at 13 TeV (for CMS fiducial
cuts) for the EFT (red), EFT�M (green) and EFT⌦M (blue) approximations. Left panel is the
absolute cross sections, right panel normalized to �H .

turn out to be numerically large, there is no reason for them to increase substantially with

transverse momentum. The EFT�M is therefore overestimating the hardness of the mass-

corrected transverse momentum spectrum, and can thus be considered as upper bound on

the actual exact mass dependence. The EFT⌦M prediction is on the other hand reweight-

ing the full spectrum with the softness of the LO mass dependence of the (H + 1)-parton

process. A recent study [40] of the LO quark mass e↵ects in Higgs-plus-multijet production

demonstrated that the mass-dependent suppression (with respect to the EFT prediction)

of large transverse momentum configurations is less strong for the (H + 2)-parton and

(H +3)-parton processes than it is for the (H +1)-parton process. Consequently, EFT⌦M

could be considered as lower bound on the exact mass dependence.

Lacking the full mass dependence of the predictions at NLO, it is however premature

to conclude on whether EFT�M or EFT⌦M should be considered to be more reliable. In-

stead, their spread serves to quantify the large systematic uncertainty that persists on the

theoretical prediction of the transverse momentum distribution at high pHT . The di↵erence

between the di↵erent approaches increases with increasing pHT and clearly exceeds the scale

uncertainty for pHT > 250 GeV. At pHT ⇠ 400(500) GeV, the NNLO EFT⌦M approximation

is 52% (39%) of the NNLO EFT with a small scale uncertainty. Conversely, the EFT�M

has a much larger scale uncertainty and is roughly 74% (65%) of the NNLO EFT predic-

tion. The EFT�M is larger than EFT⌦M by a factor 1.42 (1.69), thereby estimating the

uncertainty on the predictions in this large transverse momentum region.

The behaviour of the Higgs boson transverse momentum distribution is mirrored in

the transverse momentum distribution of the leading photon, shown in Fig. 12. Again,

the di↵erence between the approximations are clearly visible. Above p�1T ⇠ mt, NNLO

EFT⌦M distribution is significantly softer than the NNLO EFT prediction, while the
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Figure 3: The transverse momentum of the leading jet at LO,
NLO, and NNLO in the strong coupling constant. The lower
inset shows the ratios of NLO over LO cross sections, and
NNLO over NLO cross sections. Both shaded regions in the
upper panel and the lower inset indicate the scale-variation
errors.

Figure 4: The transverse momentum of the Higgs boson at
LO, NLO, and NNLO in the strong coupling constant. The
lower inset shows the ratios of NLO over LO cross sections,
and NNLO over NLO cross sections. Both shaded regions
in the upper panel and the lower inset indicate the scale-
variation errors.

CONCLUSIONS

We have presented in this manuscript a complete cal-
culation of Higgs production in association with a jet
through NNLO in perturbative QCD. Our computation
uses the recently proposed method of jettiness subtrac-
tion, a general technique for obtaining higher-order cor-
rections to processes containing final-state jets. We con-
firm and extend a recent calculation of the dominant

gg and qg partonic channels through NNLO [11], and
present additional phenomenological results for 8 TeV
LHC collisions. We also present several distributions for
the Higgs and the leading jet that can be measured with
LHC data. Our results indicate that the perturbative se-
ries is under good control after the inclusion of the NNLO
corrections. We look forward to the comparison of our
theoretical prediction with the upcoming data from Run
II of the LHC.
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3

Figure 1: The separate cross sections for the regions T1 >
T cut
1 and T1 < T cut

1 , together with their sum, as a function
of T cut

1 , normalized to the NLO cross section. The lower
panel shows the relative correction also with respect to the
NLO cross section. The solid lines denote the result for the
central scale choice µ = mH , while the bands show the result
as the scale as varied in the range mH/2  µ  2mH . The
black dashed lines denote �/�NLO = 1 (upper panel) and
��/�NLO = 0 (lower panel).

We begin by studying the fiducial cross section for
Higgs+jet production, which we define by imposing the
following cuts on the final state jet: pjetT > 30 GeV,
|Y jet| < 2.5. Our results are shown in Table I. We
can compare these results against the calculation of
Ref. [13], which is based on the technique of sector-
improved residue subtraction [30, 31]. The result quoted
in Ref. [13] does not include a cut on |Y jet|, and also
does not include the quark-initiated partonic channels
qq, q̄q, and q̄q̄. Incorporating the |Y jet| cut in the sector-
improved subtraction calculation [32] and removing the
quark-initiated channels from our result, we find agree-
ment within numerical errors. We note that the quark-
initiated partonic channels reduce the NNLO result by
approximately 1.5% within the fiducial region studied
here, indicating that they have small phenomenological
impact.

pjetT > 30 GeV, |Y jet| < 2.5

Leading order: 3.1+1.3
�0.9 pb

Next-to-leading order: 4.8+1.1
�0.9 pb

Next-to-next-to-leading order: 5.5+0.3
�0.4 pb

Table I: Fiducial cross sections, defined by pjetT > 30 GeV,
|Y jet| < 2.5, using NNPDF PDFs at each order of pertur-
bation theory. The central scale choice is µ = mH . Results
for µ = mH/2 and µ = 2mH are shown as superscripts and
subscripts, respectively.

We next show several distributions in Higgs plus jet

production. We show in Fig. 2 the rapidity distribution
of the leading jet at each order in perturbation theory,
as well as the K-factors (defined as ratios of higher-order
cross section over the lower-order ones) in the lower inset.
The NLO corrections exhibit a slight shape dependence,
with the corrections approximately 10-20% larger in the
central region than near |Y jet| = 2.5. The NNLO correc-
tions are flatter as a function of rapidity, and the NNLO
distribution is entirely contained within the NLO scale
variation band. In Fig. 3 we show the transverse momen-
tum distribution of the leading jet. There is a shape de-
pendence to the corrections, with theK-factor decreasing
as pjetT is increased. This trend is visible when going from
LO to NLO in perturbation theory, and also when going
from NLO to NNLO. We note that the NNLO result is
entirely contained within the NLO scale-variation band.
The shape dependence and magnitude of the NNLO cor-
rections for the pjetT distribution are in agreement with
the results of Ref. [13].

Figure 2: The rapidity of the leading jet at LO, NLO, and
NNLO in the strong coupling constant. The lower inset shows
the ratios of NLO over LO cross sections, and NNLO over
NLO cross sections. Both shaded regions in the upper panel
and the lower inset indicate the scale-variation errors.

Finally, we show in Fig. 4 the transverse momentum
of the Higgs boson in the H+jet process. The NLO cor-
rections range from 40% to 120% near pHT = 60 GeV,
depending on the scale choice. The magnitude of this
correction decreases as the transverse momentum of the
Higgs increases. The NNLO corrections are more mild,
reaching only 20% at most for the central scale choice
µ = mH . They also decrease slightly as the transverse
momentum of the Higgs increases. The shape depen-
dence and magnitude of the NNLO corrections for the pHT
distribution are in agreement with the results of Ref. [13].
We note that we have combined the two bins closest to
the boundary pHT = 30 GeV to avoid the well-known Su-
dakov shoulder e↵ect [33].

2

variable TN , first introduced in Ref. [15]:

TN =
X

k

mini

⇢
2pi · qk
Qi

�
. (1)

The subscript N denotes the number of jets in the final
state. For the H+jet process considered here, we have
N = 1. Values of T1 near zero indicate a final state con-
taining a single narrow energy deposition, while larger
values denote a final state containing two or more well-
separated energy depositions. The first of these configu-
rations will eventually reconstruct to one jet after impos-
ing a jet algorithm, while the second will reconstruct to
two or more jets. The pi are light-like vectors for each of
the initial beams and final-state jets in the problem, while
the qk denote the four-momenta of any final-state radia-
tion. The Qi characterize the hardness of the beam-jets
and final-state jets. We set Qi = 2Ei, twice the energy
of each jet.

The cross section for TN less than some value T cut
N can

be expressed in the form [16, 17]

�(TN < T cut
N ) =

Z
H⌦B⌦B⌦S⌦

"
NY

n

Jn

#
+ · · · . (2)

The function H contains the virtual corrections to the
process. The beam function B encodes the e↵ect of radi-
ation collinear to one of the two initial beams. It can be
written as a perturbative matching coe�cient convoluted
with a parton distribution function. S describes the soft
radiation, while Jn contains the radiation collinear to
a final-state jet. The ellipsis denotes power-suppressed
terms which become negligible for TN ⌧ Qi. Each
of these functions obeys a renormalization-group equa-
tion that allows logarithms of TN to be resummed. If
this expression is instead expanded to fixed-order in the
strong coupling constant, it reproduces the cross section
for low TN . The derivation of this factorization theo-
rem in the small-TN limit relies upon the machinery of
Soft-Collinear E↵ective Theory [18].

The basic idea behind jettiness subtraction is that TN
fully captures the singularity structure of QCD ampli-
tudes with final-state partons. This allows us to calcu-
late the NNLO corrections to processes such as Higgs plus
jet in the following way. We divide the phase space ac-
cording to whether TN is greater than or less than T cut

N .
For TN > T cut

N there are at least two hard partons in
the final state, since all singularities are controlled by
jettiness. This region of phase space can therefore be
obtained from a NLO calculation of Higgs production in
association with two jets. Below T cut

N , the cross section
is given by the factorization theorem of Eq. (2) expanded
to second order in the strong coupling constant. As long
as T cut

N is smaller than any other kinematic invariant
in the problem, power corrections below the cuto↵ are
unimportant.

All ingredients of Eq. (2) are known to the appropriate
order to describe the low TN region through second or-
der in the strong coupling constant. The two-loop virtual
corrections are known for Higgs plus jet [19]. The beam
functions are known through NNLO [20, 21], as are the
jet functions [22, 23] and soft function [24]. It is there-
fore possible to combine this information to provide the
full NNLO calculation of Higgs production in association
with a jet.

VALIDATION OF THE CALCULATION

We describe here the various checks we have performed
on our calculation. For the phase space region above
T cut
N we need an NLO calculation of H+2-jets. We use

MCFM [25, 26] for this purpose. Below T cut
N , we re-

quire several separate terms. We have checked our im-
plementation of the two-loop virtual corrections against
those contained in PeTeR [27]. Our comparison of the
soft function against known results in the literature is
detailed in Ref. [24].
An important check of our formalism is the indepen-

dence of our final result from T cut
1 , after both phase-space

regions have been summed. This requires a consistent
implementation of the jet, beam, and soft functions be-
low the cut, and the NLO result for H+2-jets above the
cut. This also allows us to define the appropriate range of
T cut
1 for which power corrections are negligible. We show

in Fig. 1 the NNLO correction to the cross section as a
function of T cut

1 . We also show separately the contribu-
tions above and below T cut

1 . The cross sections from the
separate regions are each a factor of several larger than
their sum, and vary by more than a factor of two over
the T cut

1 range studied. The sum is extremely stable over
the entire range studied.

NUMERICAL RESULTS

We now present numerical results for Higgs production
in association with a jet. We focus on 8 TeV proton-
proton collisions in this paper. Jets are reconstructed
using the anti-kT algorithm [28] with R = 0.5. We
show results using the NNPDF [29] parton distribution
functions. We use the perturbative order of the PDFs
that is consistent with the partonic cross section under
consideration: LO PDFs with LO partonic cross sec-
tions, NLO PDFs with NLO partonic cross sections, and
NNLO PDFs with NNLO partonic cross sections. We set
the renormalization and factorization scales equal to the
mass of the Higgs boson, µR = µF = mH . To estimate
the residual theoretical error, we vary these scales simul-
taneously around this central value by a factor of two.
We set the mass of the Higgs boson as mH = 125 GeV.

