NLO+PS matching for $t\bar{t}b\bar{b}$ production with massive *b*-quarks

- Tomáš Ježo University of Zürich
- In collaboration with: J. Lindert, N. Moretti and S. Pozzorini

QCD@LHC, August 29 2017

NLO+PS matching for $t\bar{t}b\bar{b}$ production with massive *b*-quarks

- Summarize results of *ttH* search at the LHC
- Discuss various ways of simulating $t\bar{t}b\bar{b}$
- Present a LO study on the relative importance of IS and FS $g \rightarrow b\bar{b}$ splittings
- Review existing NLO+PS tools for $t\bar{t}b\bar{b}$ and compare them
- Present our results

NLO+PS matching for *tibb* production with massive *b*-quarks

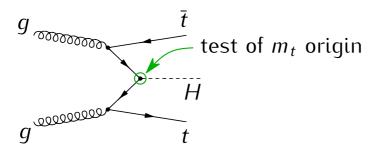
- Summarize results of *ttH* search at the LHC
- Discuss various ways of simulating $t\bar{t}b\bar{b}$
- Present a LO study on the relative importance of IS and FS $g \rightarrow b\bar{b}$ splittings
- Review existing NLO+PS tools for $t\bar{t}b\bar{b}$ and compare them
- Present our results

NLO+PS matching for $t\bar{t}b\bar{b}$ production with massive *b*-quarks

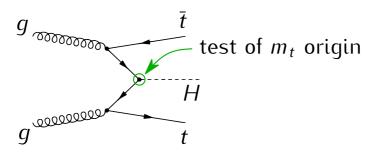
- Summarize results of *ttH* search at the LHC
- Discuss various ways of simulating $t\bar{t}b\bar{b}$
- Present a LO study on the relative importance of IS and FS $g \rightarrow b\bar{b}$ splittings
- Review existing NLO+PS tools for $t\bar{t}b\bar{b}$ and compare them
- Present our results

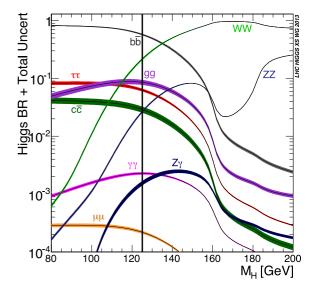
NLO+PS matching for *ttbb* production with massive *b*-quarks

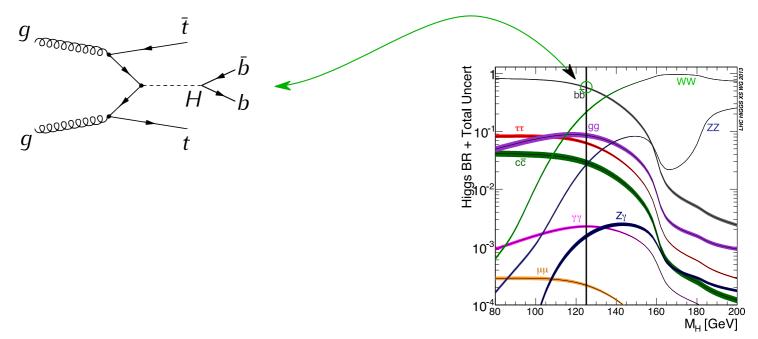
- Summarize results of *ttH* search at the LHC
- Discuss various ways of simulating $t\bar{t}b\bar{b}$
- Present a LO study on the relative importance of IS and FS $g \rightarrow b\bar{b}$ splittings
- Review existing NLO+PS tools for $t\bar{t}b\bar{b}$ and compare them
- Present our results

