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Introduction

• in this talk, I will focus on progress and 
techniques for the virtual contributions

Daniel de Florian’s talk

• multi-jet processes at NNLO are a new 
challenge

• in recent years, many processes from the 
Les Houches wishlist were computed

• this includes many 2 to 2 processes at NNLO, 
such as V V’ production and double H production

• for techniques relevant for real and real-
virtual, see



‘Ideal’ and ‘real’ scattering amplitudes

How can we 
obtain 
numerical 
results for 
cross sections 
at the LHC

This talk: tools for ‘real’ QCD coming from ‘ideal’ amplitudes

 Is there some 
simpler version 
of QCD that 
allows to 
understand key 
properties of 
scattering 
amplitudes?



Idealized ‘toy’ theories: from Kepler to QFT

• Laplace-Runge-Lenz (LRL) 
vector is conserved

• consequence: orbits do not precess -0.5 0.5 1.0 1.5
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Classical mechanics: Kepler problem

Quantum mechanics: Hydrogen atom

• LRL-operator commutes with hamiltonian

•  gives elegant algebraic way to find spectrum

Is there a quantum (gauge) field theory with this symmetry?



Maximally supersymmetric Yang-Mills theory

• planar theory has Yangian symmetry - origin is LRL-symmetry!

• SU(3) Yang-Mills theory 
(gluons)

N=4 supersymmetric 
Yang-Mills theory

QCD

• fermions in fundamental 
representation

• SU(Nc) Yang-Mills theory
• nf fermions, adjoint repr.
• ns scalars

Particle content similar to QCD:

Bonus features:

• supersymmetry; only one coupling, zero beta function



(slide from Lance Dixon’s talk at EPS HEP11 Grenoble)

N=4 SYM

QCD

From ‘science’ to ‘technology’



On-shell techniques
• original idea: perturbative unitarity of S matrix

• today: automated computations of one-
loop amplitudes

[Ossola, Papadopoulos, Pittau, Nucl. Phys. B763 (2007)]

• on-shell recursions for tree amplitudes

• construction of one-loop amplitudes
[Bern, Dixon, Dunbar, Kosower, Nucl. Phys. B425 (1994)]

[Anastasiou, Britto, Feng, Kunszt, Mastrolia, Phys. Lett. B645 (2007)]

[Britto, Cachazo, Feng, Witten, PRL 94 (2005)]

NLO revolution



On-shell techniques
• original idea: perturbative unitarity of S matrix

• today: automated computations of one-
loop amplitudes

[Ossola, Papadopoulos, Pittau, Nucl. Phys. B763 (2007)]

• on-shell recursions for tree amplitudes

• construction of one-loop amplitudes
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NLO revolution

This talk: towards a NNLO revolution



State of the art two-loop amplitudes

• frontier of knowledge pushed forward continuously
• N=4 sYM a good prediction what we can hope to 
achieve next in QCD
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some helicity configurations
symmetry/bootstrap methods

plots refer to planar,
massless amplitudes



State of the art two-loop amplitudes
• integrand in suitable form

• evaluation of Feynman integrals

• reduction to integral basis

on-shell techniques at two-loops

new ideas about appropriate integrand basis

new ideas based on algebraic geometry

finite field methods for systems of linear equations

progress in differential equations method

improved understanding of special functions

[Arkani-Hamed, Bourjaily, Cachazo, Trnka, 2010][JMH, 2013]

e.g. [Badger, Mogull, Peraro, 2016]

[Georgoudis, Larsen, Zhang, 2016]

e.g. [von Manteuffel, Schabinger, 2014]

[JMH, 2013]

[Goncharov,  Spradlin,  Vergu, Volovich 2010]



Analytic progress for loop integrals  
example: integrals with massless internal lines

• all two-loop integrals 
for vector boson 
production pp to V V’

[JMH, Melnikov, Smirnov] JHEP 1405 (2014) 090

[Caola, JMH, Melnikov, Smirnov] JHEP 1409 (2014) 043

for pp to VV:
[Gehrmann, von Manteuffel, Tancredi, Weihs] JHEP 1406 (2014) 032

[Gehrmann, Tancredi, Weihs] JHEP 1308 (2013) 070

• planar two-loop 5-point integrals
[Gehrmann, JMH, Lo Presti, PRL 116 (2016)]

[Papadopoulos, Tommasini, Wever, JHEP 1604 (2016) 078]
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FIG. 1. Genuine five-point planar two-loop integrals.

ten in terms of dilogarithms, with prefactors that are
well-behaved in collinear limits. This simplicity, which is
reminiscent of results in N = 4 super Yang-Mills (SYM),
may help to uncover new structural properties of multileg
multiloop amplitudes and lead to considerable simplifica-
tions in their calculation.