R. Boughezal, C. Focke, W. Giele, 
X. Liu, F. Petriello(2015)

N-Jettiness

mass at LO

mass re-weighting

‣Need full mass dependence at NLO (massive two loop)

Sector dec. R. Boughezal, F. Caola, K.Melnikov,
 F. Petriello, M. Schulze (2015)

H.Frellesvig QCD@LHC17
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Status
pp→Z/γ*  (→l+l-)

pp→W(→lν)          

pp→Wγ→lνγ

pp→Ζγ→l+l-γ

pp→ΖΖ(→4l)

pp→H              

✅

✅

✅

✅

pp→γγ ✅ validated with 2γNNLO (version nov. 2015)

validated with DYNNLO 1.5 and analytically
validation underway

validated analytically 

pp→HH            

           
✅

          
(✅)

✅

          
✅          
(✅)

pp→WW →(lνl’ν’)         

pp→WZ →lνll          
not in first public release

pp→ZZ/WW →llνν        ✅ NEW

WZ: fully differential
S. Kallweit, D. Rathlev, M.Wiesemann, MG (2017)

NNLO effects on the relevant distributions improve the agreement 
with ATLAS data mostly due to the improved normalisation

Slightly different shape for pTmiss distribution which is driven by W-Z

M. Grazzini, S. Kallweit, D. Rathlev, M. Wiesemann (2016)Matrix @ NNLO

‣NNLO parton level generator with several processes
  in unique framework (di-boson)

qt subtraction

Open-Loops : X+1 parton

Will include qT resummation

So far, colored singlet final state

Public version soon

Towards automation @ NNLO



Fixed Order QCD corrections                          Daniel de Florian 24

Status
pp→Z/γ*  (→l+l-)

pp→W(→lν)          

pp→Wγ→lνγ

pp→Ζγ→l+l-γ

pp→ΖΖ(→4l)

pp→H              

✅

✅

✅

✅

pp→γγ ✅ validated with 2γNNLO (version nov. 2015)

validated with DYNNLO 1.5 and analytically
validation underway

validated analytically 

pp→HH            

           
✅

          
(✅)

✅

          
✅          
(✅)

pp→WW →(lνl’ν’)         

pp→WZ →lνll          
not in first public release

pp→ZZ/WW →llνν        ✅ NEW

WZ: fully differential
S. Kallweit, D. Rathlev, M.Wiesemann, MG (2017)

NNLO effects on the relevant distributions improve the agreement 
with ATLAS data mostly due to the improved normalisation

Slightly different shape for pTmiss distribution which is driven by W-Z

M. Grazzini, S. Kallweit, D. Rathlev, M. Wiesemann (2016)Matrix @ NNLO

‣NNLO parton level generator with several processes
  in unique framework (di-boson)

qt subtraction

Open-Loops : X+1 parton

Will include qT resummation

So far, colored singlet final state

Public version soon

Towards automation @ NNLO

Process nproc �NLO ± ��MC
NLO �NNLO ± ��MC

NNLO ± ��pc
NNLO

W+ 1 4.218 ± 0.002 nb 4.327 ± 0.038 ± 0.043 nb
W� 6 3.314 ± 0.001 nb 3.256 ± 0.035 ± 0.033 nb
Z 31 884.9 ± 0.3 pb 897.1 ± 5.2 ± 9.0 pb
H 112 1.395 ± 0.001 pb 1.857 ± 0.007 ± 0.019 pb
�� 285 27.90 ± 0.01 pb 43.62 ± 0.09 ± 0.44 pb
W+H 91 2.203 ± 0.002 fb 2.279 ± 0.011 ± 0.023 fb
W�H 96 1.495 ± 0.001 fb 1.533 ± 0.006 ± 0.015 fb
ZH 110 0.7537 ± 0.0004 fb 0.8453 ± 0.0021 ± 0.0085 fb

Table 4: Benchmark cross-sections at NLO and NNLO, using the parameters
and settings described in the text. ��MC represents the uncertainty from
Monte Carlo statistics, while ��pc is an estimate of the uncertainty due to
neglected power corrections at NNLO.

appropriate). Our generic set of cuts is,

pT (lepton) > 20 GeV , |⌘(lepton)| < 2.4 ,

pT (photon 1) > 40 GeV , pT (photon 2) > 25 GeV ,

|⌘(photon)| < 2.5 , �R(photon 1, photon 2) > 0.4 ,

Emiss
T > 30 GeV , (3)

For Z production we also impose a minimum Z⇤ virtuality (m34min) of
40 GeV.

For providing benchmark runs we choose a set of integration parame-
ters that provides approximately 1% (or smaller) Monte Carlo uncertainties.
These are itmx1 = 4, itmx2 = 10 and ncall1 = ncall2 = 400000. We
set taucut to 1%acc to achieve a similar level of uncertainty in the total
NNLO predictions from power corrections that have been neglected. Our
benchmarks are shown in Table 4. These benchmark cross-sections may not
be su�ciently accurate for all phenomenological applications but they should
be able to be reproduced relatively easily, even on a desktop machine.

5 Runtime options

mcfm execution is performed in the Bin/ directory, with syntax:

13

MCFM@ NNLO R. Boughezal, J. Campbell, K. Ellis, C. Focke,W. Giele, X. Liu, F. Petriello(2016)

N-Jettiness

Less processes available yet : V+1 jet done
Z�

J. Campbell, T.Neumann, C.Williams (2017)
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‣Sector-decomposition + FKS : Stripper R. Poncelet QCD@LHC17

Towards automation @ NNLO
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‣Sector-decomposition + FKS : Stripper R. Poncelet QCD@LHC17

Czakon, Heymes, Mitov(2015-2016)‣Fully differential results for ttbar

‣t-channel. Single-top + top-decay (NW) Berger, Gao, Yuan, Zhu (2016)

Slicing (N-jettiness) + subtraction (P2B)

Cacciari, Dreyer, Karlberg, Salam, Zanderighi (2015)

‣VBF at NNLO : projection to Born method

Del Duca, Duhr, Somogyi, Ször, Tramontano,Trócsányi (2015)‣              @ NNLOH ! bb̄

‣+ many more computations in just a few years

‣3 jet production in e+e- and event shapes: CoLoRFulNNLO

Del Duca, Duhr, Kardos, Somogyi, Ször, Trócsányi, Tulipánt (2016)Z. Tulipánt QCD@LHC17
Z. Ször

A. Mitov QCD@LHC17

Towards automation @ NNLO
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N3LO

The new Frontier
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Higgs at N3LO C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, B. Mistlberger (2015)

Few facts about N3LO
• O(100000) interference diagrams (1000 at NNLO)

• 68273802 loop and phase space integrals (47000 at NNLO)

• about 1000 master integrals (26 at NNLO) 

68273802 loop and
 phase space integrals

‣Threshold expansion (very high order) 
‣Within (excellent) heavy top approximation
‣Could be used for DY
‣Differential distributions 

Impressive calculation : new techniques
Very relevant observable called for higher orders (slow convergence)

‣Inclusive over parton radiation
‣Observe stabilization of expansion
‣Small correction (2% at MH/2)
‣Scale variation at N3LO ~2%

µ/MH

LO NLO NNLO NNNLO

0.5 1.0 1.5 2.0
10

20

30

40

50

μ/mh

σ
/p
b

LHC@ 13TeV
pp→h+X gluon fusion
MSTW08 68cl
μ=μR=μF

p
s = 13TeV

~100%

~30%

µ = µF = µR

13 TeV�
C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, 
F. Herzog, A. Lazopoulos, B. Mistlberger (2016)

S. Lionetti QCD@LHC17
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VBF at N3LO

3

FIG. 2. Estimate of the impact of missing higher orders cor-
rections in PDFs, using equations (4) and (6) with Q0 = 5, 8
and 10 GeV.

The uncertainty estimates obtained with the two di↵er-
ent methods described by equations (4) and (6) is shown
in figure 2 as a function of center-of-mass energy, and for
a range of Q0 values.

One should note that the uncertainty estimates given
in equations (4) and (6) do not include what is usually re-
ferred to as PDF uncertainties. While we are here calcu-
lating missing higher order uncertainties to NNLO PDF
sets, typical PDF uncertainties correspond to uncertain-
ties due to errors on the experimental data and limita-
tions of the fitting procedure. These can be evaluated for
example with the PDF4LHC15 prescription [21], and are
of about 2% at 13 TeV, which is larger than the correc-
tions discussed above. One can also combine them with
↵s uncertainties, which are at the 5h level.

Let us now discuss in more detail phenomenological
consequences of the N3LO corrections to VBF Higgs pro-
duction. We present results for a wide range of energies
in proton-proton collisions. The central factorisation and
renormalisation scales are set to the squared momentum
of the corresponding vector boson. To estimate miss-
ing higher-order uncertainties, we use a seven-point scale
variation, varying the scales by a factor two up and down
while keeping 0.5 < µR/µF < 2

µR,i = ⇠µRQi , µF,i = ⇠µFQi , (7)

where ⇠µR , ⇠µF 2 �
1
2 , 1, 2

 
and i = 1, 2 corresponds to

the upper and lower hadronic sectors.
Our implementation of the calculation is based on the

inclusive part of proVBFH which was originally developed
for the di↵erential NNLO VBF calculation [9]. We have
used the phase space from POWHEG’s two-jet VBF Higgs
calculation [22]. The matrix element is derived from
structure functions obtained with the parametrised DIS
coe�cient functions [13, 14, 16, 23–29], evaluated using
HOPPET v1.2.0-devel [30].

 3.85

 3.9

 3.95

 4

 4.05

 0.25  0.5  2  4 1

PDF4LHC14_nnlo_mc
µR = µF = ξ Q

LHC 13 TeV

ξ

σ [pb]

LO
NLO

NNLO
N3LO

FIG. 3. Dependence of the cross section on the renormali-
sation and factorisation scales for each order in perturbation
theory.

For our computational setup, we use a diagonal CKM
matrix with five light flavours ignoring top-quarks in
the internal lines and final states. Full Breit-Wigner
propagators for the W , Z and the narrow-width ap-
proximation for the Higgs boson are applied. We use
the PDF4LHC15 nnlo mc PDF [21, 31–33] and four-loop
evolution of the strong coupling, taking as our initial con-
dition ↵s(MZ) = 0.118. We set the Higgs mass to MH =
125.09 GeV, in accordance with the experimentally mea-
sured value [34]. Electroweak parameters are obtained
from their PDG [35] values and tree-level electroweak re-
lations. As inputs we use MW = 80.385 GeV, MZ =
91.1876 GeV and GF = 1.16637⇥ 10�5 GeV�2. For the
widths of the vector bosons we use �W = 2.085 GeV and
�Z = 2.4952 GeV.
To study the convergence of the perturbative series, we

show in figure 3 the inclusive cross section obtained at 13
TeV with µR = µF = ⇠Q for ⇠ 2 [1/4, 4]. Here we observe
that at N3LO the scale dependence becomes extremely
flat over the full range of renormalisation and factorisa-
tion scales. We note that similarly to the results obtained
in the the gluon-fusion channel [12], the convergence im-
proves significantly at N3LO, with the N3LO prediction
being well inside of the NNLO uncertainty band, while
at lower orders there is a pattern of limited overlap of
theoretical uncertainties.

In figure 4 (left), we give the cross section as a func-
tion of center-of-mass energy. We see that at N3LO the
convergence of the perturbative series is very stable, with
corrections of about 1h on the NNLO result. The scale
uncertainty is dramatically reduced, going at 13 TeV
from 7h at NNLO to 1.4h at N3LO. A detailed break-
down of the cross section and scale uncertainty obtained
at each order in QCD is given in table I for

p
s = 13, 14

and 100 TeV.
The center and right plots of figure 4 show the Higgs

transverse momentum and rapidity distributions at each

Structure function approach

Assume that lower and upper sector factorize from each other (i.e. no
cross-talk). [Han, Valencia, Willenbrock Phys.Rev.Lett. 69 (1992) 3274-3277]

One can then think of
VBFH as DIS⇥DIS.

This picture is accurate
to better than 1%.

[ Bolzoni et al. PRD85 (2012) 035002,
Ciccolini et al. PRD77 (2008) 013002,
Andersen et al. JHEP 0802 (2008) 057]

Since DIS coe�cients are inclusive over hadronic final states, this
calculation cannot provide di�erential results for the jets.

Frédéric Dreyer 2/10

These types of contributions are neglected in this limit:

‣DISxDIS like approach ~1% accurate picture
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cross-talk). [Han, Valencia, Willenbrock Phys.Rev.Lett. 69 (1992) 3274-3277]

One can then think of
VBFH as DIS⇥DIS.

This picture is accurate
to better than 1%.

[ Bolzoni et al. PRD85 (2012) 035002,
Ciccolini et al. PRD77 (2008) 013002,
Andersen et al. JHEP 0802 (2008) 057]

Since DIS coe�cients are inclusive over hadronic final states, this
calculation cannot provide di�erential results for the jets.

Frédéric Dreyer 2/10

These types of contributions are neglected in this limit:

‣Inclusive on parton radiation
‣small corrections ~1-2%
‣within NNLO band
‣sizable reduction in scale dep.

neglect exchange between lower and upper legs 

F. Dreyer, A. Karlberg (2016)

‣Exclusive at NNLO
M. Cacciari, F. Dreyer, A. Karlberg, G. Salam, G. Zanderighi (2015)

NNLO differential larger (5-10%) than for 
inclusive (1%) and beyond NLO band
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N3LO Splitting functions
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Figure 9: The dependence of the NLO, NNLO and N3LO predictions for q̇+
ns ≡ d lnq+

ns/d ln µ2
f on the

renormalization scale µr at six typical values of x for the initial conditions (5.6) and (5.7). The effect of the
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Singlet and Gluon splitting functions feasible 

‣N=20 Mellin moments (large Nc)
‣Enough to provide a reconstruction in terms of Harmonic sums
‣N=16 beyond large Nc
‣Precise for x & 10�4

‣Non-Singlet 4 loop splitting function

colour factor A4 B4

C4
F 0 197. ± 3.