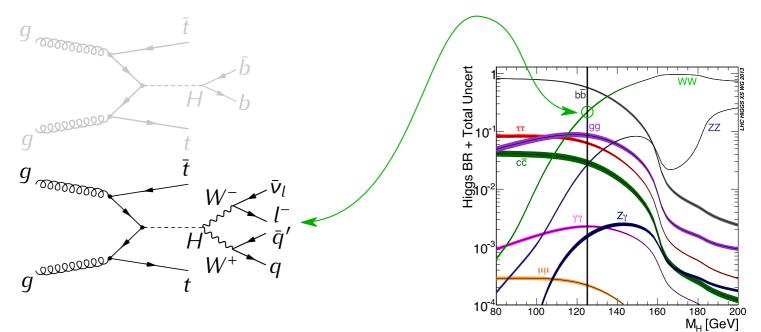

NLO+PS matching for $t\bar{t}b\bar{b}$ production with massive *b*-quarks

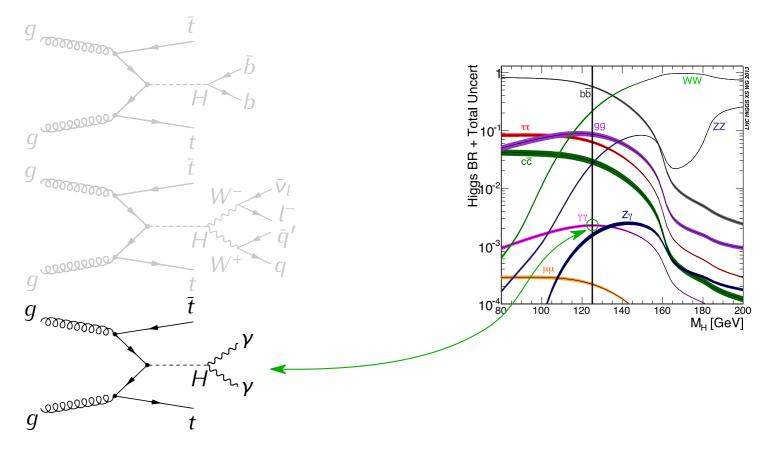
- Summarize results of *ttH* search at the LHC
- Discuss various ways of simulating $t\bar{t}b\bar{b}$
- Present a LO study on the relative importance of IS and FS $g \rightarrow b\bar{b}$ splittings
- Review existing NLO+PS tools for $t\bar{t}b\bar{b}$ and compare them
- Present our results

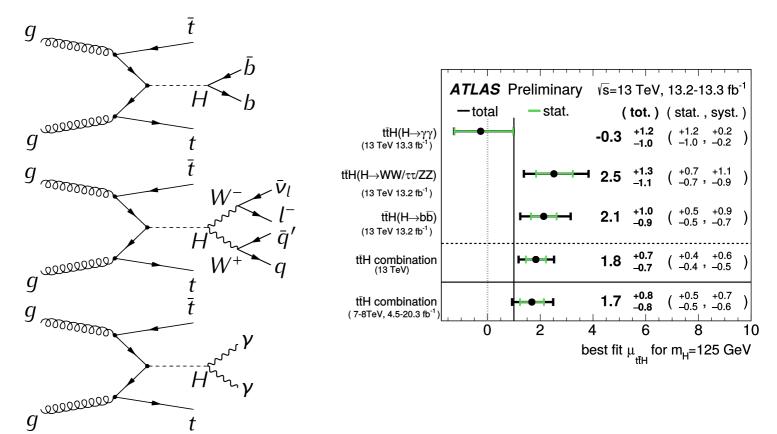

NLO+PS matching for $t\bar{t}b\bar{b}$ production with massive *b*-quarks

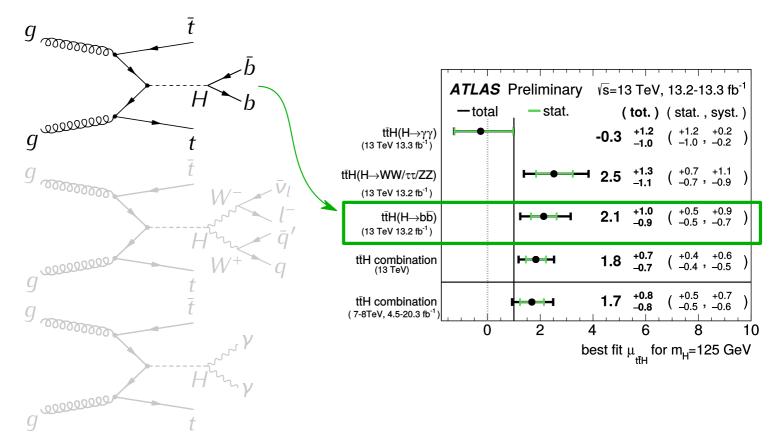

- Summarize results of *ttH* search at the LHC
- Discuss various ways of simulating $t\bar{t}b\bar{b}$
- Present a LO study on the relative importance of IS and FS $g \rightarrow b\bar{b}$ splittings
- Review existing NLO+PS tools for $t\bar{t}b\bar{b}$ and compare them
- Present our results

