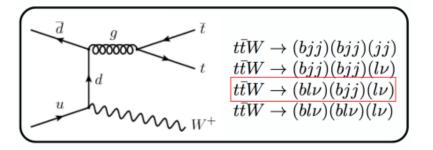
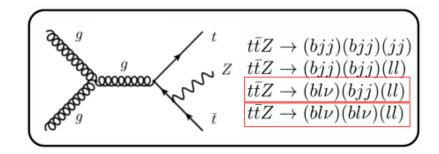


Universidad de Oviedo Universidá d'Uviéu University of Oviedo Measurements of the associated production of top quark pairs with bosons or other top quarks




Introduction

- The study of top quark production is of primordial interest at LHC.
 Higgs and new physics scenarios involve top quarks.
- $t\bar{t}V$ is the main background for $t\bar{t}H$ and other BSM physics processes.
 - Effective field theories (EFT) provide a framework to interpret results in a model independent way if there is new physics at high energy.
 - Top quark pair production with an additional vector gauge boson is sensitive to most of the leading EFT operators that preserve chargeparity and flavor in neutral-currents.
- Strength of the electromagnetic coupling of top quark and γ and top quark and Z boson can be probed.
- tt bb is the main irreducible background for ttH searches in the H-> bb mode, tt jj is the reducible background faking b-jets.
- The tttt measurement provide a useful test of analytical higher order calculation of QCD.
 - BSM models could enhance the SM production.

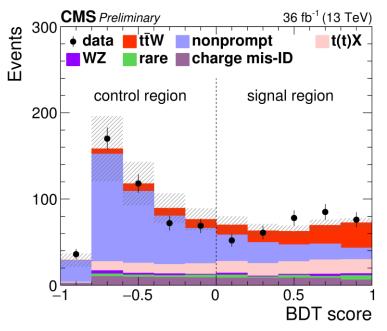
ttv (V=W,Z) 13 TeV

CMS-PAS-TOP-17-005

t**ī**₩ SS2ℓ

- 2 same-sign leptons
- p^T > 40, 25(27)GeV
- 3rd lepton veto
- ≥ 2 jets, ≥ 1 b-tag
- MVA BDT

tĪZ 3ℓ


- 3 leptons
- p^T > 40, 20, 10 GeV
- ≥ 2 jets
- $|m_{\ell\ell} M_z| < 10 \text{ GeV}$

tĪZ 4ℓ

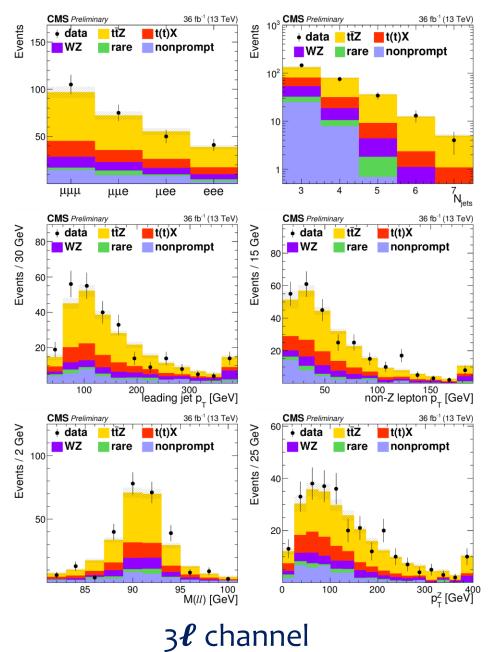
- 4 leptons
- p^T > 40, 10, 10, 10 GeV
- Sum of charges = o
- ≥ 2 jets, ≥ 1 b-tag
- |m _{*ll*} M_Z |< 20 GeV
- sequential analysis

ttw SS 2*l*

- Events preselected with >=2 jets, 1 b-tag jet
- **MVA BDT** analysis based on the following variables:
 - Number of jets, number of b-tagged jets and the scalar sum of $\boldsymbol{p}^{\mathsf{T}}$ of the jets
 - Leading and trailing lepton p^T, transverse invariant mass of each of the leptons and MET.
 - Leading and subleading jet p^T , missing transverse energy
 - ΔR between the trailing lepton and the nearest selected jet