C3
F CA 0 −687. ± 10.

C2
FC2

A 0 1219. ± 12.

CF C3
A 610.3 ± 0.3 295.6 ± 2.4

d abcd
F d abcd

A /NR −507.5 ± 6.0 −996. ± 45.

nf C3
F −31.00±0.4 81.4±2.2

nf C2
F CA 38.75 ± 0.2 −455.7 ± 1.1

nf CF C2
A −440.65 ± 0.2 −274.4 ± 1.1

nf d abcd
F d abcd

F /NR −123.90 ± 0.2 −143.5 ± 1.2

n2
f C2

F −21.31439 −5.775288

n2
f CF CA 58.36737 51.03056

n3
f CF 2.454258 2.261237

Table 2: Numerical results for the large-x coefficients A4 and B4 for the seven colour factors contributing

to the n0
f and n1

f parts. For completeness also the exactly known n2
f and n3

f coefficients are included.

It may be interesting, for theoretical purposes, to consider the contributions of the individual

colour factors to A4 and B4. By repeating the approximation procedure of the previous sections

separately for each colour factors, we arrive at the corresponding results collected in table 2. Our

results show that both quartic group invariants definitely contribute to the four-loop cusp anoma-

lous dimension – an issue that has attracted some interest, see, e.g., refs. [109–112] – which

means that the so-called Casimir scaling between the quark and gluon cusp anomalous dimen-

sions, Aq = CF/CA Ag , does not hold beyond three loops. A lower value, -113.66 after conversion

to our notation, results from assumptions made in ref. [113] for the coefficient of nf d abcd
F d abcd

F /NR.

We now turn to the effect of the four-loop splitting functions (4.6) – (4.21) on the evolution

– specifically the logarithmic derivatives q̇ i
ns ≡ d lnqi

ns/d lnµ2
f where µf is the factorization scale –

of the non-singlet combinations q
±,v
ns (x,µ2

f ) of the quark and anti-quark distributions. In all three

cases we employ the same schematic, but characteristic model distribution

xq±,v
ns (x,µ2

0 ) = x0.5(1− x)3 . (5.6)

This facilitates a direct comparison of effects of the various contributions of the splitting functions.

For the same reason the reference scale is specified by the order-independent value

αs(µ
2
0 ) = 0.2 (5.7)

for the strong coupling constant. This value corresponds to µ2
0 ≃ 25 . . .50 GeV2 for αs(M 2

Z) =
0.114 . . .0.120 beyond the leading order. In this region of the physical scale Q2 deep-inelastic

scattering has been measured both at fixed-target experiments and, for much smaller x, at the ep

collider HERA. Our default for the number of effectively massless flavours is nf = 4.
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1.1.2 Summary of results1033

The numerical results quoted in this section are valid the following set of input parameters:

√
S 13 TeV

mh 125 GeV

PDF PDF4LHC15_nnlo_100

αs(mZ) 0.118

mt(mt) 162.7 GeV (MS)

mb(mb) 4.18 GeV (MS)

mc(3GeV ) 0.986 GeV (MS)

µ = µR = µF 62.5 GeV (= mH/2)

1034

Using these input parameters, our current best prediction for the production cross section of a1035

Higgs boson with a mass mH = 125 GeV at the LHC with a center-of-mass energy of 13 TeV is1036

σ = 48.58 pb+2.22 pb (+4.56%)
−3.27 pb (−6.72%) (theory) ± 1.56 pb (3.20%) (PDF+αs) . (4.3)

The central value in eq. (4.3), computed a the central scale µF = µR = mH/2, is the combination1037

of all the effects considered in eq. (4.12). The breakdown of the different effects is:1038

48.58 pb = 16.00 pb (+32.9%) (LO, rEFT)
+ 20.84 pb (+42.9%) (NLO, rEFT)
− 2.05 pb (−4.2%) ((t, b, c), exact NLO)
+ 9.56 pb (+19.7%) (NNLO, rEFT)
+ 0.34 pb (+0.7%) (NNLO, 1/mt)
+ 2.40 pb (+4.9%) (EW, QCD-EW)
+ 1.49 pb (+3.1%) (N3LO, rEFT)

(4.4)

We note that for the N3LO central value is completely insensitive to threshold resummation effects for1039

µF = µR = mH/2 and the central value obtained from a fixed-order N3LO computation and a resummed1040

computation at N3LO + N3LL are identical for this scale choice. We therefore conclude that threshold1041

resummation does not provide any improvement of the central value, and it is therefore not included it1042

into our prediction.1043

The PDF and αs uncertainties are computed following the recommendation of the PDF4LHC1044

working group. The remaining theory-uncertainty in eq. (4.3) is obtained by adding linearly vari-1045

ous sources of theoretical uncertainty, which affect the different contributions to the cross section in1046

eq. (4.12). The breakdown of the different theoretical uncertainties whose linear sum produces the theo-1047

retical uncertainty in eq. (4.3) is1048

δ(scale) δ(trunc) δ(PDF-TH) δ(EW) δ(t, b, c) δ(1/mt)

+0.10 pb
−1.15 pb ±0.18 pb ±0.56 pb ±0.49 pb ±0.40 pb ±0.49 pb

+0.21%
−2.37% ±0.37% ±1.16% ±1% ±0.83% ±1%

1049

In the remainder of this note we address each of the components that enter the final theoretical uncertainty1050

estimate in turn.1051

what is the meaning of that?

‣Usually obtained by performing scale variations

keep logs small
µF,R =

✓
r,
1

r

◆
Q

‣Several examples showing that “r=2” might be short
  to account for true uncertainties
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Fraction of hadronic observables (~15) 
    whose h.o. correction is contained 
    in the scale variation interval 

E. Bagnaschi, M. Cacciari, A. Guffanti, L. Jenniches (2014)
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Figure 3.1: Fraction of observables whose known higher order is found to be contained within the
uncertainty interval given by scale variation between µ = Q/r and µ = rQ. Left plot: only the extremes
and the central value of the [Q/r, rQ] are used. Right plot: the full [Q/r, rQ] interval is scanned.
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Figure 3.2: Fraction of observables whose known higher order is found to be contained within the
uncertainty interval given by renormalisation and factorisation scale variation between µr,f = Q/r and
µr,f = rQ with the constraint 1/r  µr/µf  r. Only the seven points at the extremes and at the centre
of the scale-variation interval are used. Left plot: NNLO-evolved PDFs are used with all perturbative
orders. Right plot: PDFs evolution order is matched with the perturbative order of the observable.

order-matched PDFs, on the other hand, we obtain very small heuristic CL (less than 30%) for r  3.
The CL reaches 68% for r just over 4 and then stabilises around 80% for larger values of r. These
two analyses for hadronic observables suggest that in the scale-variation approach one may wish to use
a rescaling factor r ⇠ 3 � 4 in order to obtain a reasonably conservative uncertainty interval, with a
heuristic CL at least as large as 68%.

3.2.2 The modified Cacciari-Houdeau model (CH)

For each of the sets of observables listed in Tables 1 and 2 we have performed an analysis of the per-
formance of the CH model in estimating the MHOUs. In this case, a parameter of the model is the �
(or �h factor) that defines the effective expansion parameter of the perturbative series as written in the
model, see eq. (2.10) and eq. (2.15). As far as the size of the uncertainty intervals is concerned, the pa-
rameter � (or �h) plays a role analogous to that of r in the scale-variation approach: the final result will
depend on its value. However, since in the Bayesian model the widths of the uncertainty intervals are
associated with properly defined credibility values, one can explicitly determine the optimal value for �

11

With “r=4” closer 
to 68% expectation

But rescaling depends on order:
 might be better from NNLO

‣Several examples showing that “r=2” might be short
  to account for true uncertainties



Fixed Order QCD corrections                          Daniel de Florian 31

‣Bayesian approach: Introduce condicional density 
 compute credibility interval with degree of belief  (68%, 95%)
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Figure 4.11: Size of the MHO uncertainty intervals at LO, NLO and NNLO for the pp ! tt̄ process atp
S = 8 TeV with the CH model with �h = 0.6, compared to those predicted by scale variation.
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Figure 4.12: Posterior distribution for the remainder �k (blue solid) for the pp ! tt̄ process at
p
S =

8 TeV with the CH model, 68% DoB interval (blue fill), 95% DoB interval (light-blue fill), scale-
variation interval (red solid).
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LO NLO NNLO

a rescaling factor of 3-4 appears more likely to estimate missing higher 
  orders consistent with a 68%-heuristic CL interpretation 

M. Cacciari, N. Houdeau (2011); E. Bagnaschi, M. Cacciari, A. Guffanti, L. Jenniches (2014)
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a rescaling factor of 3-4 appears more likely to estimate missing higher 
  orders consistent with a 68%-heuristic CL interpretation 

‣Evaluate “higher order” terms from resummation framework

‣Series acceleration: estimate some unknown terms using analytical
 structure of expansion and sequence methods A. David, G. Passarino (2013)

DdeF, J. Mazzitelli, S. Moch, A. Vogt (2014)
R. Ball et al (2013)

M. Cacciari, N. Houdeau (2011); E. Bagnaschi, M. Cacciari, A. Guffanti, L. Jenniches (2014)
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Too much effort to reach N^nLO to avoid the search for a more rigorous 
handling of TH uncertainties in perturbative calculations

‣Bayesian approach: Introduce condicional density 
 compute credibility interval with degree of belief  (68%, 95%)
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  orders consistent with a 68%-heuristic CL interpretation 
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‣Series acceleration: estimate some unknown terms using analytical
 structure of expansion and sequence methods A. David, G. Passarino (2013)
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Conclusions
‣Amazing progress in fixed order calculations during the last (>) decade

Automation of NLO 
Several NNLO processes
Even N3LO for simpler kinematics and first set of splitting functions

‣But… Reaching new bottlenecks

‣Large multiplicity at NLO still needs manual-work

‣Loop induced processes (massive) yet hard to tackle 

‣NNLO very difficult for more than 2 particles in final state

Virtual amplitudes (massive)

Real radiation not trivial  (numerical infrared treatment) 

2 ! 2

‣Need a more rigorous treatment of TH uncertainties 

Driven by LHC

Will need significant development 
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Thanks to Costas Papadopoulos and Marco Zaro for discussions
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J.Currie, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A.Huss, J.Pires (2017)

‣ Leading color using antenna subtraction : NNLOJET
J.Currie, E.W.N. Glover, J.Pires (2016) 2
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FIG. 1: Double-di↵erential inclusive jet cross-sections mea-
surement by ATLAS [6] and NNLO perturbative QCD pre-
dictions as a function of the jet pT in slices of rapidity, for
anti-kT jets with R = 0.4 normalized to the NLO result. The
shaded bands represent the scale uncertainty of the theory
predictions obtained by varying µR and µF as described in
the text. The red dashed line displays the NNLO/NLO ratio
corrected multiplicatively for electroweak corrections [37].

Nc, to all these subprocesses. In practice this amounts
to calculating the N2

c , NcNF and N2
F corrections to all

LO subprocesses, where NF is the number of light quark
flavours. We include the full LO and NLO coe�cients in
this calculation but note that retaining only the leading
colour correction to all partonic subprocesses at NLO
gives the full result to within a few percent across all
distributions. The analogous subleading colour contri-
butions at NNLO are expected to be small and we do
not include them in this study. To support this assump-
tion we note that the subleading colour NNLO contribu-
tion for pure gluon scattering was presented in a previ-
ous study [34] and found to be negligible. We construct
subtraction terms to regulate all IR divergences in the
phase space integrals and cancel all explicit poles in the
dimensional regularization parameter, ✏ = (4� d)/2, the
details of which for the antenna subtraction method can
be found in [25, 34, 36]. The IR finite cross section at
NNLO is then integrated numerically in four dimensions
over the appropriate two-, three- or four-parton massless
phase space to yield the final result.