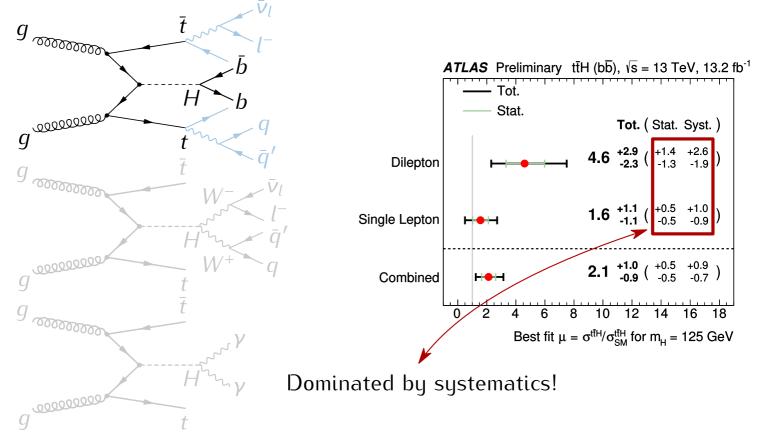


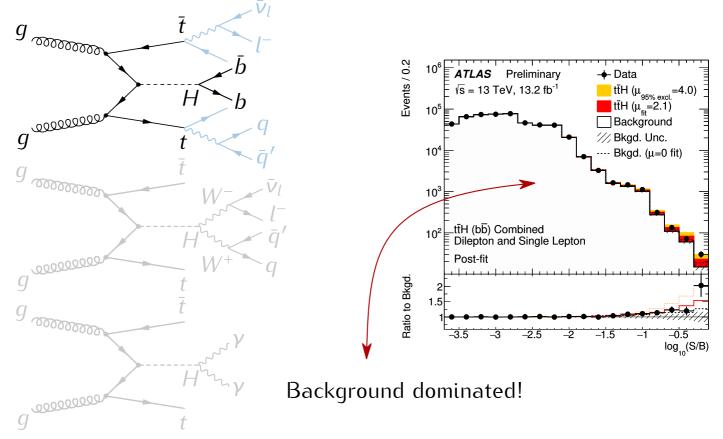


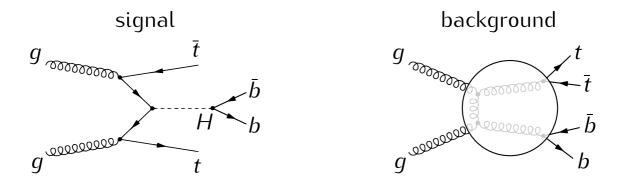




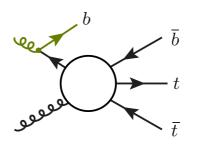






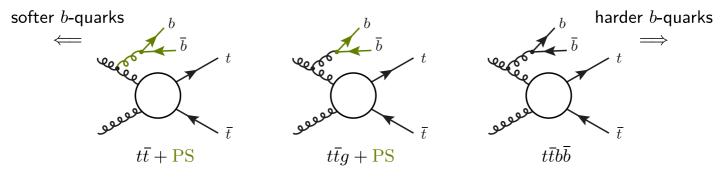



• Large $t\bar{t} + b$ -jets background and its theory uncertainities are bottleneck of $t\bar{t}H(b\bar{b})$ searches



- Modern tools support automated $t\bar{t}b\bar{b}$ simulations, but it remains highly nontrivial multi-particle multi-scale process
- Realistic estimates of theory uncertainities necessitate understanding of dynamics governing $pp \rightarrow t\bar{t}b\bar{b}$ as well as technical aspects related to:
 - ▶ 5F/4F scheme choice
 - NLO+PS matching
 - PS effects

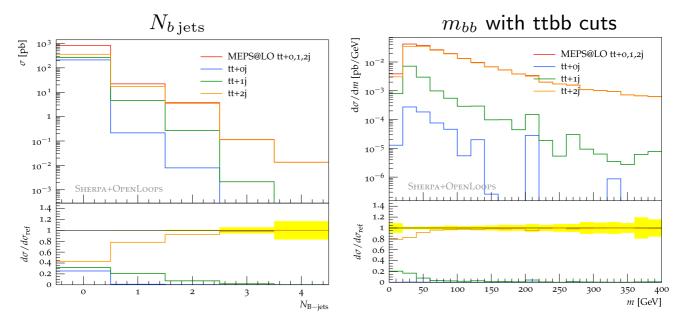
- Option 1: NLO+PS $t\bar{t}$ 5F
 - $t\bar{t}j$ tree MEs + $g \rightarrow b\bar{b}$ shower splittings



 $\bar{b}g \rightarrow t\bar{t}\bar{b} + {\rm IS} {\rm \ splittings}$

- Not even LO precision (although PS allows for accurate tuning to data)
- Description based on $t\bar{t}b\bar{b}$ MEs crucial for realistic theory uncertainity estimates

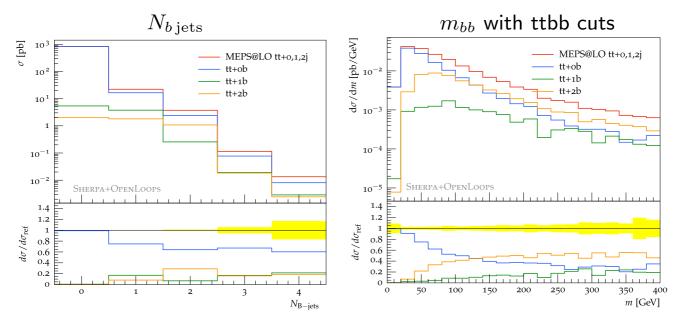
- Option 1: NLO+PS $t\bar{t}$ 5F ... insufficient precision
- Option 2: (N)LO merging $t\bar{t}$ + 0, 1, 2 jets 5F
 - $t\bar{t}$ + 0, 1, 2 jet MEs and $g \rightarrow b\bar{b}$ splittings



- Precision and CPU cost strongly dependent on the merging cut Q_{cut}
- Does this describe $t\bar{t} + b$ -jets mostly through $t\bar{t}b\bar{b}$ MEs though?