Event selection:

• BDT > 0 (suppress mainly the bkg.


due to non-prompt leptons)

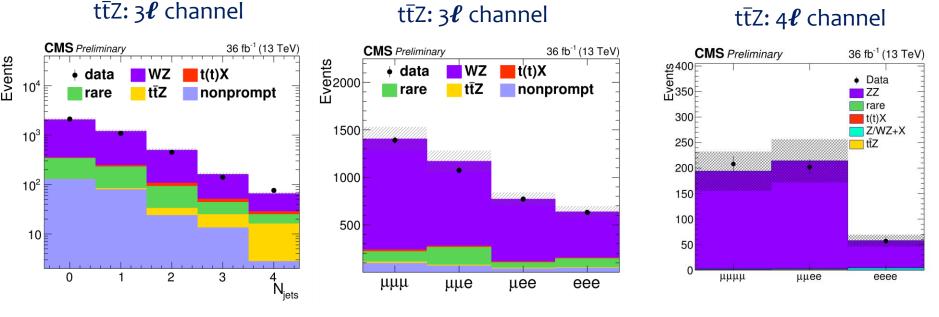
- split in number of jets, b-tag jets
- split in ++ and --

Backgrounds

- misidentified leptons, tt
- tt̄Z and tt̄H

Javier Cuevas, QCD@LHC 2017

ttZ 3*l* and 4*l*

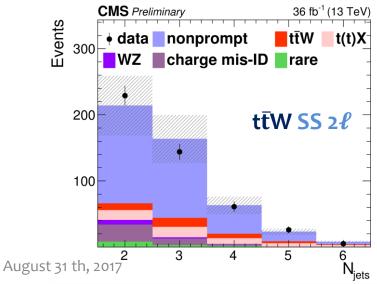

3ℓ channel:
9 exclusive SR:
2, 3 or ≥4 jets, 0, 1, ≥2 b jet
4ℓ channel:
2 categories, high and low
S/B, ≥1 b-tag, or no b-tag

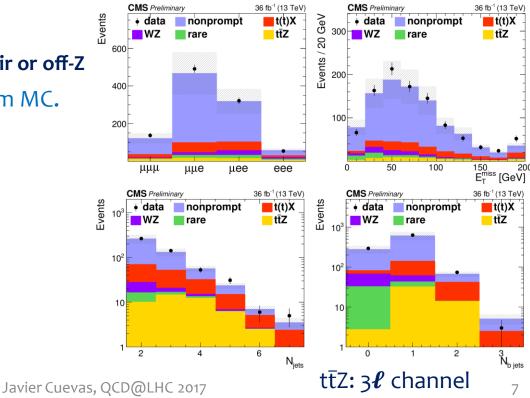
Main backgrounds:
For the 3*l* final state: non-prompt leptons,
WZ, t(t)X (tZq, tWZ, ttH)
For the 4*l* final state,

essentially ZZ

ttv (V=W,Z): WZ and ZZ background

- Estimated using MC, validation in WZ and ZZ enriched control regions in data:
 - 3 leptons(4 leptons), two of them form an (2) SF Opp.
 charge pair close to Z peak mass
 - 3 $\boldsymbol{\ell}$, <= 2 jets and no b-tag jets, MET>30 GeV, $m_{T}>$ 50 GeV