In Fig. 1 we present the results for the double-
di↵erential inclusive jet cross section at NLO and NNLO,
normalized to the NLO theoretical prediction to empha-
size the impact of the NNLO correction to the NLO re-

FIG. 2: NLO and NNLO k-factors for jet production atp
s = 7 TeV. The lines correspond to the double di↵erential

k-factors (ratios of perturbative predictions in the perturba-
tive expansion) for pT > 100 GeV and across six rapidity |y|
slices.

sult. The collider setup is proton-proton collisions at a
centre of mass energy of

p
s = 7 TeV where the jets are

reconstructed using the anti-kT jet algorithm [35] with
R = 0.4. We use the NNPDF3.0 NNLO PDF set [15]
with ↵s(M2

Z) = 0.118 throughout this paper for LO,
NLO and NNLO predictions to emphasise the behaviour
of the higher order coe�cient functions at each pertur-
bative order. By default we set the renormalization and
factorization scales µR = µF = pT1, where pT1 is the
pT of the leading jet in each event. To obtain the scale
uncertainty of the theory prediction we vary both scales
independently by a factor of 1/2 and 2 with the constraint
1/2  µR/µF  2. We find that the NNLO coe�cient
has a moderate positive e↵ect on the cross section, 10%
at low pT across all rapidity slices relative to NLO. This is
significant because it is precisely in this region where the
majority of the cross section lies, especially in the cen-
tral rapidity slices, and it is where we observe the largest
NNLO e↵ects. At higher pT we see that the relative size
of the NNLO correction to NLO decreases to the 1-2%
level and so the perturbative series converges rapidly.

Given that we see a moderate NNLO correction to the
NLO prediction in the region where the bulk of the cross
section lies, it is instructive to compare to the available
data. The data points in Fig. 1 represent the ATLAS
data for an integrated luminosity of 4.5 fb�1 [6], nor-
malized to the NLO prediction. We do not include non-

3

FIG. 3: The single inclusive cross section in three pT bins: (left) 100-116 GeV, (centre) 290-318 GeV, (right) 642-688 GeV,
plotted against the normalized scale choice µR/pT1 . Points represent the LO, NLO and NNLO cross section as computed
by NNLOJET at µR/pT1 = 0.5, 1, 2 and µF /pT1 = 1. The solid lines represent the Renormalization Group Equation (RGE)
solution for the scale variation, computed with pT as the evolution parameter and µF /pT1 = 1. Long and short dashed lines
represent the same quantities evaluated with µF /pT1 = 0.5 and µF /pT1 = 2 respectively.

perturbative e↵ects in our predictions; they are quan-
tified in [6] and found to be a 2% e↵ect in the lowest
pT bin and at most a 1% e↵ect in all other bins (al-
though the quoted uncertainty on the non-perturbative
corrections can be as high as 9% for the lowest pT bin).
The electroweak corrections computed in [37], are applied
multiplicatively to the QCD calculation for central scale
choice using the information provided in [6] and the to-
tal is displayed as the red dashed line. The electroweak
e↵ects are small to moderate for pT > 1 TeV for central
rapidities but otherwise negligible. We observe that the
data is described very accurately by the NLO prediction,
particularly at low to moderate pT , whilst the NNLO
prediction shows some tension with the data in the same
region.

The potential for the NNLO correction to change
the shape of the distribution relative to NLO can be
seen clearly in Fig. 2 where we show the k-factors for
NLO/LO, NNLO/NLO and NNLO/LO as a function of
pT in six rapidity slices. In the central rapidity slices we
observe that at low pT the NLO correction acts nega-
tively relative to LO and then grows to a moderate pos-
itive correction at high pT . In contrast, the NNLO cor-
rection acts positively at low pT and decreases to a small
e↵ect at high pT . The aggregate e↵ect is shown in the
NNLO/LO curve which is the result of a partial cancel-
lation between NLO and NNLO at low pT , reversing the
negative NLO contribution to give a positive total cor-
rection, and largely follows the NLO curve at high pT .
In the region, |y| > 1.5, we observe that the NLO correc-
tion is once again negative at low pT but does not grow
as strongly as in central regions, and is indeed negative
at high pT for the most forward slices. Relative to NLO,
the NNLO corrections are again positive and moderate
at low pT , decreasing in size at high pT , such that the
total e↵ect is a positive correction at low pT decreasing
to a negative e↵ect at high pT in the most forward region.
[40]

Aside from the size and shape of the NNLO corrections,
an interesting feature of Fig. 1 is the scale dependence

at NLO and NNLO, represented by the thickness of the
bands. At high pT , especially in the central region, the
NNLO scale dependence is dramatically reduced and the
NNLO band lies firmly within the NLO band. The situ-
ation is once again di↵erent at low pT where we observe
an appreciable scale variation on the NNLO calculation,
in some places even larger than the NLO scale variation,
and the bands do not fully overlap.

This behaviour is unexpected and so in Fig. 3 we anal-
yse the scale variation in more detail. We select three pT
bins at low (100-116 GeV), intermediate (290-318 GeV)
and high (642-688 GeV) pT in the central region |y| < 0.5
and display the cross section as a function of µR/pT1 .
The points represent the cross section as calculated at
LO, NLO and NNLO, evaluated at µR/pT1 2 {0.5, 1, 2}
with µF /pT1 = 1. The solid line is the Renormal-
ization Group Equation (RGE) prediction for the scale
variation starting from the cross section computed with
µR/pT1 = µF /pT1 = 1. To be fully consistent, the RGE
evolution variable should be pT1 , however starting with
the distribution d�/dpT , all information on pT1 is lost
and therefore we use pT to approximate pT1 as the RGE
evolution variable [41]. Nevertheless, the di↵erence in
the evolution is small even at low pT and we include the
RGE lines to aid the discussion of the scale variation in
each bin. The long and short dashed lines are obtained
using µF /pT1 = 0.5 and µF /pT1 = 2 respectively.

From the left pane in Fig. 3 we observe that at LO
the scale variation is a monotonically decreasing func-
tion with pT . At NLO the picture is quite di↵erent; the
shape of the RGE curve turns over at approximately the
central scale choice. The consequence of this behaviour is
that the scale band is asymmetric, with the central scale
being located at the upper edge of the band, as can be
seen in Fig. 1 where the NLO scale band lies almost en-
tirely below one. The overall variation is also relatively
small at low pT , (< 5%), which is linked to the small-
ness of the NLO coe�cient, (⇠ 4% of LO), as displayed
in Fig. 2. The NNLO curve is monotonically decreas-
ing, leading to a more symmetric band and the overall
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Fig. 4. The NLO (green), NNLO (blue) and ATLAS data normalized to the NLO
prediction for the individual jet pT scale choice. The bands correspond to the
variation of µ = µR = µF by factors of 0.5 and 2 about the central scale choice.
Electroweak correction are applied multiplicatively and separately represented as
a dashed red line.

At NNLO we observe that the curve has less curvature than the NLO
curve and is approximately linear with a decreasing gradient for increasing
pT . The variation of the NNLO cross section due to µR is larger than NLO in
the low pT bin, largely owing to the fact that the peaked shape of the NLO
curve probably underestimates the uncertainty; but even taking this into
account, the magnitude of the variation is similar to that at NLO. At higher
pT the µR scale variation of the NNLO cross section decreases as the curve
flattens in Fig. 3(c). At low pT the change due to µF variation, displayed as
the thickness of the bands in Fig. 3, is relatively small, even at LO; whereas
at high pT the µF variation becomes large at LO and is significantly reduced
by including the NLO and especially NNLO corrections.

The information in Figs. 2-3 can be combined and compared to the
available ATLAS data, as shown in Fig. 4. We observe that at low pT the

µ = pT1µ = pT

• Moderate NNLO corrections
• Two different central scales: leading jet vs individual jet

Single-jet production
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FIG. 1: Double-di↵erential inclusive jet cross-sections mea-
surement by ATLAS [6] and NNLO perturbative QCD pre-
dictions as a function of the jet pT in slices of rapidity, for
anti-kT jets with R = 0.4 normalized to the NLO result. The
shaded bands represent the scale uncertainty of the theory
predictions obtained by varying µR and µF as described in
the text. The red dashed line displays the NNLO/NLO ratio
corrected multiplicatively for electroweak corrections [37].

Nc, to all these subprocesses. In practice this amounts
to calculating the N2

c , NcNF and N2
F corrections to all

LO subprocesses, where NF is the number of light quark
flavours. We include the full LO and NLO coe�cients in
this calculation but note that retaining only the leading
colour correction to all partonic subprocesses at NLO
gives the full result to within a few percent across all
distributions. The analogous subleading colour contri-
butions at NNLO are expected to be small and we do
not include them in this study. To support this assump-
tion we note that the subleading colour NNLO contribu-
tion for pure gluon scattering was presented in a previ-
ous study [34] and found to be negligible. We construct
subtraction terms to regulate all IR divergences in the
phase space integrals and cancel all explicit poles in the
dimensional regularization parameter, ✏ = (4� d)/2, the
details of which for the antenna subtraction method can
be found in [25, 34, 36]. The IR finite cross section at
NNLO is then integrated numerically in four dimensions
over the appropriate two-, three- or four-parton massless
phase space to yield the final result.

In Fig. 1 we present the results for the double-
di↵erential inclusive jet cross section at NLO and NNLO,
normalized to the NLO theoretical prediction to empha-
size the impact of the NNLO correction to the NLO re-

FIG. 2: NLO and NNLO k-factors for jet production atp
s = 7 TeV. The lines correspond to the double di↵erential

k-factors (ratios of perturbative predictions in the perturba-
tive expansion) for pT > 100 GeV and across six rapidity |y|
slices.

sult. The collider setup is proton-proton collisions at a
centre of mass energy of

p
s = 7 TeV where the jets are

reconstructed using the anti-kT jet algorithm [35] with
R = 0.4. We use the NNPDF3.0 NNLO PDF set [15]
with ↵s(M2

Z) = 0.118 throughout this paper for LO,
NLO and NNLO predictions to emphasise the behaviour
of the higher order coe�cient functions at each pertur-
bative order. By default we set the renormalization and
factorization scales µR = µF = pT1, where pT1 is the
pT of the leading jet in each event. To obtain the scale
uncertainty of the theory prediction we vary both scales
independently by a factor of 1/2 and 2 with the constraint
1/2  µR/µF  2. We find that the NNLO coe�cient
has a moderate positive e↵ect on the cross section, 10%
at low pT across all rapidity slices relative to NLO. This is
significant because it is precisely in this region where the
majority of the cross section lies, especially in the cen-
tral rapidity slices, and it is where we observe the largest
NNLO e↵ects. At higher pT we see that the relative size
of the NNLO correction to NLO decreases to the 1-2%
level and so the perturbative series converges rapidly.

Given that we see a moderate NNLO correction to the
NLO prediction in the region where the bulk of the cross
section lies, it is instructive to compare to the available
data. The data points in Fig. 1 represent the ATLAS
data for an integrated luminosity of 4.5 fb�1 [6], nor-
malized to the NLO prediction. We do not include non-
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FIG. 3: The single inclusive cross section in three pT bins: (left) 100-116 GeV, (centre) 290-318 GeV, (right) 642-688 GeV,
plotted against the normalized scale choice µR/pT1 . Points represent the LO, NLO and NNLO cross section as computed
by NNLOJET at µR/pT1 = 0.5, 1, 2 and µF /pT1 = 1. The solid lines represent the Renormalization Group Equation (RGE)
solution for the scale variation, computed with pT as the evolution parameter and µF /pT1 = 1. Long and short dashed lines
represent the same quantities evaluated with µF /pT1 = 0.5 and µF /pT1 = 2 respectively.

perturbative e↵ects in our predictions; they are quan-
tified in [6] and found to be a 2% e↵ect in the lowest
pT bin and at most a 1% e↵ect in all other bins (al-
though the quoted uncertainty on the non-perturbative
corrections can be as high as 9% for the lowest pT bin).
The electroweak corrections computed in [37], are applied
multiplicatively to the QCD calculation for central scale
choice using the information provided in [6] and the to-
tal is displayed as the red dashed line. The electroweak
e↵ects are small to moderate for pT > 1 TeV for central
rapidities but otherwise negligible. We observe that the
data is described very accurately by the NLO prediction,
particularly at low to moderate pT , whilst the NNLO
prediction shows some tension with the data in the same
region.