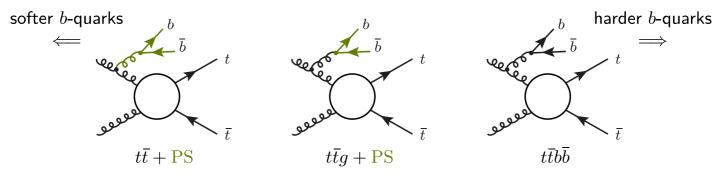
Amount of $t\bar{t}$ +jets ME information

• $t\bar{t}$ + 0, 1, 2 jet LO merging with Q_{cut} = 20 GeV



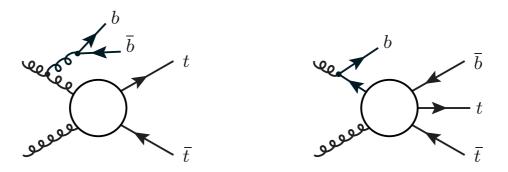
- Observables with ≥ 1 additional *b*-jets
 - dominated by $t\bar{t}$ + 2jet MEs (suggesting ME precision)

Amount of $t\bar{t}+b$ -jets ME information


• $t\bar{t}$ + 0, 1, 2 jet LO merging with Q_{cut} = 20 GeV

- Observables with ≥ 1 additional *b*-jets
 - actually dominated by MEs with 2 light jets and no *b*-jets (up to $Q \sim 100 \text{ GeV}$)!

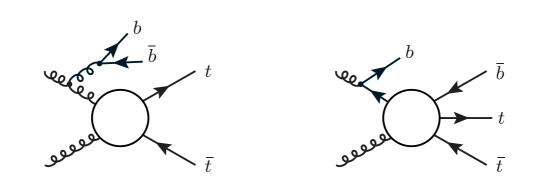
- Option 1: NLO+PS $t\bar{t}$ 5F ... insufficient precision
- Option 2: (N)LO merging $t\bar{t}$ + 0, 1, 2 jets 5F
 - $t\bar{t}$ + 0, 1, 2 jet MEs and $g \rightarrow b\bar{b}$ splittings


- Precision and CPU cost strongly dependent on the merging cut Q_{cut}
- Does this describe $t\bar{t} + b$ -jets mostly through $t\bar{t}b\bar{b}$ MEs though?

No!

Direct description in terms of $t\bar{t}b\bar{b}$ MEs preferable.

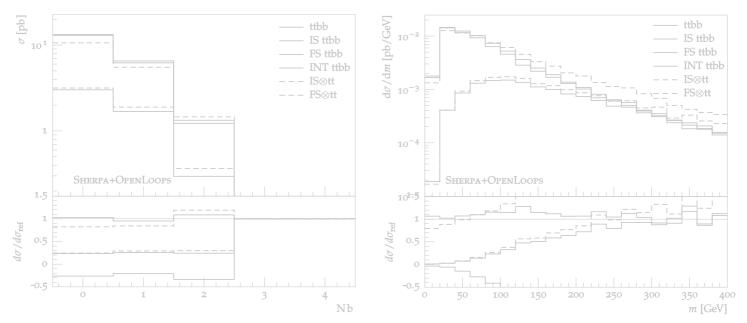
UZH


- Option 1: NLO+PS $t\bar{t}$ 5F ... insufficient precision
- Option 2: (N)LO merging $t\bar{t} + 0, 1, 2$ jets 5F ... observables with ≥ 1 additional *b*-jets dominated by MEs with 2 light jets
- Option 3: $t\bar{t}b\bar{b}$ at NLO+PS

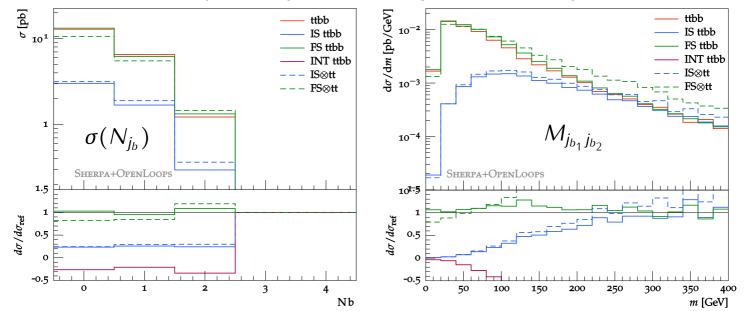
• NLO+PS precision for $t\bar{t} + 2b$ -jet and $t\bar{t} + 1b$ -jet observables

UZH

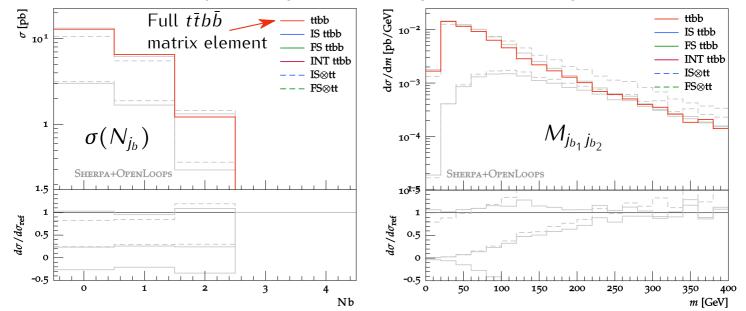
- Option 1: NLO+PS $t\bar{t}$ 5F ... insufficient precision
- Option 2: (N)LO merging $t\bar{t} + 0, 1, 2$ jets 5F ... observables with ≥ 1 additional *b*-jets dominated by MEs with 2 light jets
- Option 3: $t\bar{t}b\bar{b}$ at NLO+PS