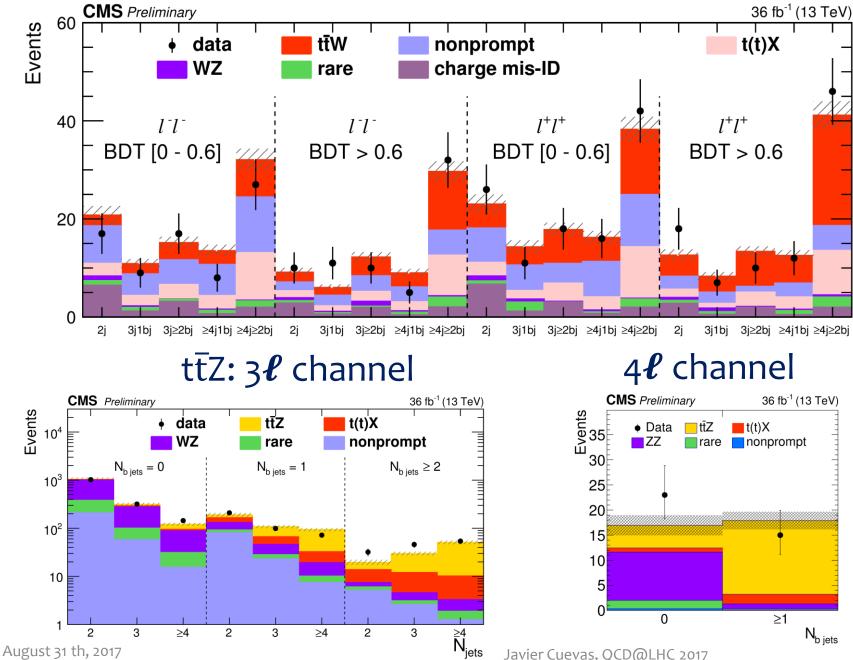



August 31 th, 2017

Javier Cuevas, QCD@LHC 2017

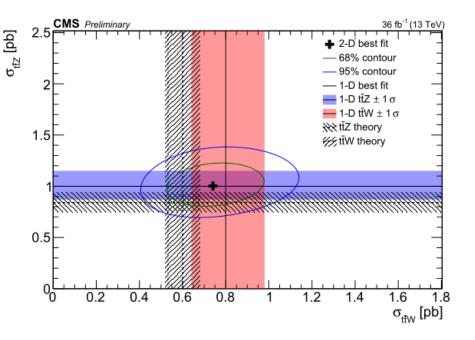
ttV: non-prompt lepton background

- Non-prompt leptons are expected to come mostly from tt and Drell-Yan with an additional lepton from the semi-leptonic decays of a b-hadron, or additional jets misidentified as lepton.
- The probability of loosely identified lepton to pass the full set of **id/iso** requirements is calculated in respective enriched region and validated in Monte-Carlo simulation and in data: **30% systematic uncertainty**
- Data control regions, exclusive to the signal extraction region and enriched by the processes with non-prompt leptons, are formed to check any other potential source of uncertainties:
 - 2ℓ : BDT < 0
 - 3ℓ : absence of an SFOC lepton pair or off-Z
- Other backgrounds, estimated from MC.



ttV: systematic uncertainties

Source	Uncertainty range	Impact on ttW cross-section	Impact on ttZ cross-section
Luminosity	2.5%	4%	3%
Jet Energy Scale/Resolution	2-5%	3%	3%
Trigger	2-4%	4-5%	5%
B tagging	1-5%	2-5%	4-5%
PU modeling	1%	1%	1%
Lepton ID, efficiency	2-7%	3%	6-7%
μ_R/μ_F scale choice	1%	$<\!1\%$	1%
PDF choice	1%	<1%	1%
Nonprompt background	30%	4%	< 2%
WZ cross section	10-20%	$<\!1\%$	2%
ZZ cross section	20%	-	1%
Charge misidentification	20%	3%	-
Rare SM background	50%	2%	2%
ttX background	10-15%	4%	3%
Stat. unc. for nonprompt	5-50%	4%	2%
Stat. unc. rare SM processes	20-100%	1%	< 1%
Total systematic	-	14%	12%


- Uncertainties on the lepton reconstruction, b tagging and trigger efficiency have the largest effect on the tTW and tT Z cross-section measurement.
- The uncertainty on non-prompt background gives a significant contribution to the systematic uncertainty of the ttw cross section measurement.
- The systematic uncertainty for $t\bar{t}W$ and $t\bar{t}Z$ becomes dominant

ttV: results

9

ttV: results

Channel	Expected significance	Observed significance
$2\ell ss$ analysis t $\bar{t}W^-$	2.4	2.3
$2\ell ss$ analysis t ${ar t}W^+$	4.3	5.9
$2\ell ss$ analysis (t $\bar{t}W$)	4.6	5.5
3ℓ analysis (ttZ)	8.4	8.7
4ℓ analysis (ttZ)	4.8	4.6
3ℓ and 4ℓ combined (ttZ)	9.5	9.9