MASTER INTEGRALS FOR TWO-LOOP

FIVE-POINT FUNCTIONS

Feynman integrals in dimensional regularization in
4 − 2ϵ dimensions are invariant under Poincaré trans-
formations. By applying these transformations at the
integrand-level, one obtains nontrivial linear relations
among different integrals, the integration-by-parts [11]
relations. These relations can be used to reduce the
large number of Feynman integrals relevant to a particu-
lar process to a much smaller number of so-called master
integrals. This reduction is typically carried out using a
lexicographic ordering of the integrals [12], implemented
in computer algebra routines, for example in the codes
[13] or [14].
The type of master integrals that appear in a given

process depends only on the external kinematics, and
on possible internal propagator masses. All two-loop
five-parton amplitudes relate to a common set of master
integrals: massless on-shell five-point functions at two
loops. These can be further classified into genuine five-
point functions, four-point functions with one off-shell
leg, three-point functions with up to two off-shell legs and
off-shell two-point functions. Up to the four-point level,
these functions appeared in the context of the derivation
of the two-loop amplitude for γ⋆ → 3 jets [15] and were
already computed long ago [16, 17]. The genuine five-
point functions depend on five independent Mandelstam
invariants,

v1 = s12, v2 = s23, v3 = s34, v4 = s45, v5 = s51 ,

where sij = 2pi · pj . They are therefore considerably

more complicated than the four-point functions, since the
latter depend on three variables only. We find in total 25
new integrals (10 planar and 15 nonplanar). The planar
integrals can be given in terms of four integral topologies,
displayed in Figure 1. There are 3, 3, 2, and 2 master
integrals for topologies (a), (b), (c), and (d), respectively.
To compute the integrals, we derive differential equa-

tions for them in the vi. The system of differential equa-
tions is then brought into a canonical form [10] by means
of a transformation of the basis of master integrals to in-
tegrals having unit leading singularities [9]. The canoni-
cal form we find is

df⃗(vi; ϵ) = ϵ

[

∑

i

aid log(αi)

]

f⃗(vi; ϵ) , (1)

where f⃗ is the set of 61 master integrals, the differen-
tial d comprises partial derivatives w.r.t. vi, and ai are
constant (kinematic and ϵ-independent) matrices. The
collection of letters αi specify the function alphabet A.
The latter is given by

{

v1, v3 + v4, v1 − v4, v1 + v2 − v4,∆,
a−

√
∆

a+
√
∆

}

, (2)

and cyclic permutations thereof. Here,

a =v1v2 − v2v3 + v3v4 − v1v5 − v4v5 , (3)

and the Gram determinant ∆ = |2pi · pj |, with 1 ≤ i, j ≤
4. It is interesting to note that a = tr[/p4/p5/p1/p2] and

∆ = (tr5)2, where tr5 = tr[γ5/p4/p5/p1/p2].
The full set of master integrals can be obtained by

direct integration of the differential equations, order-by-
order in ϵ, in terms of Chen iterated integrals [18]. For a
practical application of the latter to multivariable Feyn-
man integrals, including their numerical evaluation, see
[19]. The boundary conditions are determined from con-
sistency conditions, such as the absence of unphysical
branch cuts. This is particularly simple to implement in
the canonical form (1) of the differential equations, cf.
[20].
Massless scattering is naturally parametrized using

momentum twistor variables [21] that solve both the on-
shell as well as the momentum conservation constraints.
We find that in these variables the alphabet (2) becomes
rational. This implies that, when expressed in terms
of these variables, the Chen iterated integrals degener-
ate to multiple polylogarithms [22, 23], for which effi-
cient and precise numerical representations exist [24]. All
subtopologies at four points and below are recomputed in
terms of the momentum twistor variables, yielding agree-
ment with earlier results [16, 17].
We further validate our integrals by analytically com-

puting all five-gluon amplitudes in N = 4 super Yang-
Mills at two loops. Their expression was initially conjec-
tured in [25], tested numerically in [26], and proven in



