Fixed Order QCD corrections

Daniel de Florian ICAS - UNSAM Argentina

QCD@LHC 2017

Debrecen, August 2017

Outline

\& Introduction

\& NLO
\& NNLO
$\% \mathrm{~N}^{3} \mathrm{LO}$
\&TH Uncertainties
© Conclusions
~

Conclusion

EXP
We measure XXX and the observable is in agreement with the Standard Model predictions

Conclusion

EXP
We measure XXX and the observable is in agreement with the Standard Model predictions

We compute $X X X$ at $\mathbf{N}^{\mathbf{i}} \mathbf{L} \mathbf{O}$ and find a
TH considerable reduction in scale dependence and a better description of the data

- In the LHC era, QCD is everywhere!

non-perturbative parton distributions

$$
d \sigma=\sum_{a b} \int d x_{a} \int d x_{b} f_{a}\left(x_{a}, \mu_{F}^{2}\right) f_{b}\left(x_{b}, \mu_{F}^{2}\right) \times d \hat{\sigma}_{a b}\left(x_{a}, x_{b}, Q^{2}, \alpha_{s}\left(\mu_{R}^{2}\right)\right)+\mathcal{O}\left(\left(\frac{\Lambda}{Q}\right)^{m}\right)
$$

Require precision for perturbative and non-perturbative contribution

The perturbative toolkit for precision at colliders

Everything starts with a fixed order calculation

Resummation

The perturbative toolkit for precision at colliders

Everything starts with a fixed order calculation

- Partonic cross-section: expansion in $\alpha_{s}\left(\mu_{R}^{2}\right) \ll 1$

$$
d \hat{\sigma}=\alpha_{s}^{n} d \hat{\sigma}^{(0)}+\alpha_{s}^{n+1} d \hat{\sigma}^{(1)}+\ldots
$$

LHC incredibly successful at $7,8 \& 13 \mathrm{TeV}$ (Runs I and II)

Everything SM like (including Higgs)

Why higher order corrections?

- Large Corrections : check PT
$\alpha_{s} \sim 0.1$
slow convergence
shape and normalization
- Accurate Theoretical Predictions
$\sigma\left(p_{1}, p_{2}\right)=\sum_{a, b} \int_{0}^{1} d x_{1} \int_{0}^{1} d x_{2} f_{a / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{b / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \times \hat{\sigma}_{a b}\left(x_{1} p_{1}, x_{2} p_{2}, \alpha_{s}\left(\mu_{R}^{2}\right), \mu_{R}^{2}, \mu_{F}^{2}\right)$

Scale dependence considerably reduced at higher orders

TH uncertainty

- Extra radiation : more partons result in better TH/EXP matching

Description of jets, transverse momentum, etc
Opening of new channels
Sometimes new channels at higher order provide large corrections due to parton luminosity (pdf, non-perturbative-pertubative interplay)

ODiboson production

$\mathcal{O}\left(\alpha_{s}^{0}\right)$ but $q \bar{q}$ Luminosity

$\mathcal{O}\left(\alpha_{s}\right)$ but $q g$ Luminosity

$\mathcal{O}\left(\alpha_{s}^{2}\right)$ but $g g$ Luminosity

NLO

The NLO revolution

Revolution in calculation of I-loop amplitudes

Bottleneck was in the virtual contribution : large multiplicities

Feynmanian approach

Improvements in decomposition and reduction
Denner, Dittmaier; Pozzorini; Binoth, Guillet, Heinrich, Pilon, Schubert + many others
Unitarian approach
Use multi-particle cuts from generalized unitarity

> Bern, Dixon, Dunbar, Kosower; Britto, Cachazo, Feng; Mastrolia; Forde; Badger; Ellis, Giele, Kunszt, Melnikov + many others

OPP Ossola, Papadopoulos, Pittau decomposition at the integrand level
J. Henn QCD@LHCI7

- Final goal: Really automatic NLO calculations
- Specify the process (input card)
- Input parameters
- Define final cuts
- Automatic NLO calculation "conceptually" solved
- in a few years a number of codes

HELAC-NLO, Rocket, BlackHat+SHERPA, GoSam+SHERPA/MADGRAPH, Njet+SHERPA, Madgraph5-aMC@NLO, RECOLA, OpenLoops+SHERPA

- compete on precision, flexibility, speed, stability, ...
- many features : uncertainties, Parton shower, ...