The potential for the NNLO correction to change
the shape of the distribution relative to NLO can be
seen clearly in Fig. 2 where we show the k-factors for
NLO/LO, NNLO/NLO and NNLO/LO as a function of
pT in six rapidity slices. In the central rapidity slices we
observe that at low pT the NLO correction acts nega-
tively relative to LO and then grows to a moderate pos-
itive correction at high pT . In contrast, the NNLO cor-
rection acts positively at low pT and decreases to a small
e↵ect at high pT . The aggregate e↵ect is shown in the
NNLO/LO curve which is the result of a partial cancel-
lation between NLO and NNLO at low pT , reversing the
negative NLO contribution to give a positive total cor-
rection, and largely follows the NLO curve at high pT .
In the region, |y| > 1.5, we observe that the NLO correc-
tion is once again negative at low pT but does not grow
as strongly as in central regions, and is indeed negative
at high pT for the most forward slices. Relative to NLO,
the NNLO corrections are again positive and moderate
at low pT , decreasing in size at high pT , such that the
total e↵ect is a positive correction at low pT decreasing
to a negative e↵ect at high pT in the most forward region.
[40]

Aside from the size and shape of the NNLO corrections,
an interesting feature of Fig. 1 is the scale dependence

at NLO and NNLO, represented by the thickness of the
bands. At high pT , especially in the central region, the
NNLO scale dependence is dramatically reduced and the
NNLO band lies firmly within the NLO band. The situ-
ation is once again di↵erent at low pT where we observe
an appreciable scale variation on the NNLO calculation,
in some places even larger than the NLO scale variation,
and the bands do not fully overlap.

This behaviour is unexpected and so in Fig. 3 we anal-
yse the scale variation in more detail. We select three pT
bins at low (100-116 GeV), intermediate (290-318 GeV)
and high (642-688 GeV) pT in the central region |y| < 0.5
and display the cross section as a function of µR/pT1 .
The points represent the cross section as calculated at
LO, NLO and NNLO, evaluated at µR/pT1 2 {0.5, 1, 2}
with µF /pT1 = 1. The solid line is the Renormal-
ization Group Equation (RGE) prediction for the scale
variation starting from the cross section computed with
µR/pT1 = µF /pT1 = 1. To be fully consistent, the RGE
evolution variable should be pT1 , however starting with
the distribution d�/dpT , all information on pT1 is lost
and therefore we use pT to approximate pT1 as the RGE
evolution variable [41]. Nevertheless, the di↵erence in
the evolution is small even at low pT and we include the
RGE lines to aid the discussion of the scale variation in
each bin. The long and short dashed lines are obtained
using µF /pT1 = 0.5 and µF /pT1 = 2 respectively.

From the left pane in Fig. 3 we observe that at LO
the scale variation is a monotonically decreasing func-
tion with pT . At NLO the picture is quite di↵erent; the
shape of the RGE curve turns over at approximately the
central scale choice. The consequence of this behaviour is
that the scale band is asymmetric, with the central scale
being located at the upper edge of the band, as can be
seen in Fig. 1 where the NLO scale band lies almost en-
tirely below one. The overall variation is also relatively
small at low pT , (< 5%), which is linked to the small-
ness of the NLO coe�cient, (⇠ 4% of LO), as displayed
in Fig. 2. The NNLO curve is monotonically decreas-
ing, leading to a more symmetric band and the overall
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Fig. 4. The NLO (green), NNLO (blue) and ATLAS data normalized to the NLO
prediction for the individual jet pT scale choice. The bands correspond to the
variation of µ = µR = µF by factors of 0.5 and 2 about the central scale choice.
Electroweak correction are applied multiplicatively and separately represented as
a dashed red line.

At NNLO we observe that the curve has less curvature than the NLO
curve and is approximately linear with a decreasing gradient for increasing
pT . The variation of the NNLO cross section due to µR is larger than NLO in
the low pT bin, largely owing to the fact that the peaked shape of the NLO
curve probably underestimates the uncertainty; but even taking this into
account, the magnitude of the variation is similar to that at NLO. At higher
pT the µR scale variation of the NNLO cross section decreases as the curve
flattens in Fig. 3(c). At low pT the change due to µF variation, displayed as
the thickness of the bands in Fig. 3, is relatively small, even at LO; whereas
at high pT the µF variation becomes large at LO and is significantly reduced
by including the NLO and especially NNLO corrections.

The information in Figs. 2-3 can be combined and compared to the
available ATLAS data, as shown in Fig. 4. We observe that at low pT the

µ = pT1µ = pT

• Moderate NNLO corrections
• Two different central scales: leading jet vs individual jet

‣Equivalent at large transverse momentum
‣Differences outside scale band at low momentum
‣pT provides better description (with larger corrections and scale dep.)
‣Requires further studies to LHC data (scale, shape, cone, pdfs)

Single-jet production
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Infrared Structure of QCD
‣H.O. computations possible: understanding infrared structure of amplitudes

Strict factorization in collinear limit
‣Key for cancellation of singularities : factorization of amplitudes

n particle 
amplitude

2 collinear n-1 particle amplitude

splitting matrix 

universal and process independent
independent of non-collinear partons

In the kinematical configuration where the parton momenta p1 and p2 become collinear,
their invariant mass s12 vanishes, and the matrix element M(p1, p2, . . . , pn) becomes sin-
gular. To precisely define the collinear limit, we rescale the transverse momenta k⊥i in
Eq. (2) by an overall factor λ (namely, k⊥i → λ k⊥i with i = 1, 2), and then we perform the
limit λ→ 0. In this limit, the behaviour of the matrix element M(p1, p2, . . . , pn) is propor-
tional to 1/λ. We are interested in explicitly evaluating the matrix element contribution
that controls this singular behaviour order by order in the perturbative expansion. More
precisely, in d = 4− 2ϵ dimensions, the four-dimensional scaling behaviour in the collinear
limit is modified by powers of (λ2)−ϵ. Since we work with fixed ϵ, we treat the powers of
(λ2)−ϵ as contributions of order unity in the collinear limit.

In summary, considering the limit s12 → 0, we are interested in the singular behaviour:

M(p1, p2, . . . , pn) ∼
1

√
s12

mod (lnk s12)
[
1 +O(

√
s12 )

]
, (6)

where the logarithmic contributions lnk s12 (k = 0, 1, 2, . . . ) eventually comes from the
power series expansion in ϵ of terms such as (s12)−ϵ. These logarithmic contributions are
taken into account in our calculation, while the corrections of relative order O(

√
s12 ) are

systematically neglected.

As is well known [16, 17], the singular behaviour of tree-level scattering amplitudes
in the collinear limit is universal (process independent) and factorized. The factorization
structure is usually presented at the level of colour subamplitudes [17], in a colour-stripped
form. In Ref. [26], we proposed a formulation of collinear factorization that is valid directly
in colour space. Here, we follow this colour space formulation, which turns out to be
particularly suitable to the main purpose of the present paper, namely, the general study
of the SL collinear limit at one-loop and higher-loop orders.

To directly work in colour space, we use the notation of Ref. [29] (see also Ref. [1]). The
scattering amplitude M depends on the colour indeces {c1, c2, . . . } and on the spin (e.g.
helicity) indeces {s1, s2, . . . } of the external QCD partons; we write

Mc1,c2,...,cn;s1,s2,...,sn(p1, p2, . . . , pn) . (7)

We formally treat the colour and spin structures by introducing an orthonormal basis
{|c1, c2, . . . , cn⟩ ⊗ |s1, s2, . . . , sn⟩} in colour + spin space. The scattering amplitude in
Eq. (7) can be written as

Mc1,c2,...;s1,s2,...(p1, p2, . . . ) ≡
(
⟨c1, c2, . . .|⊗ ⟨s1, s2, . . .|

)
|M(p1, p2, . . . )⟩ . (8)

Thus |M(p1, p2, . . . , pn)⟩ is a vector in colour + spin (helicity) space.

As stated at the beginning of this section, we define the external momenta pi’s as
outgoing momenta. The colour indeces {c1, c2, . . . cn} are consistently treated as outgoing
colour indeces: ci is the colour index of the parton Ai with outgoing momentum pi (if pi
has negative energy, ci is the colour index of the physical parton Ai that collides in the
initial state). An analogous comment applies to spin indeces.

Having introduced our notation, we can write down the colour-space factorization for-
mula [26] for the collinear limit of the tree-level amplitude M(0). We have

|M(0)(p1, p2, . . . , pn)⟩ ≃ Sp(0)(p1, p2; P̃ ) |M(0)(P̃ , . . . , pn)⟩ , (9)

5

is obtained from (154) by directly using Eq. (162) (note that sign(s1j) = − sign(s2j) in the
SL collinear region, since s12 < 0).

7 Square amplitudes and cross sections

The perturbative QCD computation of cross sections (and related physical observables)
requires the evaluation of the square of the matrix element M(p1, p2, . . . , pn) and its in-
tegration over the phase space of the final-state partons. In this section we consider the
collinear limit of square amplitudes. In particular, we are interested in the implications of
violation of strict collinear factorization at the level of square amplitudes and, possibly, of
cross sections.

7.1 The collinear behaviour of square amplitudes

We consider the square matrix element, |M|2, summed over the colours and spins of the
external QCD partons (see Eq. (7)):

|M(p1, p2, . . . )|2 ≡
∑

{ci}

∑

{si}

[
Mc1,c2,...;s1,s2,...(p1, p2, . . . )

]†
Mc1,c2,...;s1,s2,...(p1, p2, . . . ) .

(164)
Using the notation in colour+spin space (see Eq. (8)), |M|2 can be written as

|M(p1, p2, . . . , pn)|2 = ⟨M(p1, p2, . . . , pn) |M(p1, p2, . . . , pn) ⟩ . (165)

The all-order singular behaviour of |M|2, in a generic kinematical configuration of
m collinear partons with momenta {p1, . . . , pm}, is obtained by squaring the generalized
factorization formula in Eq. (78). We have

|M|2 ≃ ⟨M| P(p1, . . . , pm; P̃ ; pm+1, . . . , pn) |M⟩ , (166)

where the matrix P is the square of the all-order splitting matrix Sp :

P ≡ [Sp ]† Sp . (167)

The loop expansion of the square splitting matrix P is

P = P(0,R) +P(1,R) +P(2,R) + . . . , (168)

where P(k,R) (with k = 0, 1, 2, . . . ) are the renormalized perturbative contributions. Insert-
ing Eq. (83) in Eq. (167), we obtain the expression of P(k,R) in terms of the perturbative
contributions to Sp :

P(0,R) =
(
Sp(0,R)

)†
Sp(0,R) , (169)

P(1,R) =
(
Sp(0,R)

)†
Sp(1,R) + h.c. , (170)
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n particle 
amplitude

2 collinear n-1 particle amplitude

splitting matrix 

universal and process independent
independent of non-collinear partons
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requires the evaluation of the square of the matrix element M(p1, p2, . . . , pn) and its in-
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collinear limit of square amplitudes. In particular, we are interested in the implications of
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|M(p1, p2, . . . , pn)|2 = ⟨M(p1, p2, . . . , pn) |M(p1, p2, . . . , pn) ⟩ . (165)
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m collinear partons with momenta {p1, . . . , pm}, is obtained by squaring the generalized
factorization formula in Eq. (78). We have

|M|2 ≃ ⟨M| P(p1, . . . , pm; P̃ ; pm+1, . . . , pn) |M⟩ , (166)
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contributions to Sp :
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‣Similar approach for virtual amplitudes

expressions in Eqs. (12)–(15) refer to the TL region where the energies of p1, p2 and P̃ are
positive. The corresponding expressions in other kinematical regions are straightforwardly
obtained by applying crossing symmetry. If the energy of the momentum P (P = p1, p2
or P̃ ) is negative, the crossing relation simply amounts to the usual replacement of the
corresponding wave function (i.e., u(P ) ↔ v(−P ) and ε(P ) ↔ ε∗(−P )).

3 One-loop amplitudes: time-like collinear limit

In this section we consider the collinear behaviour of the one-loop QCD amplitudes M(1)

in Eq. (1). We use the same general notation as in Sect. 2. However, we anticipate that
the results are valid only in the case of the TL collinear splitting (i.e., s12 > 0).

The singular behaviour of M(1)(p1, p2, . . . , pn) in the region where the two momenta p1
and p2 become collinear is also described by a factorization formula. The extension of the
tree-level colour-space formula (9) to one-loop amplitudes is [26]

|M(1)(p1, p2, . . . , pn)⟩ ≃ Sp(1)(p1, p2; P̃ ) |M(0)(P̃ , . . . , pn)⟩
+ Sp(0)(p1, p2; P̃ ) |M(1)(P̃ , . . . , pn)⟩ . (21)

The ‘reduced’ matrix elements on the right-hand side are obtained from M(p1, p2, . . . , pn)
by replacing the two collinear partons A1 and A2 (with momentum p1 and p2, respectively)
with their parent parton A, with momentum P̃ . The two contributions on the right-
hand side are proportional to the reduced matrix element at the tree-level and at the
one-loop order, respectively. The splitting matrix Sp(0) is exactly the tree-level splitting
matrix that enters Eq. (9). The one-loop splitting matrix Sp(1)(p1, p2; P̃ ) encodes new (one-
loop) information on the collinear splitting process A → A1A2. Analogously to Sp(0), the
one-loop factor Sp(1)(p1, p2; P̃ ) is a universal (process-independent) matrix in colour+spin
space, and it only depends on the momenta and quantum numbers of the partons involved
in the collinear splitting subprocess.