Examples: integrals with massive internal particles 
• scattering amplitudes 
& cross sections
in massive toy model in 
N=4 sYM

[JMH, S. Caron-Huot, JHEP 1406 
(2014) 114] 

3 loops and 3 scales!

• planar integrals for Higgs to 3 partons

• NLO QCD corrections to H to Z gamma
[Bonciani, Del Duca, Frellesvig, JMH, Moriello,  Smirnov, JHEP 1508 (2015) 108] 

[Gehrmann, Guns, Kara, JHEP 1509 (2015) 038] 

[Bonciani, Del Duca, Frellesvig, JMH, Moriello, Smirnov, JHEP 1612 (2016) 096] 

involves elliptic polylogarithms

• mixed QCD-EW [Bonciani, di Vita, Mastrolia, Schubert, JHEP 1609 (2016) 091] 



Key tools for analytic progress

• tools for special functions

buzzwords:  ‘symbol’, ‘alphabet’ of iterated integrals

• leading singularities of loop integrands

• differential equation technique



Analyzing loop integrands:              
maximal cuts, leading singularities

• maximal cuts / leading singularities
D1 = k2 D2 = (k + p1)

2 D3 = (k + p1 + p2)
2 D4 = (k + p1 + p2 + p3)

2

Z
d4k�(D1)�(D2)�(D3)�(D4) ⇠

1

st

residues of integrand at poles: leading singularities

• observation: integrals with constant leading 
singularities have very nice properties

=



Simple example leading singularities

I(x, y) =
1 + x+ by

xy(1 + x+ y)
=

1

xy

+
b� 1

x(1 + x+ y)

I

y=0
I(x, y) =

1

x

I

x=0

I

y=0
I(x, y) = 1

Step 1: take residues in first variable (e.g. y)

Step 2: take residues in second variable

‘Loop’ Integrand I,          integration variablesx, y

I

y=�1�x

I(x, y) =
b� 1

x

I

x=0

I

y=�1�x

I(x, y) = b� 1

Leading singularities: {1, b� 1}



One-loop triangle integralIntroduction Computing Leading Singularities Results
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s = (p1 + p2)
2

With this normalization, all leading singularities are ±1

s
s s d4k

k2(k � p1)2(k � p1 � p2)2



Leading singularities as guiding 
principle for an integral basis

• conjecture: integrals with constant leading 
singularities give rise to ‘pure’ functions

• pure functions satisfy simple differential equations

• pure functions are (rational linear combinations of) 
polylogarithmic functions of uniform weight

• although first understood in N=4 sYM, this also 
applies for integrals needed for QCD

Li3(1� x/y) +

1

2

log

3
(x) + ⇡

2
log(y)

e.g.

[Arkani-Hamed, Bourjaily, Cachzao, Trnka, 2010]

[Arkani-Hamed et al, 2012]



From N=4 sYM to QCD
Original examples involved massless, planar, dual 
conformal, finite integrals

• non - planar 

• masses (more complicated factorizations)

• generic power counting (e.g. triangles)

• generalization to dimensional regularization

Today the conjecture is being used more generally:

e.g. 2F1(1 + 2✏, ✏, 1 + ✏, 1� x)

= 1� ✏ logx+ ✏

2
log

2
x+ Li2(1� x) +O(✏

2
)