Final goal: Really automatic NLO calculations

zero cost for humans

- Specify the process (input card)
- Input parameters
- Define final cuts
- Automatic NLO calculation "conceptually" solved
- in a few years a number of codes

HELAC-NLO, Rocket, BlackHat+SHERPA, GoSam+SHERPA/MADGRAPH, Njet+SHERPA, Madgraph5-aMC@NLO, RECOLA, OpenLoops+SHERPA

- compete on precision, flexibility, speed, stability, ...
- many features : uncertainties, Parton shower, ...

How easy is NLO these days?

```
import model loop_sm-no_b_mass
```

import model loop_sm-no_b_mass
define p = g u u~ c c~}d\mp@code{d~}s\mp@subsup{s}{}{~}b\mp@subsup{b}{}{~
define p = g u u~ c c~}d\mp@code{d~}s\mp@subsup{s}{}{~}b\mp@subsup{b}{}{~
define j = g u u~ c c~}d\mp@subsup{d}{}{~
define j = g u u~ c c~}d\mp@subsup{d}{}{~
generate p p > t~ t j [QCD]
generate p p > t~ t j [QCD]
output my_pp_ttj
output my_pp_ttj
calculate_xs NLO

```
calculate_xs NLO
```

Not everything solved at NLO yet... but constant progress

- EW corrections
A.Vicini QCD@LHCI7

Dijet production
Frederix, Frixione, Hirschi, Pagani, Shao, Zaro (2017)

```
MadGraph5_AMC@NLO
```

QCD dominant (except very large pT)

- Coupling hierarchy ~ respected

Large cancellations in EW contributions No HB radiation

Sherpa+Recola
B. Biedermann QCD@LHCI7

Not everything solved at NLO yet... but constant progress

- EW corrections A.Vicini QCD@LHCI7

Dijet production

```
MADGRAPh5_AMC@NLO
```

QCD dominant (except very large pT)

- Coupling hierarchy ~ respected

Large cancellations in EW contributions No HB radiation

Sherpa+Recola
B. Biedermann QCD@LHCI7

- Off-shell effects
e.g., ttj Bevilaqua et al (2015)

Large corrections in kinematical edges
H. Hartanto QCD@LHCI7

- BSM (arbitrary, higher dimensional operators, etc)

Still limitations in numerical accuracy for processes with many particles (>4) in final state
$p p \rightarrow 5$ jets at NLO

- Better stability
* NLO in very good agreement with data!

Multi-jet production

$$
\widehat{H}_{T}=\sum_{i=1}^{N_{\text {parton }}} p_{T, i}^{\text {parton }}
$$

~

NLO

Loop induced processes

NLO
 Loop induced processes

NLO $=2$ loops for them...

- Enhanced by gluon luminosity

Corrections for gg channel usually large (color, logs)

$g g \rightarrow V V$	$g g \rightarrow(H) \rightarrow V V$
H background	signal-background interference
F. Caola, et al (2015-20I6) J. Campbell, K. Ellis, M. Czako	(2015) Higgs width

- Available only for massless partons @NLO (+1/m m_{T} expansion)
- But mass effects not-negligible (helicity flip in interference)

Loop induced Processes : start at one loop at LO

- Enhanced by gluon luminosity

Corrections for gg channel usually large (color, logs)

H background
F. Caola, et al (2015-2016)
J. Campbell, K. Ellis, M. Czakon, S. Kirchner (2015)

$$
g g \rightarrow(H) \rightarrow V V
$$

signal-background interference
Higgs width

- Available only for massless partons @NLO ($+1 / \mathrm{m}_{T}$ expansion)
- But mass effects not-negligible (helicity flip in interference)
$g g \rightarrow H+$ jet \quad usually computed within EFT (large top mass limit)
> sensitive to top mass at large pT
- sensitive to top-bottom interference at low pT

40-50\% correction J.Lindert, K. Melnikov, L. Tancredi,C. Wever (20I7) low mass approx.