Signal strengths:

 $t\bar{t}W: 1.28^{+0.19}_{-0.18} \text{ (stat.)}^{+0.20}_{-0.18} \text{ (syst.)}^{+0.13}_{-0.12} \text{ (theo.)}$

 $t\bar{t}Z: 1.18^{+0.11}_{-0.10} (stat.)^{+0.14}_{-0.12} (syst.)^{+0.13}_{-0.12} (theo.)$

Cross sections:

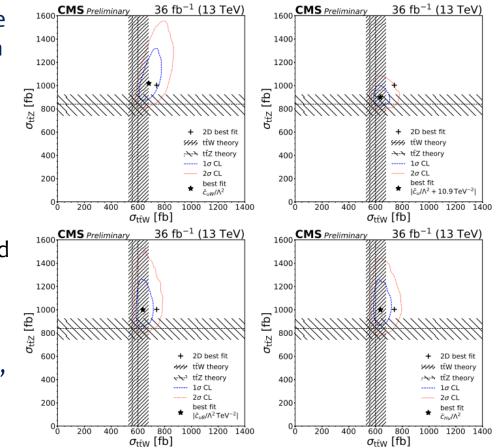
 $t\bar{t}W^+: 0.58^{+0.09}_{-0.09} \text{ (stat.)}^{+0.09}_{-0.08} \text{ (syst.) pb}$

 $t\bar{t}W^{-}: 0.19^{+0.07}_{-0.07} \text{ (stat.)}^{+0.06}_{-0.06} \text{ (syst.) pb}$

 $t\bar{t}W: 0.80^{+0.12}_{-0.11}$ (stat.)^{+0.13}_{-0.12} (syst.) pb

 $t\bar{t}Z: 1.00^{+0.09}_{-0.08} \text{ (stat.)}^{+0.12}_{-0.10} \text{ (syst.) pb}$

theoretical cross sections: ttW: $601^{+56}_{-51}(\text{scale})^{+25}_{-25}(\text{pdf})^{+25}_{-25}(\alpha_s)$ fb ttZ(γ *): $839^{+80}_{-92}(\text{scale})^{+9}_{-9}(\text{pdf})^{+11}_{-11}(\alpha_s)$ fb

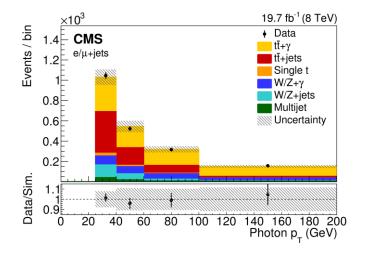

$> 5\sigma$ for both processes simultaneously at 13 TeV

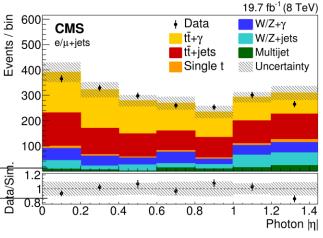
ttV: EFT interpretations

 Effective field theories (EFT), allow to use tt
V cross section measurements to search in a model- independent way for new physics (NP) at energy scales which are not yet experimentally accessible.

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + rac{1}{\Lambda} \sum_{i} c_i \mathcal{O}_i + rac{1}{\Lambda^2} \sum_{j} c_j \mathcal{O}_j + \cdots$$

- Only dimension-6 operators are considered: c_j. One operator is considered each time.
- NP effects on ttH as well as ttW and ttZ.
 Operators which caused significant cross section scaling for tt, inclusive Higgs, WW, or WZ are excluded.
- Expected 1σ and 2σ CL and observed best fit values for selected Wilson coefficients.