3

4

3

4

3

4

22 2

3

1 4

3
3

1 4 1 4

1 4

3

1 4

3

1 4

3

2
2

22

111

2

2

x(k) N ×N ak
x ϵ

FB
a1,...,a15(s, t;D) =

∫ ∫ ∫
dDk1 dDk2 dDk3

(−k21)
a1 [−(p1 + p2 + k1)2]a2(−k22)

a3

× [−(k1 − p3)2]−a11 [−(p1 + k2)2]−a12 [−(k2 − p3)2]−a13

[−(p1 + p2 + k2)2]a4(−k23)
a5 [−(p1 + p2 + p3 + k2 − k3)2]a6 [−(p1 + k1)2]a7

× [−(p1 + k3)2]−a14 [−(k1 − k3)2]−a15

[−(k1 − k2)2]a8 [−(k2 − k3)2]a9 [−(k3 − p3)2]a10
,

FC
a1,...,a15(s, t;D) =

1

(iπD/2)3

∫ ∫ ∫
dDk1 dDk2 dDk3

(−k21)
a1 [−(p1 + p2 + k1)2]a2 [−(k1 + k3)2]a3

× [−(k1 + k2)2]−a11 [−(p1 + k3)2]−a12 [−(p1 + k2)2]−a13

[−(p1 + p2 + k1 + k2)2]a4 [−(k1 + k2 + k3)2]a5 [−(p1 + p2 + k1 + k2 + k3)2]a6

× [−(p3 + k1)2]−a14 [−(p3 + k3)2]−a15

(−k23)
a7(−k22)

a8 [−(p1 + k1)2]a9 [−(k1 + k2 + k3 − p3)2]a10
.



New strategy for computing  
Feynman integrals

• choose basis of integrals with constant leading 
singularities

• write down differential equations (algorithmic)

• read off special functions

• equations take canonical form 



Leading singularity algorithm

• parametrize loop momenta; integrand is rational 
multi-variable function

• take residues consecutively

• start with numerator ansatz (power counting 
constraints)

• normalize leading singularities 

Let us look at an example…



Introduction Computing Leading Singularities Results

Planar Double Box
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Introduction Computing Leading Singularities Results