Loop induced Processes : start at one loop at LO

- Enhanced by gluon luminosity

Corrections for gg channel usually large (color, logs)

$g g \rightarrow V V$
H background
F. Caola, et al (2015-2016)
J. Campbell, K. Ellis, M. Czakon, S. Kirchner (2015)

$$
g g \rightarrow(H) \rightarrow V V
$$

signal-background interference
Higgs width

- Available only for massless partons @NLO (+1/m m_{T} expansion)

But mass effects not-negligible (helicity flip in interference)
$g g \rightarrow H+$ jet \quad usually computed within EFT (large top mass limit)
sensitive to top mass at large $\mathrm{p} T$
H.Frellesvig QCD@LHCI7 sensitive to top-bottom interference at low p^{\top}
C.Weber QCD@LHCI7

40-50\% correction
J. Lindert, K. Melnikov, L. Tancredi,C. Wever (20I7) low mass approx.

HH production in gg fusion

Full NLO calculation Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke (2016)
2 loop amplitudes computed numerically with SecDec

- - I4\% wrt EFT / bigger for large invariant masses
- NNLO available in EFT (learn about approx.)
deF, Mazzitelli (20|4), deF et al (20|6)
- Technique applicable for other observables?
- 2-loop reduction/integrals out of analytic reach

NNLO

NNLO

Degree of complexity at NNLO
2 loop lop integrals \longrightarrow explicit infrared poles $\frac{1}{\epsilon^{4}}$
$2 \rightarrow 2$ available (even for VV production)

- Bottleneck for larger multiplicities?
- I loop + single emission

"NLO complexity": loop $\longrightarrow \frac{1}{\epsilon^{2}}$
singular emission
- Double real emission

Tree level Trivial to compute Amplitudes a Hell of infrared singularities

- Bottleneck for larger multiplicities?
after integration over unresolved partons
$\longrightarrow \frac{1}{\epsilon^{4}}$ poles

Subtraction Method : need local subtraction counter-term

$$
\int_{0}^{1}\left(\left|M_{R}\right|^{2}-\mathcal{S}\right) d P S+\int \mathcal{S} d P S+\int\left|M_{V}\right|^{2} d P S^{\prime}
$$

Finite
Computed "analytically" cancel divergences

Handling singularities

Subtraction Method : need local subtraction counter-term

$$
\int_{0}^{1}\left(\left|M_{R}\right|^{2}-\mathcal{S}\right) d P S+\int \mathcal{S} d P S+\int\left|M_{V}\right|^{2} d P S^{\prime}
$$

Finite

Computed "analytically" cancel divergences

- The method used at NLO

Subtraction can be fully local (better convergence, but not all)

- At NNLO many more singular configurations
- Integration of subtraction term quite complicated (can be numerical)

Handling singularities

Subtraction Method : need local subtraction counter-term

$$
\int_{0}^{1}\left(\left|M_{R}\right|^{2}-\mathcal{S}\right) d P S+\int \mathcal{S} d P S+\int\left|M_{V}\right|^{2} d P S^{\prime}
$$

Finite Computed "analytically"
cancel divergences

- The method used at NLO

Subtraction can be fully local (better convergence, but not all)

- At NNLO many more singular configurations

Integration of subtraction term quite complicated (can be numerical)
different approaches

Sector decomposition Anastasiou, Melnikov, Petriello; Binoth, Heinrich
Antennae subtraction Gehrmann, Gehrmann-de Ridder, Glover
Sector-Improved residue subtraction Czakon, Boughezal, Melnikov, Petriello CoLorFul subtraction Del Duca, Somogyi, Trocsanyi
Projection-to-Born Cacciari, Dreyer, Karlberg, Salam, Zanderighi

Phase space slicing : split phase space according to singular configurations

$$
\int_{\delta}^{1}\left|M_{R}\right|^{2} d P S+\int_{0}^{\delta}\left|M_{R}\right|^{2} d P S+\int\left|M_{V}\right|^{2} d P S^{\prime}
$$

Regularized by cut-off (numerically involved)

Can be obtained from resummation framework

Phase space slicing : split phase space according to singular configurations

$$
\int_{\delta}^{1}\left|M_{R}\right|^{2} d P S+\int_{0}^{\delta}\left|M_{R}\right|^{2} d P S+\int\left|M_{V}\right|^{2} d P S^{\prime}
$$

Regularized by cut-off (numerically involved)

Can be obtained from resummation framework

- Not used at NLO
- Generates large cancellations on cut-off (has to be checked)
- Simpler to implement (resummation)

Count with faster computers for "smaller" correction
Can use precise NLO calculations as basis ($\mathrm{X}+\mathrm{jet}$)