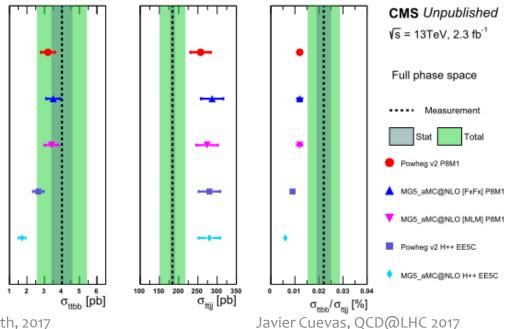


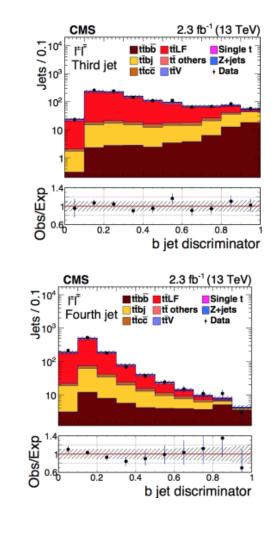

Wilson coefficient	$1\sigma \text{ CL} [\text{TeV}^{-2}]$	$2\sigma \operatorname{CL}[\operatorname{TeV}^{-2}]$	Best fit [TeV ⁻²]	$1\sigma \text{ CL} [\text{TeV}^{-2}]$	$2\sigma \text{ CL} [\text{TeV}^{-2}]$
$ \bar{c}_{uB}/\Lambda^2 $	[0.0, 1.5]	[0.0, 2.1]	1.6	[0.0, 2.3]	[0.0, 2.8]
$ \bar{c}_u/\Lambda^2 + 10.9 \text{ TeV}^{-2} $	[2.3, 15.2]	[0.0, 18.6]	11.1	[2.7, 15.6]	[0.0, 19.1]
\bar{c}_{uW}/Λ^2	[-1.6, 1.5]	[-2.2, 2.1]	1.8	[-2.4, -0.8] and [0.7, 2.4]	[-3.0, 2.9]
\bar{c}_{Hu}/Λ^2	[-9.1, -6.5] and [-1.6, 1.1]	[-10.1, 2.0]	-9.4	[-10.3, -8.1] and [0.1, 2.1]	[-11.2, -6.6] and [-1.5, 3.0]

$t\bar{t}\gamma$ cross section measurement

CMS-TOP-14-008, 1706.08128, sub. to JHEP

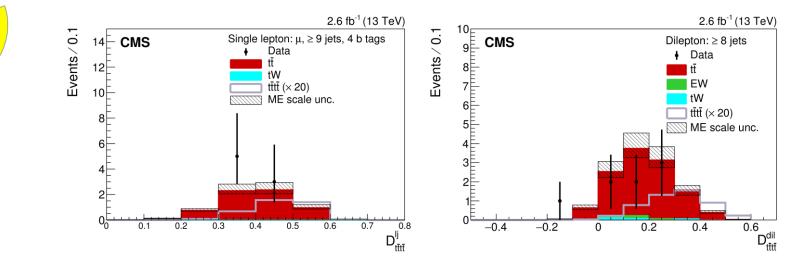
- Event selection:
 - exactly 1 lepton, at least 3 jets (1 b jet) and 1 photon
- Two categories of background:
 - Top events with fake photon $(t\bar{t})$
 - Non-top events with real photon ($W\gamma$, $Z\gamma$)
 - Measure the top quark purity after top quark and photon selection using a fit in an invariant mass of three jets with highest pT (M3)
 - Measure the photon purity using a fit to the photon charged hadron isolation, separates real photon events from other backgrounds (data-driven approach)
- Apply likelihood fit to the top quark purity, photon purity and number of top quark events simultaneously to extract number of $t\bar{t}\gamma$ events