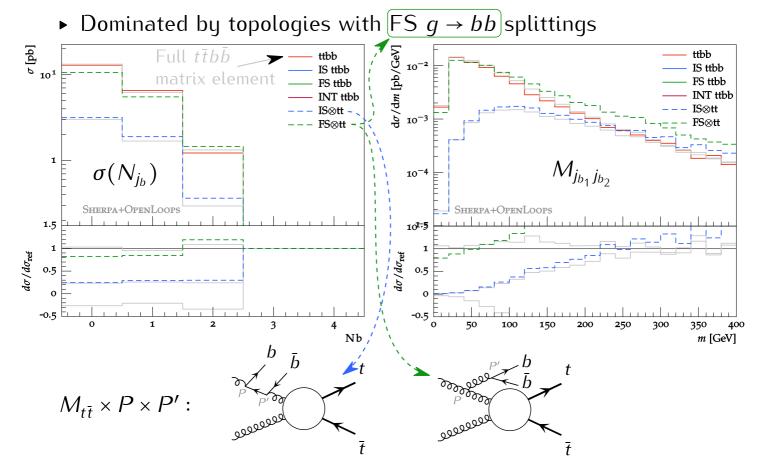
▶ NLO+PS precision for $t\bar{t} + 2b$ -jet and $t\bar{t} + 1b$ -jet observables



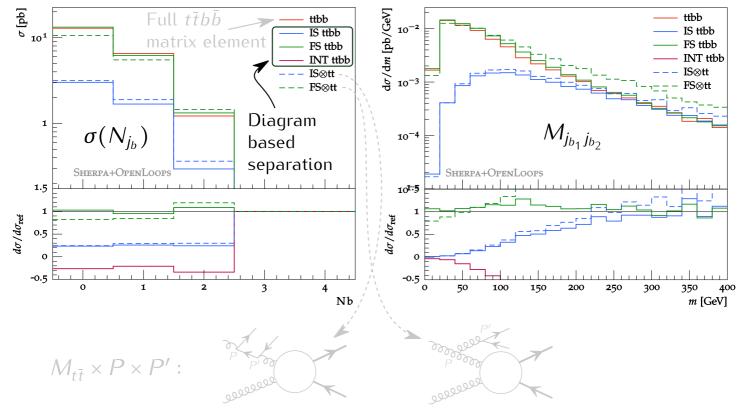
- Key features of 4F $pp \rightarrow t\bar{t}b\bar{b}$:
 - 6 external coloured partons, $\sigma_{t\bar{t}b\bar{b}} \propto \alpha_S^4(\mu_R)$
 - ▶ 34 LO diagrams, multiple scales from 5 to 500 GeV
 - Dominated by topologies with FS $g \rightarrow bb$ splittings



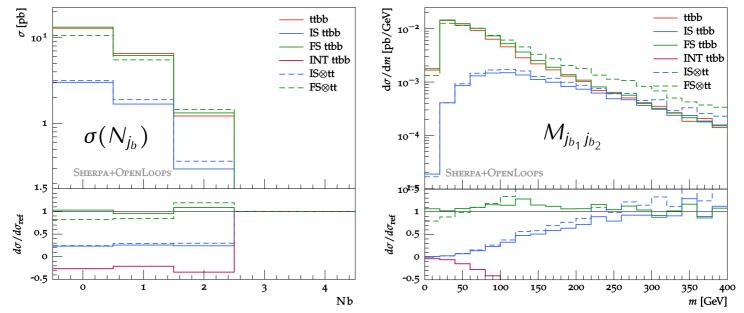
- Key features of 4F $pp \rightarrow t\bar{t}b\bar{b}$:
 - Dominated by topologies with FS $g \rightarrow bb$ splittings



- Key features of 4F $pp \rightarrow t\bar{t}b\bar{b}$:
 - Dominated by topologies with FS $g \rightarrow bb$ splittings

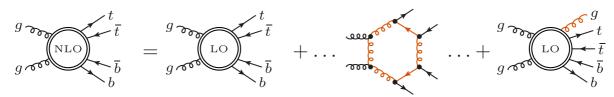


• Key features of 4F $pp \rightarrow t\bar{t}b\bar{b}$:

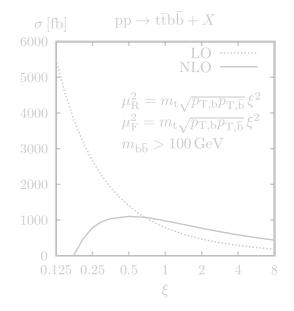


- Key features of 4F $pp \rightarrow t\bar{t}b\bar{b}$:
 - Dominated by topologies with FS $g \rightarrow bb$ splittings

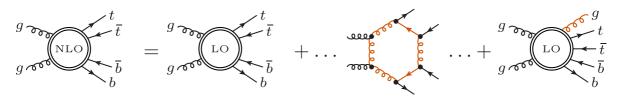
- Key features of 4F $pp \rightarrow t\bar{t}b\bar{b}$:
 - Dominated by topologies with FS $g \rightarrow bb$ splittings