- Use local subtraction for NLO-like singularities

Phase space slicing : split phase space according to singular configurations

$$
\int_{\delta}^{1}\left|M_{R}\right|^{2} d P S+\int_{0}^{\delta}\left|M_{R}\right|^{2} d P S+\int\left|M_{V}\right|^{2} d P S^{\prime}
$$

Regularized by cut-off (numerically involved)

Can be obtained from resummation framework

Not used at NLO
Generates large cancellations on cut-off (has to be checked)
Simpler to implement (resummation)
Count with faster computers for "smaller" correction
Can use precise NLO calculations as basis ($\mathrm{X}+\mathrm{jet}$)
Use local subtraction for NLO-like singularities

- qт and Jettiness to characterize "pure" NNLO configurations
qт-subtraction Catani, Grazzini; Catani, Cieri, deF, Ferrera, Grazzini
N-jettiness subtraction Boughezal, Focke, Liu, Petriello; Gaunt, Stahlhofen, Tackmann, Walsh
- So far only "simpler"configurations : one/zero colored particle in f.s.

$p p \rightarrow 2$ jets

Leading color using antenna subtraction :NNLOJET (I and 2 jets)

J.Currie, A. Gehrmann-De Ridder,T. Gehrmann, E.W.N. Glover,A.Huss, J.Pires (20I7) J.Currie, E.W.N. Glover, J.Pires (20I6)

Moderate NNLO corrections (<10\%)

Improve description of data for low $M_{j j} / y^{*}$
Invariant mass natural scale (better convergence)
Cures pathological NLO behavior for $\left\langle p_{T}\right\rangle$

$$
\mu=m_{j j} \quad \mu=\frac{1}{2}\left(p_{T_{1}}+p_{T_{2}}\right)
$$

NNLO scale dep. smaller than EXP errors NLO underestimates uncertainty

$p p \rightarrow Z+$ jets

Experimental Uncertainties at the I\% level or below
> Phenomenological interest : PDF's, luminosity normalization, (W mass)

Antennae subtraction
A.Gehrmann-De Ridder, T. Gehrmann,
E.W.N. Glover, A.Huss, T.A.Morgan (2016)

N -Jettiness

R. Boughezal, J. Campbell, K. Ellis, C. Focke,
W. Giele, X. Liu, F. Petriello(2016)

significant reduction in scale dependence
substancial improvement in agreement with data
, W+ jet available R. Boughezal, X. Liu, F. Petriello(2016)

$$
p p \rightarrow H+\text { jets }
$$

Higgs moving from inclusive to fiducial/exclusive distributions

Antennae subtraction
X. Chen, J. Cruz-Martinez, T. Gehrmann,
E.W.N. Glover, M. Jaquier (2016)

$$
\begin{array}{ll}
\text { N-Jettiness } & \begin{array}{l}
\text { R. Boughezal, C. Focke,W. Giele, } \\
\text { X. Liu, F. Petriello(20I5) }
\end{array} \\
\text { Sector dec. } & \begin{array}{l}
\text { R. Boughezal, F. Caola, K.Melnikov, } \\
\\
\\
\text { F. Petriello, M. Schulze }(20 I 5)
\end{array}
\end{array}
$$

Within approx. of EFT : missing HQ effects
Need full mass dependence at NLO (massive two loop)

Towards automation @ NNLO

Matrix @ NNLO

M. Grazzini, S. Kallweit, D. Rathlev, M.Wiesemann (2016)

- $\mathrm{pp} \rightarrow \mathrm{Z} / \gamma^{*}(\rightarrow 1+1) \quad \nabla$
- $\mathrm{pp} \rightarrow \mathrm{W}(\rightarrow \mathrm{v})$
- $\mathrm{pp} \rightarrow \mathrm{H}$
- $\mathrm{pp} \rightarrow \gamma \gamma$
v
- $\mathrm{pp} \rightarrow \mathrm{W} \gamma \rightarrow \mathrm{lv} \gamma$
v
- $\mathrm{pp} \rightarrow \mathrm{Z} \gamma \rightarrow \mathrm{l}^{1-} \gamma \quad \nabla$
- $\mathrm{pp} \rightarrow \mathrm{ZZ}(\rightarrow 4 \mathrm{l}) \nabla$
- $\mathrm{pp} \rightarrow \mathrm{WW} \rightarrow\left(1 \mathrm{l}^{1} v^{\prime}\right) \quad \nabla$
- $\mathrm{pp} \rightarrow \mathrm{ZZ} / \mathrm{WW} \rightarrow \mathrm{llvv}$
- $\mathrm{pp} \rightarrow \mathrm{WZ} \rightarrow \mathrm{v} \mathrm{vll}$ V
- $\mathrm{pp} \rightarrow \mathrm{HH}$
(v)