Within the colour subamplitude formulation, the collinear limit of two partons at the
one-loop level was first discussed in Ref. [23] by introducing one-loop splitting amplitudes
Split(1)(p1, p2; P̃ ), which are the one-loop analogues of the tree-level splitting amplitudes
mentioned in Sect. 2. A proof of collinear factorization of one-loop colour subamplitudes
was presented in Ref. [24]. The explicit results of the splitting amplitudes Split(1) in
d = 4 − 2ϵ dimensions (or, equivalently, the results to all orders in the ϵ expansion) were
obtained in Refs. [12, 25].

The relation between the one-loop factorization formula (21) and its colour subampli-
tude version is exactly the same as the relation at the tree level (see also the Appendix A).
The main point is that the one-loop splitting matrix Sp(1)(p1, p2; P̃ ) involves a single colour
structure (more precisely, there is a single colour structure for each flavour configuration
of the splitting processes A → A1A2), and this colour structure is the same structure that
occurs in the tree-level splitting matrix Sp(0)(p1, p2; P̃ ). In other words, the proportion-
ality relation in Eq. (16) is valid also at the one-loop level: we can simply perform the
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‣Factorization fails in space-like region: hadronic colliders

depends on non-collinear partons 

Violation of strict factorization for one loop amplitudes

Catani, deF., Rodrigo (2012)

4 One-loop amplitudes: general (including space-like)
collinear limit

4.1 Generalized factorization and violation of strict collinear fac-
torization

The extension of the colour-space collinear formula in Eq. (21) to general kinematical
configurations∥, which include the two-parton collinear limit in the SL region, is

|M(1)(p1, p2, . . . , pn)⟩ ≃ Sp(1)(p1, p2; P̃ ; p3, . . . , pn) |M(0)(P̃ , . . . , pn)⟩
+ Sp(0)(p1, p2; P̃ ) |M(1)(P̃ , . . . , pn)⟩ . (33)

The essential difference with respect to Eq. (21) is that the one-loop splitting matrix Sp(1)

on the right-hand side of Eq. (33) depends not only on the collinear partons but also on the
momenta and quantum numbers of the non-collinear partons in the original matrix element
|M(1)(p1, p2, . . . , pn)⟩. Thus, Sp(1) is no longer (strictly) universal, since it retains some
dependence on the process (matrix element) from which the splitting matrix derives. The
reduced tree-level, |M(0)(P̃ , . . . , pn)⟩, and one-loop, |M(1)(P̃ , . . . , pn)⟩, matrix elements on
the right-hand side of Eq. (33) are the same as those in Eq. (21): they are still related to
the original matrix element |M(1)(p1, p2, . . . , pn)⟩ through the same factorization procedure
that is used in Eq. (21) (i.e. in the case of the TL collinear limit).

The explicit form of the general one-loop splitting matrix Sp(1) in Eq. (33) is

Sp(1)(p1, p2; P̃ ; p3, . . . , pn) = Sp
(1)
H (p1, p2; P̃ ) + IC(p1, p2; p3, . . . , pn) Sp

(0)(p1, p2; P̃ ) ,

(34)

where Sp
(1)
H (p1, p2; P̃ ) is exactly the same (universal) term as in Eq. (28). The difference

with respect to the TL expression in Eq. (28) arises from the replacement of IC(p1, p2; P̃ )
with IC(p1, p2; p3, . . . , pn). The term IC(p1, p2; P̃ ) is a c-number (i.e., colourless) factor,
while IC(p1, p2; p3, . . . , pn) is a colour matrix. Moreover, IC(p1, p2; P̃ ) depends on the
collinear variables z1, z2, s12 and the flavour of the collinear partons A1, A2 and A (see
Eq. (29)), while IC(p1, p2; p3, . . . , pn) also depends on the momentum and colour of the
non-collinear partons.

The expression of the colour operator IC can be presented by using the same notation
as in Eq. (29). We can also exploit the fact that in any kinematical configurations (see
Eqs. (17) and (18)) one of the two collinear variables, z1 and z2, necessarily has positive
values (recall that z1 + z2 = 1). Therefore, with no loss of generality, we can set (choose)

z1 > 0 ,

∥In the Appendix A, we illustrate the SL collinear limit of colour subamplitudes for the specific case of
pure multigluon matrix elements at the one-loop level.
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Factorization violation in the multiparton collinear limit Germán Rodrigo

In the SL region, strict collinear factorization is violated [17] at one-loop and higher-loop orders.
We illustrate the violation of strict collinear factorization by mainly considering the infrared

(IR) divergent part of the splitting matrix. The IR structure of Sp is not independent [13, 14, 31, 32,
33] of the IR structure of the QCD amplitude M . Using dimensional regularization in d = 4−2ε
space-time dimensions, the all-order matrix element M fulfills the IR recursion relation [34, 35,
36, 37, 38, 39]

|M ⟩ = IM(ε) |M ⟩+ |M fin.⟩ , (2.9)

where the operator IM(ε) = I
(1)
M (ε) + I(2)M (ε) + . . . (with perturbative coefficients I(k)M (ε)) is IR

divergent, while the matrix element termM fin. = M (0) +M (1)fin.+M (2)fin.+ . . . is IR finite and
its first contribution in the perturbative expansion is the complete tree-level matrix element M (0)

in Eq. (2.5). An expression analogous to Eq. (2.9) holds forM and the corresponding IR operator
IM(ε). The all-order splitting matrix also fulfills a recursion relation [17]:

Sp= V(ε) Spfin. V−1
(ε) =

[
1−V(ε) V−1(ε)

]
Sp+V(ε) Spfin. V−1

(ε) , (2.10)

where the first term in the perturbative expansion of the IR finite splitting matrix Spfin. is the tree-
level splitting matrix Sp(0) (Spfin. = Sp(0) +Sp(1)fin.+Sp(2)fin.+ . . .), and

V−1(ε) = 1− I(ε) , V−1
(ε) = 1− I(ε) , (2.11)

where I and I are obtained from the collinear limit of the IR operators IM and IM, respectively. Up
to two loops, the expansion of the coefficient of the first term in the right-hand side of Eq. (2.10)
reads 1−V(ε) V−1(ε) = I(1)mC(ε)+ I

(2)
mC(ε)+O(α3S), where

I(1)mC(ε) = I(1)(ε)− I(1)(ε) , (2.12)

I(2)mC(ε) = I(2)(ε)− I(2)(ε)+ I(1)(ε)
(
I(1)(ε)− I(1)(ε)

)
. (2.13)

The IR operators in Eqs. (2.12) and (2.13) have been calculated in Ref. [17] starting from the
known IR structure of scattering amplitudes to two-loop order [34, 36]. In the SL collinear region,
the operator I(1)mC(ε), which describes the IR divergent part of the one-loop splitting matrix Sp

(1),
contains factorization breaking contributions that are proportional to the anti-Hermitian operator

∆(1)
mC(ε) =

αS(µ2)
2π

iπ
ε ∑

i∈C
j∈NC

Ti ·T j Θ(−zi) sign(si j) , (2.14)

where NC = {m+ 1, . . . ,n} denotes the set of non-collinear partons, and Tk is the colour-charge
matrix of the k-th parton (we are using the general colour space notation of Ref. [40]). The operator
in Eq. (2.14) embodies colour correlations between collinear and non-collinear partons that are
produced by the non-Abelian Coulomb phase, and thus they violate strict collinear factorization.
In the two-parton collinear case, these colour correlations are illustrated in Fig. 1 (left). Note that
the two-parton one-loop SL splitting matrix is known to all orders in ε [17] and, therefore, the
result of Ref. [17] is not limited to the treatment of Coulomb-Glauber gluon effects to leading IR
accuracy. For three or more collinear partons, the IR finite part of Sp(1) is unknown (the explicit
calculation for three collinear partons is in progress), but it also contains factorization breaking
contributions similar to those in Eq. (2.14).
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Figure 1: Two-parton factorization breaking correlations at one-loop in hadron–hadron collisions (left).
Three-parton factorization breaking correlations at two-loops, n≥ 4 QCD partons (right).

At two loops, new factorization breaking terms appear in the SL region through the opera-
tor [17]
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, (2.15)

which contributes (to I(2)mC and) to the IR divergent part of Sp
(2). The operator ∆(2;2)

mC includes both
Hermitian and anti-Hermitian contributions, and it embodies three-parton correlations involving
one collinear and two non-collinear partons (see Fig. 1 (right)). The Hermitian part also depends
on the size of the non-collinear momenta. The anti-Hermitian part, which depends only on the sign
of the partons subenergies, can be rewritten [17] in terms of correlations between two collinear and
one non-collinear partons.

The breaking of strict collinear factorization in the SL region beyond the tree-level is due
to absorptive contributions originated from the fact that colour coherence is limited by causality,
which distinguishes initial-state from final-state interactions. Lepton-hadron DIS is, however, a
special case since all the non-collinear coloured partons are produced in the final state, and thus
there are no initial-state interactions between collinear and non-collinear partons. The one-loop
and two-loop SL multiparton splitting matrices explicitely calculated in Ref. [17] effectively take a
strictly-factorized form in DIS.

3. Squared amplitudes and cross-sections

The all-order singular behaviour of the squared matrix element |M |2 (summed over the colours
and spins of the external partons) in a generic kinematical configuration of m collinear partons is
obtained by squaring the generalized factorization formula in Eq. (2.4):

|M |2 ≃ ⟨M | P(p1, . . . , pm; P̃; pm+1, . . . , pn) |M ⟩ , (3.1)
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4 One-loop amplitudes: general (including space-like)
collinear limit

4.1 Generalized factorization and violation of strict collinear fac-
torization

The extension of the colour-space collinear formula in Eq. (21) to general kinematical
configurations∥, which include the two-parton collinear limit in the SL region, is

|M(1)(p1, p2, . . . , pn)⟩ ≃ Sp(1)(p1, p2; P̃ ; p3, . . . , pn) |M(0)(P̃ , . . . , pn)⟩
+ Sp(0)(p1, p2; P̃ ) |M(1)(P̃ , . . . , pn)⟩ . (33)

The essential difference with respect to Eq. (21) is that the one-loop splitting matrix Sp(1)

on the right-hand side of Eq. (33) depends not only on the collinear partons but also on the
momenta and quantum numbers of the non-collinear partons in the original matrix element
|M(1)(p1, p2, . . . , pn)⟩. Thus, Sp(1) is no longer (strictly) universal, since it retains some
dependence on the process (matrix element) from which the splitting matrix derives. The
reduced tree-level, |M(0)(P̃ , . . . , pn)⟩, and one-loop, |M(1)(P̃ , . . . , pn)⟩, matrix elements on
the right-hand side of Eq. (33) are the same as those in Eq. (21): they are still related to
the original matrix element |M(1)(p1, p2, . . . , pn)⟩ through the same factorization procedure
that is used in Eq. (21) (i.e. in the case of the TL collinear limit).

The explicit form of the general one-loop splitting matrix Sp(1) in Eq. (33) is

Sp(1)(p1, p2; P̃ ; p3, . . . , pn) = Sp
(1)
H (p1, p2; P̃ ) + IC(p1, p2; p3, . . . , pn) Sp

(0)(p1, p2; P̃ ) ,

(34)

where Sp
(1)
H (p1, p2; P̃ ) is exactly the same (universal) term as in Eq. (28). The difference

with respect to the TL expression in Eq. (28) arises from the replacement of IC(p1, p2; P̃ )
with IC(p1, p2; p3, . . . , pn). The term IC(p1, p2; P̃ ) is a c-number (i.e., colourless) factor,
while IC(p1, p2; p3, . . . , pn) is a colour matrix. Moreover, IC(p1, p2; P̃ ) depends on the
collinear variables z1, z2, s12 and the flavour of the collinear partons A1, A2 and A (see
Eq. (29)), while IC(p1, p2; p3, . . . , pn) also depends on the momentum and colour of the
non-collinear partons.