Category	R	$\sigma_{t\bar{t}+\gamma}^{\mathrm{fid}}$ (fb)	$\sigma_{{ m t}{ m t}+\gamma}{\cal B}$ (fb)	ta/Sin	1.2 1						
e+jets	$(5.7 \pm 1.8) imes 10^{-4}$		582 ± 187	Da	0.8⊑ 0	0.2	0.4	0.6	0.8	1	1.2
μ +jets	$(4.7 \pm 1.3) \times 10^{-4}$	115 ± 32	453 ± 124								Phot
Combination	$(5.2 \pm 1.1) imes 10^{-4}$	127 ± 27	515 ± 108								
Theory			$592 \pm 71 \text{ (scales)} \pm 30 \text{ (P}$	DFs	5)						

ttbb, ttjj and ratio measurements

- Essential to understand the tt bb and tt jj processes for the study of the ttH(bb) production mode of the Higgs.
 - tt bb is the main irreducible background for ttH searches in the H-> bb mode, tt jj is the reducible background faking b-jets.
- Event selection:
 - exactly 2 OS leptons, at least 4 jets (at least 2 b jet)
 - The leading and sub-leading in the b-tag discriminator value jet corresponds to the b jet from top in 85% cases
 - The b tagging discriminator for 3rd and 4th jets are used to separate $t\bar{t}$ bb from other processes and for the fit
- Main uncertainties: JES & JER, b tagging, the choice of MC generator and scale in parton shower.



CMS-TOP-16-010 1705.10141 sub. to PLB

_ Search for tttt ^{1702.06164, sub. to PLB} SUSY SS 2I (1704.07323), sub. to EPJC

- _ Measure the cross-section, SM expectation: 9.2^{+2.9}-2.4 fb
- BSM models leads to enhanced four top production cross-section
 - Selection: 1 or 2 isolated leptons (W decay), large jet and b-jet multiplicity and hadronic energy. Discrimination comes from the number of top and b quarks, event activity and topology
 - Main background, $t\bar{t}$ +jets, other backgrounds: DY, W+jets, single top, ttW, ttZ, ttH
 - Presence of additional hadronically decaying top quarks distinguishes tt tt from tt.
 Use a BDT to rank reconstructed tops built from tri-jet candidates. Largest systematic uncertainty: variation of QCD scale choice at ME
 - No deviation from background-only is expected and observed the limits on crosssection are set
 - Splitting the BDT distribution into categories significantly improves the sensitivity of the limit fit.

______ g

______ **g**

leptons

4%

eptons

28%

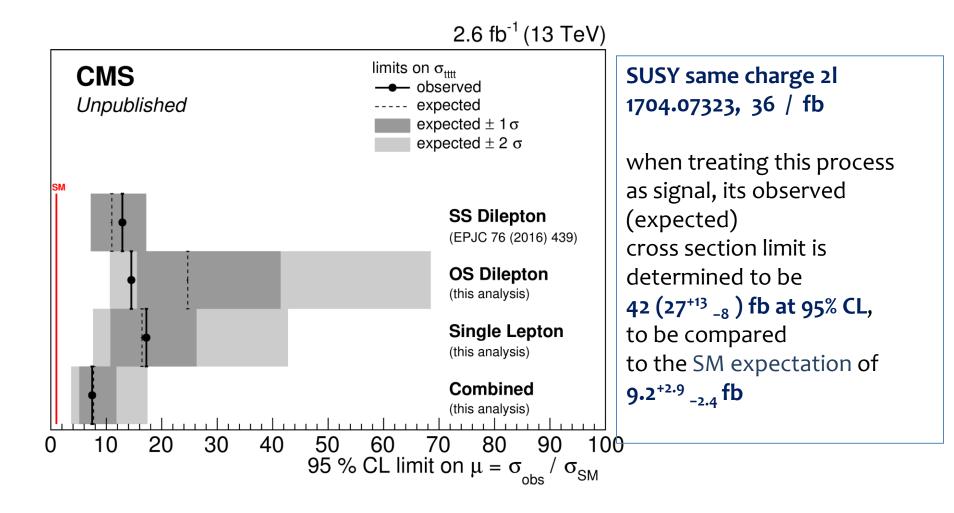
3

leptons.

9%

g

tttt


eptons

20%

leptons

39%

Search for tttt

Summary

- Measurement of ttv (V=W,Z) cross-sections were performed by CMS at 13 TeV with comparable statistical and systematic uncertainties of about 15%.
 - EFT operators in the top sector started to be studied and constrained.
- tttt and ttγ are statistical limited and with new data measurements will be improved.
- ttbb, ttjj and and its ratio has been measured.
- The production of top pairs with associated bosons or other top or b quarks is a very active research field at the LHC.