NNLO parton level generator with several processes in unique framework (di-boson)

- qt subtraction
- Open-Loops : X+I parton
- Will include qT resummation
- So far, colored singlet final state
- Public version soon

Towards automation @ NNLO

Matrix @ NNLO

- $\mathrm{pp} \rightarrow \mathrm{Z} / \gamma^{*}(\rightarrow 1+1) \quad \nabla$
- $\mathrm{pp} \rightarrow \mathrm{W}(\rightarrow \mathrm{lv}) \quad(\nabla)$
- $\mathrm{pp} \rightarrow \mathrm{H}$
- $\mathrm{pp} \rightarrow \gamma \gamma$
- $\mathrm{pp} \rightarrow \mathrm{W} \gamma \rightarrow \mathrm{lv} \gamma$

V

- $\mathrm{pp} \rightarrow \mathrm{Z} \gamma \rightarrow 1+1-\gamma$
- $\mathrm{pp} \rightarrow \mathrm{ZZ}(\rightarrow 4 \mathrm{l}) \nabla$
- $\mathrm{pp} \rightarrow \mathrm{W} \mathrm{W} \rightarrow\left(\mathrm{lvl}^{\prime} v^{\prime}\right) \quad \vee$
- $\mathrm{pp} \rightarrow \mathrm{ZZ} / \mathrm{WW} \rightarrow \mathrm{llvv}$
- $\mathrm{pp} \rightarrow \mathrm{WZ} \rightarrow \mathrm{v} 1 \mathrm{ll}$
- $\mathrm{pp} \rightarrow \mathrm{HH}$
(V)
M. Grazzini, S. Kallweit, D. Rathlev, M.Wiesemann (2016)

NNLO parton level generator with several processes in unique framework (di-boson)

- qt subtraction
- Open-Loops: $\mathrm{X}+\mathrm{I}$ parton
- Will include qT resummation
- So far, colored singlet final state
- Public version soon

MCFM@ NNLO

R. Boughezal, J. Campbell, K. Ellis, C. Focke,W. Giele, X. Liu, F. Petriello(2016)
J. Campbell, T.Neumann, C.Williams (20I7)

- N -Jettiness
- Less processes available yet : $\mathrm{V}+\mathrm{I}$ jet done

Towards automation @ NNLO

Sector-decomposition + FKS : Stripper
R.Poncelet QCD@LHCI7

A

Towards automation @ NNLO

Sector-decomposition + FKS : Stripper R. Poncelet QCD@LHCI7

- 3 jet production in e+e- and event shapes: CoLoRFulNNLO
Z.Tulipánt QCD@LHCI7
Z. Ször

Del Duca, Duhr, Kardos, Somogyi, Ször, Trócsányi, Tulipánt (2016)

- Fully differential results for ttbar Czakon, Heymes, Mitov(2015-2016)
A. Mitov QCD@LHCI7
>t-channel. Single-top + top-decay (NW) Berger, Gao, Yuan, Zhu (2016)
Slicing (N -jettiness) + subtraction (P2B)
- VBF at NNLO : projection to Born method

Cacciari, Dreyer, Karlberg, Salam, Zanderighi (20I5)
> $H \rightarrow b \bar{b} @$ NNLO Del Duca, Duhr, Somogyi, Sz̈ör,Tramontano,Trócsányi (2015)

+ + many more computations in just a few years

$\mathrm{N}^{3} \mathrm{LO}$

The new Frontier

Higgs at N^{3} LO

- Very relevant observable called for higher orders (slow convergence)
- Impressive calculation : new techniques
- Threshold expansion (very high order)
- Within (excellent) heavy top approximation

Could be used for DY

Differential distributions
S. Lionetti QCD@LHCI7

68273802 loop and phase space integrals
C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog,A. Lazopoulos, B. Mistlberger (2016)

- Inclusive over parton radiation
- Observe stabilization of expansion

Small correction (2% at $\mathrm{MH}_{\mathrm{H}} / 2$)