Planar Double Box

k

1

k

2

p

1

p

2

p

3

p

4

p

12

= p

1

+ p

2

p

123

= p

1

+ p

2

+ p

3

N(k
1

, k

2

) = n

1

+ k

2

1

n

2

+ (k
1

+ p

1

)2

n

3

+ (k
1

+ p

12

)2

n

4

+(k
1

+ p

123

)2

n

5

+ k

2

2

n

6

+ (k
2

+ p

1

)2

n

7

+(k
2

+ p

12

)2

n

8

+ (k
2

+ p

123

)2

n

9

+ (k
1

≠ k

2

)2

n

10

+k

2

1

k

2

2

n

11

+ k

2

1

(k
2

+ p

1

)2

n

12

+ k

2

1

(k
2

+ p

12

)2

n

13

+k

2

1

(k
2

+ p

123

)2

n

14

+ (k
1

+ p

1

)2

k

2

2

n

15

+(k
1

+ p

1

)2(k
2

+ p

1

)2

n

16

+ (k
1

+ p

1

)2(k
2

+ p

12

)2

n

17

+(k
1

+ p

1

)2(k
2

+ p

123

)2

n

18

+ (k
1

+ p

12

)2

k

2

2

n

19

+(k
1

+ p

12

)2(k
2

+ p

1

)2

n

20

+ (k
1

+ p

12

)2(k
2

+ p

12

)2

n

21

+(k
1

+ p

12

)2(k
2

+ p

123

)2

n

22

+ (k
1

+ p

123

)2

k

2

2

n

23

+(k
1

+ p

123

)2(k
2

+ p

1

)2

n

24

+ (k
1

+ p

123

)2(k
2

+ p

12

)2

n

25

+(k
1

+ p

123

)2(k
2

+ p

123

)2

n

26

Pascal Wasser, Johannes Gutenberg Universit¨at Mainz

Analytic Properties of Feynman Integrals for Scattering Amplitudes 27 / 41



Introduction Computing Leading Singularities Results

Planar Double Box

k

1

k

2

p

1

p

2

p

3

p

4

p

12

= p

1

+ p

2

p

123

= p

1

+ p

2

+ p

3

N(k
1

, k

2

) = n

1

+ k

2

1

n

2

+ (k
1

+ p

1

)2

n

3

+ (k
1

+ p

12

)2

n

4

+(k
1

+ p

123

)2

n

5

+ k

2

2

n

6

+ (k
2

+ p

1

)2

n

7

+(k
2

+ p

12

)2

n

8

+ (k
2

+ p

123

)2

n

9

+ (k
1

≠ k

2

)2

n

10

+k

2

1

k

2

2

n

11

+ k

2

1

(k
2

+ p

1

)2

n

12

+ k

2

1

(k
2

+ p

12

)2

n

13

+k

2

1

(k
2

+ p

123

)2

n

14

+ (k
1

+ p

1

)2

k

2

2

n

15

+(k
1

+ p

1

)2(k
2

+ p

1

)2

n

16

+ (k
1

+ p

1

)2(k
2

+ p

12

)2

n

17

+(k
1

+ p

1

)2(k
2

+ p

123

)2

n

18

+ (k
1

+ p

12

)2

k

2

2

n

19

+(k
1

+ p

12

)2(k
2

+ p

1

)2

n

20

+ (k
1

+ p

12

)2(k
2

+ p

12

)2

n

21

+(k
1

+ p

12

)2(k
2

+ p

123

)2

n

22

+ (k
1

+ p

123

)2

k

2

2

n

23

+(k
1

+ p

123

)2(k
2

+ p

1

)2

n

24

+ (k
1

+ p

123

)2(k
2

+ p

12

)2

n

25

+(k
1

+ p

123

)2(k
2

+ p

123

)2

n

26

n

16

= 0
n

26

= 0
n

18

= ≠n

24

Pascal Wasser, Johannes Gutenberg Universit¨at Mainz

Analytic Properties of Feynman Integrals for Scattering Amplitudes 28 / 41



Introduction Computing Leading Singularities Results

Leading Singularities of Planar Double Box
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7

t≠n

1

s

2

t

,

≠≠n

14

st+n

2

s+n

9

t≠n

1

s

2

t

, ≠n

11

s

2

+n

2

s+n

6

s≠n

1

s

2

t

, n
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s≠n

5
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2

, ≠n

6

s≠n

1

s

2
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Introduction Computing Leading Singularities Results

List of Integrands

s

2

t

(1)

st

(2)

st

(3)

t

(4)

st

(5)

st

(6)

s

(7)

s

(8)

s

2

(9)

s

2

(10)

s

2

(11)

s

2

(12)

s

(13)

s + t

(14)

s + t

(15)

t

(16)

s

(17)

s

2

(18)

s ≠t

s ≠t

s ≠t

(19) (20) (21)

s ≠t

s ≠s ≠st ≠t ≠t

(22) (23)
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Introduction Computing Leading Singularities Results

Uniform Transcendental Weight

Integral basis:

s

2

t

(1)

st

(2)

t

(4)

s

(7)

s

2

(9)

s

2

(10)

s + t

(14)

s

2

(18)

Derive

ˆ

ˆx

f̨ = ‘
3

a

x

+ b

1 + x

4
f̨ , x = t

s

,

where a and b are constant matrices, to proof uniform
transcendental weight property.
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Introduction Computing Leading Singularities Results

Uniform Transcendental Weight

f

3

= f

5

= f

6

= f

2

, f

8

= f

13

= f

7

, f

11

= f

10

,

f

12

= f

9

, f

15

= f

14

, f

16

= f

4

, f

17

= f

7

,

f

19

= f

20

= f

21

= f

22

= ≠1

3

f

2

+ f

4

+ f

7

,

f

23

= ≠1

2

f

1

≠ 5f

4

≠ 3f

7

+ 1

2

f

9

+ 3f

14

+ f

18

≠ 3

2

f

10

≠ 4

3

f

2
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Introduction Computing Leading Singularities Results

Planar Double Box Summary

k

1

k

2

p

1

p

2

p

3

p

4

Ansatz with 26 integrands
Integrand basis with 23 integrands
All integrals have uniform transcendental weight
Integral basis with 8 integrals (complete)
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Conclusions and outlook
• N=4 sYM - inspired methods are useful in QCD

• 2 to 3 processes are within reach

• longer-term: progress for special functions and 
amplitudes for 2 to n processes

we are seeing the beginning of a NNLO revolution!

• Feynman integrals are no longer the bottleneck 
of NNLO calculations