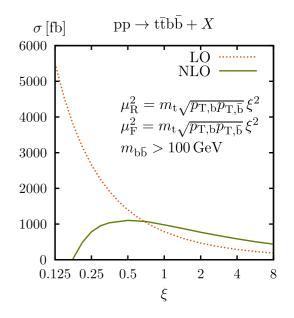

- FS $g \rightarrow b\bar{b}$ dominant, also away from collinear regime
- IS $g \rightarrow b\bar{b}$ subdominant (no need for 5F resummation)

supports choice of 4F scheme with $m_b > 0$ and no *b*-quark PDF


QCD production of *ttbb* @NLO

• *ttbb* @ NLO QCD:


- ▶ 5FNS ($m_b = 0$): [Bredenstein et al. '09–'10; Bevilacqua et al. '10]
- ▶ 4FNS (*m_b* > 0): [Cascioli et al. '13]
- $\sigma_{t\bar{t}b\bar{b}} \propto \alpha_S^4(\mu_R) \Rightarrow$ scale uncertainity:
 - ► ~ 80% @ LO
 - ▶ 20 30% @ NLO
- NLO+PS predictions mandatory for realistic analysis


QCD production of *ttbb* @NLO

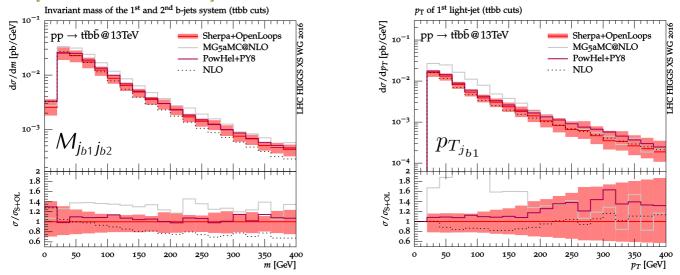
• *ttbb* @ NLO QCD:

- ▶ 5FNS ($m_b = 0$): [Bredenstein et al. '09–'10; Bevilacqua et al. '10]
- ▶ 4FNS (*m*^{*b*} > 0): [Cascioli et al. '13]
- $\sigma_{t\bar{t}b\bar{b}} \propto \alpha_S^4(\mu_R) \Rightarrow$ scale uncertainity:
 - ► ~ 80% @ LO
 - ▶ 20 30% @ NLO
- NLO+PS predictions mandatory for realistic analysis

QCD production of ttbb @NLO+PS

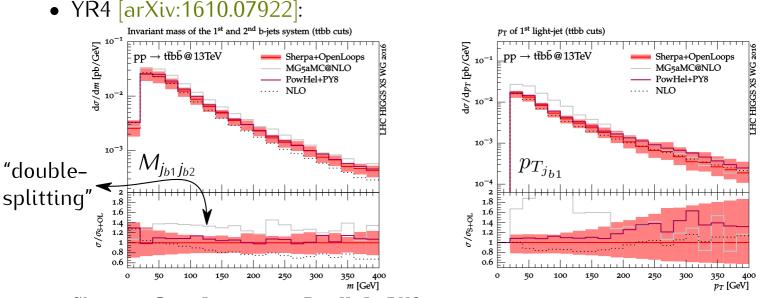
- Available $t\bar{t}b\bar{b}$ calculations @NLO+PS:
 - ▶ Powhel [Garzelli et al. '13/'14]
 - POWHEG matching
 - ▷ 5F scheme, $m_b = 0$
 - requires a generation cut
 - Sherpa+OpenLoops [Cascioli et al. '13]
 - ▷ S-MC@NLO matching
 - ▷ 4F scheme, $m_b > 0$
 - POWHEG-BOX+OpenLoops [upcoming]
 - POWHEG matching
 - ▷ 4F scheme, $m_b > 0$

QCD production of *ttbb* @NLO+PS



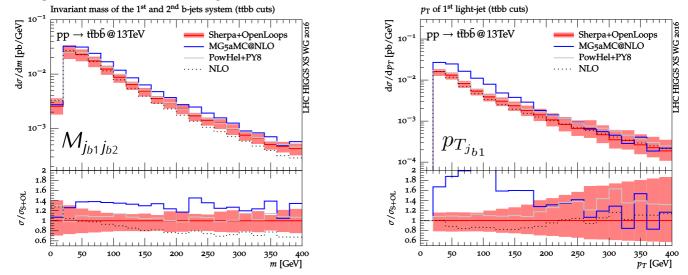
- Available $t\bar{t}b\bar{b}$ calculations @NLO+PS:
 - Powhel |Garzelli et al. '13/'14| POWHEG matching MEs cannot describe guasicollinear $q \rightarrow b\bar{b}$ splittings ▷ 5F scheme, $m_b = 0$ requires a generation cut Sherpa+OpenLoops [Cascioli et al. '13] S-MC@NLO matching ▷ 4F scheme, $m_b > 0$ MEs cover full *b*-quark phase space POWHEG-BOX+OpenLoops [upcoming] POWHEG matching ▷ 4F scheme, $m_b > 0$

Why another *ttbb* @NLO+PS?