The expression of the colour operator IC can be presented by using the same notation
as in Eq. (29). We can also exploit the fact that in any kinematical configurations (see
Eqs. (17) and (18)) one of the two collinear variables, z1 and z2, necessarily has positive
values (recall that z1 + z2 = 1). Therefore, with no loss of generality, we can set (choose)

z1 > 0 ,

∥In the Appendix A, we illustrate the SL collinear limit of colour subamplitudes for the specific case of
pure multigluon matrix elements at the one-loop level.
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In the SL region, strict collinear factorization is violated [17] at one-loop and higher-loop orders.
We illustrate the violation of strict collinear factorization by mainly considering the infrared

(IR) divergent part of the splitting matrix. The IR structure of Sp is not independent [13, 14, 31, 32,
33] of the IR structure of the QCD amplitude M . Using dimensional regularization in d = 4−2ε
space-time dimensions, the all-order matrix element M fulfills the IR recursion relation [34, 35,
36, 37, 38, 39]

|M ⟩ = IM(ε) |M ⟩+ |M fin.⟩ , (2.9)
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M (ε) + I(2)M (ε) + . . . (with perturbative coefficients I(k)M (ε)) is IR

divergent, while the matrix element termM fin. = M (0) +M (1)fin.+M (2)fin.+ . . . is IR finite and
its first contribution in the perturbative expansion is the complete tree-level matrix element M (0)

in Eq. (2.5). An expression analogous to Eq. (2.9) holds forM and the corresponding IR operator
IM(ε). The all-order splitting matrix also fulfills a recursion relation [17]:
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(ε) =
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]
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(ε) , (2.10)

where the first term in the perturbative expansion of the IR finite splitting matrix Spfin. is the tree-
level splitting matrix Sp(0) (Spfin. = Sp(0) +Sp(1)fin.+Sp(2)fin.+ . . .), and

V−1(ε) = 1− I(ε) , V−1
(ε) = 1− I(ε) , (2.11)

where I and I are obtained from the collinear limit of the IR operators IM and IM, respectively. Up
to two loops, the expansion of the coefficient of the first term in the right-hand side of Eq. (2.10)
reads 1−V(ε) V−1(ε) = I(1)mC(ε)+ I

(2)
mC(ε)+O(α3S), where

I(1)mC(ε) = I(1)(ε)− I(1)(ε) , (2.12)

I(2)mC(ε) = I(2)(ε)− I(2)(ε)+ I(1)(ε)
(
I(1)(ε)− I(1)(ε)

)
. (2.13)

The IR operators in Eqs. (2.12) and (2.13) have been calculated in Ref. [17] starting from the
known IR structure of scattering amplitudes to two-loop order [34, 36]. In the SL collinear region,
the operator I(1)mC(ε), which describes the IR divergent part of the one-loop splitting matrix Sp

(1),
contains factorization breaking contributions that are proportional to the anti-Hermitian operator

∆(1)
mC(ε) =

αS(µ2)
2π

iπ
ε ∑

i∈C
j∈NC

Ti ·T j Θ(−zi) sign(si j) , (2.14)

where NC = {m+ 1, . . . ,n} denotes the set of non-collinear partons, and Tk is the colour-charge
matrix of the k-th parton (we are using the general colour space notation of Ref. [40]). The operator
in Eq. (2.14) embodies colour correlations between collinear and non-collinear partons that are
produced by the non-Abelian Coulomb phase, and thus they violate strict collinear factorization.
In the two-parton collinear case, these colour correlations are illustrated in Fig. 1 (left). Note that
the two-parton one-loop SL splitting matrix is known to all orders in ε [17] and, therefore, the
result of Ref. [17] is not limited to the treatment of Coulomb-Glauber gluon effects to leading IR
accuracy. For three or more collinear partons, the IR finite part of Sp(1) is unknown (the explicit
calculation for three collinear partons is in progress), but it also contains factorization breaking
contributions similar to those in Eq. (2.14).
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Figure 1: Two-parton factorization breaking correlations at one-loop in hadron–hadron collisions (left).
Three-parton factorization breaking correlations at two-loops, n≥ 4 QCD partons (right).

At two loops, new factorization breaking terms appear in the SL region through the opera-
tor [17]
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which contributes (to I(2)mC and) to the IR divergent part of Sp
(2). The operator ∆(2;2)

mC includes both
Hermitian and anti-Hermitian contributions, and it embodies three-parton correlations involving
one collinear and two non-collinear partons (see Fig. 1 (right)). The Hermitian part also depends
on the size of the non-collinear momenta. The anti-Hermitian part, which depends only on the sign
of the partons subenergies, can be rewritten [17] in terms of correlations between two collinear and
one non-collinear partons.

The breaking of strict collinear factorization in the SL region beyond the tree-level is due
to absorptive contributions originated from the fact that colour coherence is limited by causality,
which distinguishes initial-state from final-state interactions. Lepton-hadron DIS is, however, a
special case since all the non-collinear coloured partons are produced in the final state, and thus
there are no initial-state interactions between collinear and non-collinear partons. The one-loop
and two-loop SL multiparton splitting matrices explicitely calculated in Ref. [17] effectively take a
strictly-factorized form in DIS.

3. Squared amplitudes and cross-sections

The all-order singular behaviour of the squared matrix element |M |2 (summed over the colours
and spins of the external partons) in a generic kinematical configuration of m collinear partons is
obtained by squaring the generalized factorization formula in Eq. (2.4):

|M |2 ≃ ⟨M | P(p1, . . . , pm; P̃; pm+1, . . . , pn) |M ⟩ , (3.1)
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At two loops, new factorization breaking terms appear in the SL region through the opera-
tor [17]
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which contributes (to I(2)mC and) to the IR divergent part of Sp
(2). The operator ∆(2;2)

mC includes both
Hermitian and anti-Hermitian contributions, and it embodies three-parton correlations involving
one collinear and two non-collinear partons (see Fig. 1 (right)). The Hermitian part also depends
on the size of the non-collinear momenta. The anti-Hermitian part, which depends only on the sign
of the partons subenergies, can be rewritten [17] in terms of correlations between two collinear and
one non-collinear partons.

The breaking of strict collinear factorization in the SL region beyond the tree-level is due
to absorptive contributions originated from the fact that colour coherence is limited by causality,
which distinguishes initial-state from final-state interactions. Lepton-hadron DIS is, however, a
special case since all the non-collinear coloured partons are produced in the final state, and thus
there are no initial-state interactions between collinear and non-collinear partons. The one-loop
and two-loop SL multiparton splitting matrices explicitely calculated in Ref. [17] effectively take a
strictly-factorized form in DIS.

3. Squared amplitudes and cross-sections

The all-order singular behaviour of the squared matrix element |M |2 (summed over the colours
and spins of the external partons) in a generic kinematical configuration of m collinear partons is
obtained by squaring the generalized factorization formula in Eq. (2.4):

|M |2 ≃ ⟨M | P(p1, . . . , pm; P̃; pm+1, . . . , pn) |M ⟩ , (3.1)
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4 One-loop amplitudes: general (including space-like)
collinear limit

4.1 Generalized factorization and violation of strict collinear fac-
torization

The extension of the colour-space collinear formula in Eq. (21) to general kinematical
configurations∥, which include the two-parton collinear limit in the SL region, is

|M(1)(p1, p2, . . . , pn)⟩ ≃ Sp(1)(p1, p2; P̃ ; p3, . . . , pn) |M(0)(P̃ , . . . , pn)⟩
+ Sp(0)(p1, p2; P̃ ) |M(1)(P̃ , . . . , pn)⟩ . (33)

The essential difference with respect to Eq. (21) is that the one-loop splitting matrix Sp(1)

on the right-hand side of Eq. (33) depends not only on the collinear partons but also on the
momenta and quantum numbers of the non-collinear partons in the original matrix element
|M(1)(p1, p2, . . . , pn)⟩. Thus, Sp(1) is no longer (strictly) universal, since it retains some
dependence on the process (matrix element) from which the splitting matrix derives. The
reduced tree-level, |M(0)(P̃ , . . . , pn)⟩, and one-loop, |M(1)(P̃ , . . . , pn)⟩, matrix elements on
the right-hand side of Eq. (33) are the same as those in Eq. (21): they are still related to
the original matrix element |M(1)(p1, p2, . . . , pn)⟩ through the same factorization procedure
that is used in Eq. (21) (i.e. in the case of the TL collinear limit).

The explicit form of the general one-loop splitting matrix Sp(1) in Eq. (33) is

Sp(1)(p1, p2; P̃ ; p3, . . . , pn) = Sp
(1)
H (p1, p2; P̃ ) + IC(p1, p2; p3, . . . , pn) Sp

(0)(p1, p2; P̃ ) ,

(34)

where Sp
(1)
H (p1, p2; P̃ ) is exactly the same (universal) term as in Eq. (28). The difference

with respect to the TL expression in Eq. (28) arises from the replacement of IC(p1, p2; P̃ )
with IC(p1, p2; p3, . . . , pn). The term IC(p1, p2; P̃ ) is a c-number (i.e., colourless) factor,
while IC(p1, p2; p3, . . . , pn) is a colour matrix. Moreover, IC(p1, p2; P̃ ) depends on the
collinear variables z1, z2, s12 and the flavour of the collinear partons A1, A2 and A (see
Eq. (29)), while IC(p1, p2; p3, . . . , pn) also depends on the momentum and colour of the
non-collinear partons.

The expression of the colour operator IC can be presented by using the same notation
as in Eq. (29). We can also exploit the fact that in any kinematical configurations (see
Eqs. (17) and (18)) one of the two collinear variables, z1 and z2, necessarily has positive
values (recall that z1 + z2 = 1). Therefore, with no loss of generality, we can set (choose)

z1 > 0 ,

∥In the Appendix A, we illustrate the SL collinear limit of colour subamplitudes for the specific case of
pure multigluon matrix elements at the one-loop level.
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In the SL region, strict collinear factorization is violated [17] at one-loop and higher-loop orders.
We illustrate the violation of strict collinear factorization by mainly considering the infrared

(IR) divergent part of the splitting matrix. The IR structure of Sp is not independent [13, 14, 31, 32,
33] of the IR structure of the QCD amplitude M . Using dimensional regularization in d = 4−2ε
space-time dimensions, the all-order matrix element M fulfills the IR recursion relation [34, 35,
36, 37, 38, 39]

|M ⟩ = IM(ε) |M ⟩+ |M fin.⟩ , (2.9)

where the operator IM(ε) = I
(1)
M (ε) + I(2)M (ε) + . . . (with perturbative coefficients I(k)M (ε)) is IR

divergent, while the matrix element termM fin. = M (0) +M (1)fin.+M (2)fin.+ . . . is IR finite and
its first contribution in the perturbative expansion is the complete tree-level matrix element M (0)

in Eq. (2.5). An expression analogous to Eq. (2.9) holds forM and the corresponding IR operator
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level splitting matrix Sp(0) (Spfin. = Sp(0) +Sp(1)fin.+Sp(2)fin.+ . . .), and

V−1(ε) = 1− I(ε) , V−1
(ε) = 1− I(ε) , (2.11)

where I and I are obtained from the collinear limit of the IR operators IM and IM, respectively. Up
to two loops, the expansion of the coefficient of the first term in the right-hand side of Eq. (2.10)
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I(2)mC(ε) = I(2)(ε)− I(2)(ε)+ I(1)(ε)
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The IR operators in Eqs. (2.12) and (2.13) have been calculated in Ref. [17] starting from the
known IR structure of scattering amplitudes to two-loop order [34, 36]. In the SL collinear region,
the operator I(1)mC(ε), which describes the IR divergent part of the one-loop splitting matrix Sp

(1),
contains factorization breaking contributions that are proportional to the anti-Hermitian operator

∆(1)
mC(ε) =

αS(µ2)
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ε ∑

i∈C
j∈NC

Ti ·T j Θ(−zi) sign(si j) , (2.14)

where NC = {m+ 1, . . . ,n} denotes the set of non-collinear partons, and Tk is the colour-charge
matrix of the k-th parton (we are using the general colour space notation of Ref. [40]). The operator
in Eq. (2.14) embodies colour correlations between collinear and non-collinear partons that are
produced by the non-Abelian Coulomb phase, and thus they violate strict collinear factorization.
In the two-parton collinear case, these colour correlations are illustrated in Fig. 1 (left). Note that
the two-parton one-loop SL splitting matrix is known to all orders in ε [17] and, therefore, the
result of Ref. [17] is not limited to the treatment of Coulomb-Glauber gluon effects to leading IR
accuracy. For three or more collinear partons, the IR finite part of Sp(1) is unknown (the explicit
calculation for three collinear partons is in progress), but it also contains factorization breaking
contributions similar to those in Eq. (2.14).
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At two loops, new factorization breaking terms appear in the SL region through the opera-
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which contributes (to I(2)mC and) to the IR divergent part of Sp
(2). The operator ∆(2;2)

mC includes both
Hermitian and anti-Hermitian contributions, and it embodies three-parton correlations involving
one collinear and two non-collinear partons (see Fig. 1 (right)). The Hermitian part also depends
on the size of the non-collinear momenta. The anti-Hermitian part, which depends only on the sign
of the partons subenergies, can be rewritten [17] in terms of correlations between two collinear and
one non-collinear partons.