- Scale variation at $\mathrm{N}^{3} \mathrm{LO} \sim 2 \%$

VBF at N³ LO

DISxDIS like approach $\sim 1 \%$ accurate picture

neglect exchange between lower and upper legs

- Inclusive on parton radiation
small corrections $\sim 1-2 \%$
p within NNLO band
> sizable reduction in scale dep.
- Exclusive at NNLO
M. Cacciari, F. Dreyer, A. Karlberg, G. Salam, G. Zanderighi (20I5) NNLO differential larger (5-IO\%) than for inclusive (I\%) and beyond NLO band

$\mathrm{N}^{3} \mathrm{LO}$ Splitting functions

Non-Singlet 4 loop splitting function
S. Moch, B. Ruijl,T. Ueda, J.Vermaseren, A.Vogt (20I7)

N=20 Mellin moments (large Nc)
Enough to provide a reconstruction in terms of Harmonic sums
N= 16 beyond large Nc
\Rightarrow Precise for $x \gtrsim 10^{-4}$

$$
\begin{aligned}
& x q_{\mathrm{ns}}^{ \pm, \mathrm{v}}\left(x, \mu_{0}^{2}\right)=x^{0.5}(1-x)^{3} \\
& \alpha_{\mathrm{s}}\left(\mu_{0}^{2}\right)=0.2
\end{aligned}
$$

- Visible improvement of scale stability

Singlet and Gluon splitting functions feasible

> QED corrections G.Sborlini QCD@LHCI7

TH Uncertainties

$$
\sigma=48.58 \mathrm{pb}_{-3.27 \mathrm{pb}(-6.72 \%)}^{+2.22 \mathrm{pb}(+4.56 \%)}(\text { theory }) \pm 1.56 \mathrm{pb}(3.20 \%)\left(\mathrm{PDF}+\alpha_{s}\right)
$$

what is the meaning of that?

Usually obtained by performing scale variations $\log \frac{Q}{\mu} \quad \log \frac{\mu_{F}}{\mu_{R}} \quad \log \frac{Q}{\mu_{F, R}} \quad$ keep logs small

$$
\mu_{F, R}=\left(r, \frac{1}{r}\right) Q
$$

Lack of probabilistic framework : how to combine with other?
-Several examples showing that " $r=2$ " might be short to account for true uncertainties

TH Uncertainties

$$
\sigma=48.58 \mathrm{pb}_{-3.27 \mathrm{pb}(-6.72 \%)}^{+2.22 \mathrm{pb}(+4.56 \%)}(\text { theory }) \pm 1.56 \mathrm{pb}(3.20 \%)\left(\mathrm{PDF}+\alpha_{s}\right)
$$

what is the meaning of that?

Usually obtained by performing scale variations

$$
\mu_{F, R}=\left(r, \frac{1}{r}\right) Q
$$

Lack of probabilistic framework : how to combine with other?
-Several examples showing that " $r=2$ " might be short to account for true uncertainties

- Fraction of hadronic observables (~15) whose h.o. correction is contained in the scale variation interval
E. Bagnaschi, M. Cacciari, A. Guffanti, L. Jenniches (2014)
- But rescaling depends on order: might be better from NNLO

Bayesian approach: Introduce condicional density

 compute credibility interval with degree of belief $(68 \%, 95 \%)$M. Cacciari, N. Houdeau (20II); E. Bagnaschi, M. Cacciari,A. Guffanti, L. Jenniches (2014)

- a rescaling factor of 3-4 appears more likely to estimate missing higher orders consistent with a 68%-heuristic CL interpretation

Bayesian approach: Introduce condicional density compute credibility interval with degree of belief $(68 \%, 95 \%)$
M. Cacciari, N. Houdeau (20II); E. Bagnaschi, M. Cacciari,A. Guffanti, L. Jenniches (2014)
$\mathbf{p p ~} \rightarrow \mathbf{t} \overline{\mathbf{t}}$
$\overline{\mathrm{CH}}\left(\lambda_{h}=0.6\right)$
$\mathrm{DoB}=0.68$
\square
\square
\square
\square

- a rescaling factor of 3-4 appears more likely to estimate missing higher orders consistent with a 68%-heuristic CL interpretation

Series acceleration: estimate some unknown terms using analytical structure of expansion and sequence methods A. David, G. Passarino (2013)