UZH

• YR4 [arXiv:1610.07922]:

- Sherpa+OpenLoops vs. PowHel+PY8
 - Good agreement also in observables with large NLO+PS corrections
- Sherpa+OpenLoops vs. MG5_aMC@NLO+PY8 [arXiv:1405.0301]
 - Sizable differences in NLO radiation pattern
 - Strong resummation-scale sensitivity of ttbb+jet in MG5_aMC@NLO+PY8

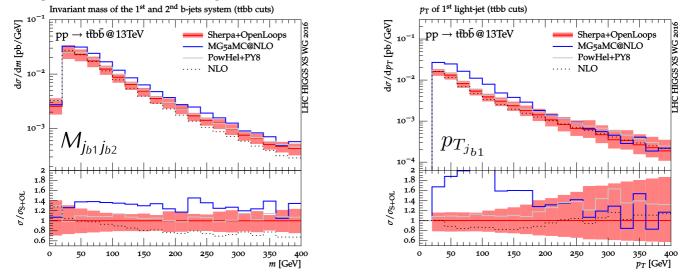

Why another *ttbb* @NLO+PS?

- Sherpa+OpenLoops vs. PowHel+PY8
 - Good agreement also in observables with large NLO+PS corrections
- Sherpa+OpenLoops vs. MG5_aMC@NLO+PY8 [arXiv:1405.0301]
 - Sizable differences in NLO radiation pattern
 - Strong resummation-scale sensitivity of ttbb+jet in MG5_aMC@NLO+PY8

Why another *ttbb* @NLO+PS?

• YR4 [arXiv:1610.07922]:

• Sherpa+OpenLoops vs. PowHel+PY8


Good agreement also in observables with large NLO+PS corrections

- Sherpa+OpenLoops vs. MG5_aMC@NLO+PY8 [arXiv:1405.0301]
 - Sizable differences in NLO radiation pattern
 - Strong resummation-scale sensitivity of $t\bar{t}b\bar{b}$ +jet in MG5_aMC@NLO+PY8

Why another *tībb* @NLO+PS?

• YR4 [arXiv:1610.07922]:

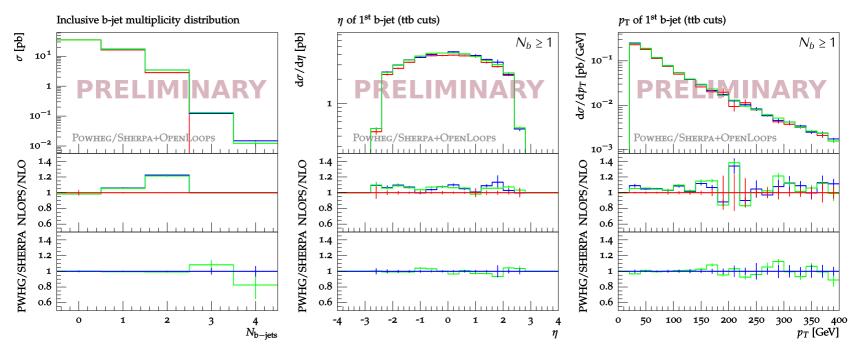
• Sherpa+OpenLoops vs. PowHel+PY8

Good agreement also in observables with large NLO+PS corrections

- Sherpa+OpenLoops vs. MG5_aMC@NLO+PY8 [arXiv:1405.0301]
 - Sizable differences in NLO radiation pattern
 - Strong resummation-scale sensitivity of $t\bar{t}b\bar{b}$ +jet in MG5_aMC@NLO+PY8
 - New: MG5_aMC@NLO+HW++ in good agreement with Sherpa+OpenLoops

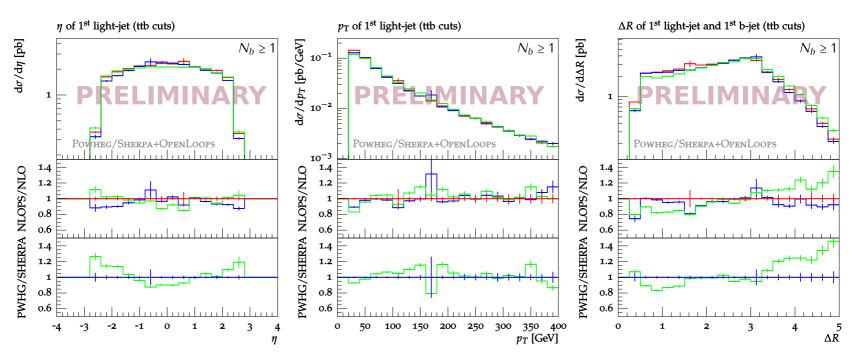
Why another *tīb*b @NLO+PS?