The breaking of strict collinear factorization in the SL region beyond the tree-level is due
to absorptive contributions originated from the fact that colour coherence is limited by causality,
which distinguishes initial-state from final-state interactions. Lepton-hadron DIS is, however, a
special case since all the non-collinear coloured partons are produced in the final state, and thus
there are no initial-state interactions between collinear and non-collinear partons. The one-loop
and two-loop SL multiparton splitting matrices explicitely calculated in Ref. [17] effectively take a
strictly-factorized form in DIS.

3. Squared amplitudes and cross-sections

The all-order singular behaviour of the squared matrix element |M |2 (summed over the colours
and spins of the external partons) in a generic kinematical configuration of m collinear partons is
obtained by squaring the generalized factorization formula in Eq. (2.4):

|M |2 ≃ ⟨M | P(p1, . . . , pm; P̃; pm+1, . . . , pn) |M ⟩ , (3.1)
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Figure 1: Two-parton factorization breaking correlations at one-loop in hadron–hadron collisions (left).
Three-parton factorization breaking correlations at two-loops, n≥ 4 QCD partons (right).

At two loops, new factorization breaking terms appear in the SL region through the opera-
tor [17]
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which contributes (to I(2)mC and) to the IR divergent part of Sp
(2). The operator ∆(2;2)

mC includes both
Hermitian and anti-Hermitian contributions, and it embodies three-parton correlations involving
one collinear and two non-collinear partons (see Fig. 1 (right)). The Hermitian part also depends
on the size of the non-collinear momenta. The anti-Hermitian part, which depends only on the sign
of the partons subenergies, can be rewritten [17] in terms of correlations between two collinear and
one non-collinear partons.

The breaking of strict collinear factorization in the SL region beyond the tree-level is due
to absorptive contributions originated from the fact that colour coherence is limited by causality,
which distinguishes initial-state from final-state interactions. Lepton-hadron DIS is, however, a
special case since all the non-collinear coloured partons are produced in the final state, and thus
there are no initial-state interactions between collinear and non-collinear partons. The one-loop
and two-loop SL multiparton splitting matrices explicitely calculated in Ref. [17] effectively take a
strictly-factorized form in DIS.

3. Squared amplitudes and cross-sections

The all-order singular behaviour of the squared matrix element |M |2 (summed over the colours
and spins of the external partons) in a generic kinematical configuration of m collinear partons is
obtained by squaring the generalized factorization formula in Eq. (2.4):

|M |2 ≃ ⟨M | P(p1, . . . , pm; P̃; pm+1, . . . , pn) |M ⟩ , (3.1)
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‣Factorization fails in space-like region: hadronic colliders

depends on non-collinear partons 

Violation of strict factorization for one loop amplitudes

Catani, deF., Rodrigo (2012)

4 One-loop amplitudes: general (including space-like)
collinear limit

4.1 Generalized factorization and violation of strict collinear fac-
torization

The extension of the colour-space collinear formula in Eq. (21) to general kinematical
configurations∥, which include the two-parton collinear limit in the SL region, is

|M(1)(p1, p2, . . . , pn)⟩ ≃ Sp(1)(p1, p2; P̃ ; p3, . . . , pn) |M(0)(P̃ , . . . , pn)⟩
+ Sp(0)(p1, p2; P̃ ) |M(1)(P̃ , . . . , pn)⟩ . (33)

The essential difference with respect to Eq. (21) is that the one-loop splitting matrix Sp(1)

on the right-hand side of Eq. (33) depends not only on the collinear partons but also on the
momenta and quantum numbers of the non-collinear partons in the original matrix element
|M(1)(p1, p2, . . . , pn)⟩. Thus, Sp(1) is no longer (strictly) universal, since it retains some
dependence on the process (matrix element) from which the splitting matrix derives. The
reduced tree-level, |M(0)(P̃ , . . . , pn)⟩, and one-loop, |M(1)(P̃ , . . . , pn)⟩, matrix elements on
the right-hand side of Eq. (33) are the same as those in Eq. (21): they are still related to
the original matrix element |M(1)(p1, p2, . . . , pn)⟩ through the same factorization procedure
that is used in Eq. (21) (i.e. in the case of the TL collinear limit).

The explicit form of the general one-loop splitting matrix Sp(1) in Eq. (33) is

Sp(1)(p1, p2; P̃ ; p3, . . . , pn) = Sp
(1)
H (p1, p2; P̃ ) + IC(p1, p2; p3, . . . , pn) Sp

(0)(p1, p2; P̃ ) ,

(34)

where Sp
(1)
H (p1, p2; P̃ ) is exactly the same (universal) term as in Eq. (28). The difference

with respect to the TL expression in Eq. (28) arises from the replacement of IC(p1, p2; P̃ )
with IC(p1, p2; p3, . . . , pn). The term IC(p1, p2; P̃ ) is a c-number (i.e., colourless) factor,
while IC(p1, p2; p3, . . . , pn) is a colour matrix. Moreover, IC(p1, p2; P̃ ) depends on the
collinear variables z1, z2, s12 and the flavour of the collinear partons A1, A2 and A (see
Eq. (29)), while IC(p1, p2; p3, . . . , pn) also depends on the momentum and colour of the
non-collinear partons.

The expression of the colour operator IC can be presented by using the same notation
as in Eq. (29). We can also exploit the fact that in any kinematical configurations (see
Eqs. (17) and (18)) one of the two collinear variables, z1 and z2, necessarily has positive
values (recall that z1 + z2 = 1). Therefore, with no loss of generality, we can set (choose)

z1 > 0 ,

∥In the Appendix A, we illustrate the SL collinear limit of colour subamplitudes for the specific case of
pure multigluon matrix elements at the one-loop level.
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In the SL region, strict collinear factorization is violated [17] at one-loop and higher-loop orders.
We illustrate the violation of strict collinear factorization by mainly considering the infrared

(IR) divergent part of the splitting matrix. The IR structure of Sp is not independent [13, 14, 31, 32,
33] of the IR structure of the QCD amplitude M . Using dimensional regularization in d = 4−2ε
space-time dimensions, the all-order matrix element M fulfills the IR recursion relation [34, 35,
36, 37, 38, 39]

|M ⟩ = IM(ε) |M ⟩+ |M fin.⟩ , (2.9)

where the operator IM(ε) = I
(1)
M (ε) + I(2)M (ε) + . . . (with perturbative coefficients I(k)M (ε)) is IR

divergent, while the matrix element termM fin. = M (0) +M (1)fin.+M (2)fin.+ . . . is IR finite and
its first contribution in the perturbative expansion is the complete tree-level matrix element M (0)

in Eq. (2.5). An expression analogous to Eq. (2.9) holds forM and the corresponding IR operator
IM(ε). The all-order splitting matrix also fulfills a recursion relation [17]:

Sp= V(ε) Spfin. V−1
(ε) =

[
1−V(ε) V−1(ε)

]
Sp+V(ε) Spfin. V−1

(ε) , (2.10)

where the first term in the perturbative expansion of the IR finite splitting matrix Spfin. is the tree-
level splitting matrix Sp(0) (Spfin. = Sp(0) +Sp(1)fin.+Sp(2)fin.+ . . .), and

V−1(ε) = 1− I(ε) , V−1
(ε) = 1− I(ε) , (2.11)

where I and I are obtained from the collinear limit of the IR operators IM and IM, respectively. Up
to two loops, the expansion of the coefficient of the first term in the right-hand side of Eq. (2.10)
reads 1−V(ε) V−1(ε) = I(1)mC(ε)+ I

(2)
mC(ε)+O(α3S), where

I(1)mC(ε) = I(1)(ε)− I(1)(ε) , (2.12)

I(2)mC(ε) = I(2)(ε)− I(2)(ε)+ I(1)(ε)
(
I(1)(ε)− I(1)(ε)

)
. (2.13)

The IR operators in Eqs. (2.12) and (2.13) have been calculated in Ref. [17] starting from the
known IR structure of scattering amplitudes to two-loop order [34, 36]. In the SL collinear region,
the operator I(1)mC(ε), which describes the IR divergent part of the one-loop splitting matrix Sp

(1),
contains factorization breaking contributions that are proportional to the anti-Hermitian operator

∆(1)
mC(ε) =

αS(µ2)
2π

iπ
ε ∑

i∈C
j∈NC

Ti ·T j Θ(−zi) sign(si j) , (2.14)

where NC = {m+ 1, . . . ,n} denotes the set of non-collinear partons, and Tk is the colour-charge
matrix of the k-th parton (we are using the general colour space notation of Ref. [40]). The operator
in Eq. (2.14) embodies colour correlations between collinear and non-collinear partons that are
produced by the non-Abelian Coulomb phase, and thus they violate strict collinear factorization.
In the two-parton collinear case, these colour correlations are illustrated in Fig. 1 (left). Note that
the two-parton one-loop SL splitting matrix is known to all orders in ε [17] and, therefore, the
result of Ref. [17] is not limited to the treatment of Coulomb-Glauber gluon effects to leading IR
accuracy. For three or more collinear partons, the IR finite part of Sp(1) is unknown (the explicit
calculation for three collinear partons is in progress), but it also contains factorization breaking
contributions similar to those in Eq. (2.14).
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Figure 1: Two-parton factorization breaking correlations at one-loop in hadron–hadron collisions (left).
Three-parton factorization breaking correlations at two-loops, n≥ 4 QCD partons (right).

At two loops, new factorization breaking terms appear in the SL region through the opera-
tor [17]
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which contributes (to I(2)mC and) to the IR divergent part of Sp
(2). The operator ∆(2;2)

mC includes both
Hermitian and anti-Hermitian contributions, and it embodies three-parton correlations involving
one collinear and two non-collinear partons (see Fig. 1 (right)). The Hermitian part also depends
on the size of the non-collinear momenta. The anti-Hermitian part, which depends only on the sign
of the partons subenergies, can be rewritten [17] in terms of correlations between two collinear and
one non-collinear partons.

The breaking of strict collinear factorization in the SL region beyond the tree-level is due
to absorptive contributions originated from the fact that colour coherence is limited by causality,
which distinguishes initial-state from final-state interactions. Lepton-hadron DIS is, however, a
special case since all the non-collinear coloured partons are produced in the final state, and thus
there are no initial-state interactions between collinear and non-collinear partons. The one-loop
and two-loop SL multiparton splitting matrices explicitely calculated in Ref. [17] effectively take a
strictly-factorized form in DIS.

3. Squared amplitudes and cross-sections

The all-order singular behaviour of the squared matrix element |M |2 (summed over the colours
and spins of the external partons) in a generic kinematical configuration of m collinear partons is
obtained by squaring the generalized factorization formula in Eq. (2.4):

|M |2 ≃ ⟨M | P(p1, . . . , pm; P̃; pm+1, . . . , pn) |M ⟩ , (3.1)
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At two loops, new factorization breaking terms appear in the SL region through the opera-
tor [17]
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which contributes (to I(2)mC and) to the IR divergent part of Sp
(2). The operator ∆(2;2)

mC includes both
Hermitian and anti-Hermitian contributions, and it embodies three-parton correlations involving
one collinear and two non-collinear partons (see Fig. 1 (right)). The Hermitian part also depends
on the size of the non-collinear momenta. The anti-Hermitian part, which depends only on the sign
of the partons subenergies, can be rewritten [17] in terms of correlations between two collinear and
one non-collinear partons.

The breaking of strict collinear factorization in the SL region beyond the tree-level is due
to absorptive contributions originated from the fact that colour coherence is limited by causality,
which distinguishes initial-state from final-state interactions. Lepton-hadron DIS is, however, a
special case since all the non-collinear coloured partons are produced in the final state, and thus
there are no initial-state interactions between collinear and non-collinear partons. The one-loop
and two-loop SL multiparton splitting matrices explicitely calculated in Ref. [17] effectively take a
strictly-factorized form in DIS.

3. Squared amplitudes and cross-sections

The all-order singular behaviour of the squared matrix element |M |2 (summed over the colours
and spins of the external partons) in a generic kinematical configuration of m collinear partons is
obtained by squaring the generalized factorization formula in Eq. (2.4):

|M |2 ≃ ⟨M | P(p1, . . . , pm; P̃; pm+1, . . . , pn) |M ⟩ , (3.1)
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‣Challenges collinear mass factorization and higher order calculations: 
cancellation with other contribution
‣Produces super-leading logarithms in ‘gaps–between–jets’ cross sections 



Fixed Order QCD corrections                          Daniel de Florian 38