D Evaluate "higher order" terms from resummation framework
DdeF, J. Mazzitelli, S. Moch, A.Vogt (2014)
R. Ball et al (2013)

Bayesian approach: Introduce condicional density compute credibility interval with degree of belief ($68 \%, 95 \%$)
M. Cacciari, N. Houdeau (20II); E. Bagnaschi, M. Cacciari, A. Guffanti, L. Jenniches (20I4)

- a rescaling factor of 3-4 appears more likely to estimate missing higher orders consistent with a 68%-heuristic CL interpretation

Series acceleration: estimate some unknown terms using analytical structure of expansion and sequence methods A. David, G. Passarino (2013)

D Evaluate "higher order" terms from resummation framework
DdeF, J. Mazzitelli, S. Moch, A.Vogt (2014) R. Ball et al (2013)

Too much effort to reach $\mathrm{N}^{\wedge} \mathrm{nLO}$ to avoid the search for a more rigorous handling of TH uncertainties in perturbative calculations

Conclusions

- Amazing progress in fixed order calculations during the last ($>$) decade Automation of NLO Several NNLO processes $2 \rightarrow 2$

Driven by LHC
Even N^{3} LO for simpler kinematics and first set of splitting functions
>But... Reaching new bottlenecks

- Large multiplicity at NLO still needs manual-work
- Loop induced processes (massive) yet hard to tackle

NNLO very difficult for more than 2 particles in final state

- Virtual amplitudes (massive)
- Real radiation not trivial (numerical infrared treatment)

Will need significant development

- Need a more rigorous treatment of TH uncertainties

Thanks to Costas Papadopoulos and Marco Zaro for discussions

Backup slides

Single-jet production

- Leading color using antenna subtraction : NNLOJET
J.Currie, E.W.N. Glover, J.Pires (2016) J.Currie, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A.Huss, J.Pires (2017)

- Moderate NNLO corrections
- Two different central scales: leading jet vs individual jet

Single-jet production

- Leading color using antenna subtraction : NNLOJET
J.Currie, E.W.N. Glover, J.Pires (2016) J.Currie, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A.Huss, J.Pires (2017)

- Moderate NNLO corrections

- Two different central scales: leading jet vs individual jet

Equivalent at large transverse momentum
Differences outside scale band at low momentum
${ }^{1}$ PT provides better description (with larger corrections and scale dep.)

- Requires further studies to LHC data (scale, shape, cone, pdfs)

Infrared Structure of QCD

H.O. computations possible: understanding infrared structure of amplitudes

- Key for cancellation of singularities : factorization of amplitudes

Strict factorization in collinear limit
n particle amplitude

universal and process independent independent of non-collinear partons

2 collinear n-l particle amplitude

$$
\begin{gathered}
\mathbf{P}^{(0, R)}=\left(\boldsymbol{S} \boldsymbol{p}^{(0, R)}\right)^{\dagger} \boldsymbol{S} \boldsymbol{p}^{(0, R)} \\
\text { AP kernel }
\end{gathered}
$$

Infrared Structure of QCD

H.O. computations possible: understanding infrared structure of amplitudes - Key for cancellation of singularities : factorization of amplitudes

Strict factorization in collinear limit
n particle amplitude

 2 collinear

n-/ particle amplitude
universal and process independent independent of non-collinear partons

$$
\mathbf{P}^{(0, R)}=\left(\boldsymbol{S} \boldsymbol{p}^{(0, R)}\right)^{\dagger} \boldsymbol{S} \boldsymbol{p}^{(0, R)}
$$

AP kernel
-Similar approach for virtual amplitudes

$$
\left|\mathcal{M}^{(1)}\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right\rangle \simeq \boldsymbol{S p}^{(1)}\left(p_{1}, p_{2} ; \widetilde{P}\right)\left|\mathcal{M}^{(0)}\left(\widetilde{P}, \ldots, p_{n}\right)\right\rangle+\boldsymbol{S} \boldsymbol{p}^{(0)}\left(p_{1}, p_{2} ; \widetilde{P}\right)\left|\mathcal{M}^{(1)}\left(\widetilde{P}, \ldots, p_{n}\right)\right\rangle
$$

$+$
 \tilde{P}

Pactorization fails in space-like region: hadronic colliders Catani, def., Rodrigo (2012) $\boldsymbol{S} \boldsymbol{p}^{(1)}\left(p_{1}, p_{2} ; \widetilde{P} ; p_{3}, \ldots, p_{n}\right)$ depends on non-collinear partons

Violation of strict factorization for one loop amplitudes
fact. breaking divergent part

$$
\Delta_{m C}^{(1)}(\varepsilon)=\frac{\alpha_{\mathrm{s}}\left(\mu^{2}\right)}{2 \pi} \frac{i \pi}{\varepsilon} \sum_{\substack{i \in C \\ j \in N C}} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \Theta\left(-z_{i}\right) \operatorname{sign}\left(s_{i j}\right)
$$

- Cancels in TL (and DIS) due to color Coherence

- Absorptive (Imaginary): cancels in cross section
- Factorization fails in space-like region: hadronic colliders Catani, def., Rodrigo (2012) $\boldsymbol{S} \boldsymbol{p}^{(1)}\left(p_{1}, p_{2} ; \widetilde{P} ; p_{3}, \ldots, p_{n}\right)$ depends on non-collinear partons

Violation of strict factorization for one loop amplitudes
fact. breaking divergent part

$$
\Delta_{m C}^{(1)}(\varepsilon)=\frac{\alpha_{\mathrm{s}}\left(\mu^{2}\right)}{2 \pi} \frac{i \pi}{\varepsilon} \sum_{\substack{i \in \in C \\ j \in N C}} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \Theta\left(-z_{i}\right) \operatorname{sign}\left(s_{i j}\right)
$$

- Cancels in TL (and DIS) due to color Coherence
- Absorptive (Imaginary): cancels in cross section
- At two loop, 3 parton correlations involved
- real contribution: only cancels in pure QCD
- non-vanishing with EW interference (or CP/width)
- Induces 3 loop fact. breaking term

Forshaw, Seymour, Siódmok (2012)
Schwartz, Yan, Zhu (20I7)

- Factorization fails in space-like region: hadronic colliders Catani, def., Rodrigo (2012) $\boldsymbol{S} \boldsymbol{p}^{(1)}\left(p_{1}, p_{2} ; \widetilde{P} ; p_{3}, \ldots, p_{n}\right)$ depends on non-collinear partons

Violation of strict factorization for one loop amplitudes
fact. breaking divergent part

$$
\Delta_{m C}^{(1)}(\varepsilon)=\frac{\alpha_{\mathrm{S}}\left(\mu^{2}\right)}{2 \pi} \frac{i \pi}{\varepsilon} \sum_{\substack{i \in C \\ j \in N C}} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \Theta\left(-z_{i}\right) \operatorname{sign}\left(s_{i j}\right)
$$

- Cancels in TL (and DIS) due to color Coherence

- Absorptive (Imaginary): cancels in cross section

At two loop, 3 parton correlations involved

- real contribution: only cancels in pure QCD
- non-vanishing with EW interference (or CP/width)
- Induces 3 loop fact. breaking term

Forshaw, Seymour, Siódmok (2012)
Schwartz, Yan, Zhu (20I7)

Challenges collinear mass factorization and higher order calculations: cancellation with other contribution

- Factorization fails in space-like region: hadronic colliders Catani, def., Rodrigo (2012) $\boldsymbol{S} \boldsymbol{p}^{(1)}\left(p_{1}, p_{2} ; \widetilde{P} ; p_{3}, \ldots, p_{n}\right)$ depends on non-collinear partons

Violation of strict factorization for one loop amplitudes
fact. breaking divergent part

$$
\Delta_{m C}^{(1)}(\varepsilon)=\frac{\alpha_{\mathrm{S}}\left(\mu^{2}\right)}{2 \pi} \frac{i \pi}{\varepsilon} \sum_{\substack{i \in C \\ j \in N C}} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \Theta\left(-z_{i}\right) \operatorname{sign}\left(s_{i j}\right)
$$

- Cancels in TL (and DIS) due to color Coherence
- Absorptive (Imaginary): cancels in cross section

At two loop, 3 parton correlations involved

- real contribution: only cancels in pure QCD
- non-vanishing with EW interference (or CP/width)
- Induces 3 loop fact. breaking term

Forshaw, Seymour, Siódmok (2012)
Schwartz, Yan, Zhu (20I7)

Challenges collinear mass factorization and higher order calculations: cancellation with other contribution
Produces super-leading logarithms in 'gaps-between-jets’ cross sections