- Sherpa+OpenLoops vs. MG5_aMC@NLO+PY8
 - Sizable differences in NLO radiation pattern
 - Considerable resummation-scale sensitivity in MG5_aMC@NLO+PY8
 - Strong shower dependence in MG5_aMC@NLO (PY8 vs HW++)


? ➡⇒

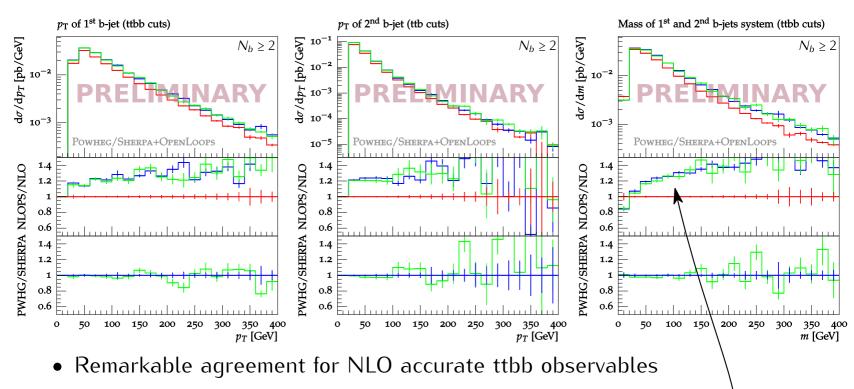
Surprisingly large matching/shower uncertainity? Issue in either Sherpa or MG5_aMC@NLO?

- How about we try a different matching method?
 - NLO+PS matching with POWHEG BOX (no resum.-scale dependence)
 - Matrix elements from OpenLoops
 - 4F scheme: $m_b > 0$ and no b PDF
 - Compare against Sherpa and study hdamp and shower dependence



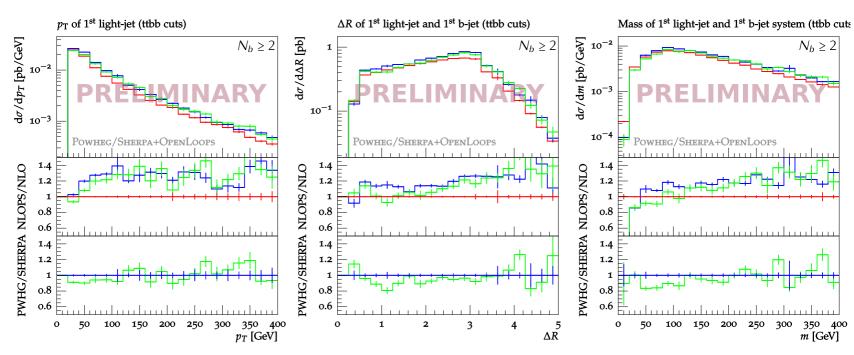
- Remarkable agreement for NLO accurate ttb observables
 - ► Agreement well under 5%; expected scale uncertainity ~20%
- Good agreement also in LOPS accurate bins 3 and 4 of $\sigma(N_{b-jets})$

POWHEG BOX vs SHERPA



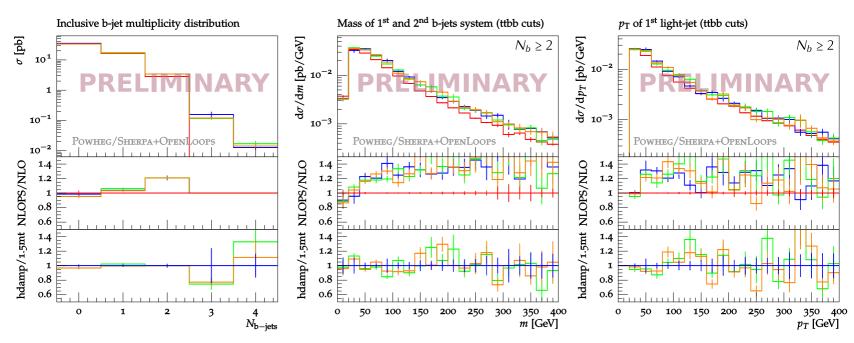
- Good agreement for LOPS accurate ttbj observables
 - ► Agreement to ~20%; expected scale uncertainity ~50%

POWHEG BOX vs SHERPA



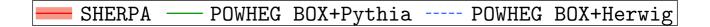
- ► Agreement well under 5%; expected scale uncertainity ~20%
- POWHEG BOX RES confirms the "double splitting" enhancement —

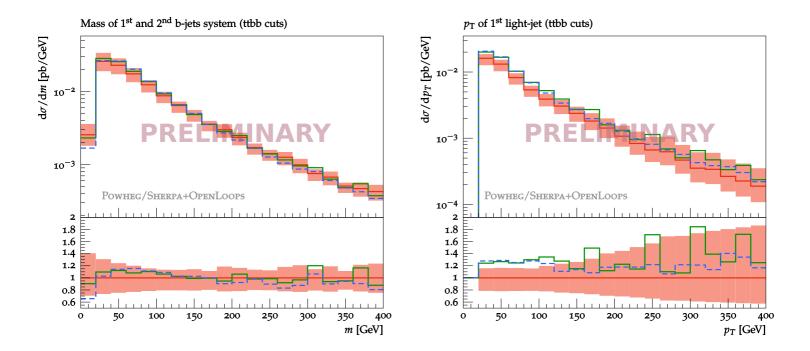
POWHEG BOX vs SHERPA



- Good agreement for LOPS accurate ttbbj observables
 - ► Agreement to ~20%; expected scale uncertainity ~50%

hdamp dependence


• Both NLO and LOPS accurate observables very stable with respect to $hdamp^{\dagger}$


Variations of at most 10% are observed

[†]hdamp applied also to final state massive emitters

Shower dependence

• Remarkable stability with respect to the choice of shower (Pythia 8.210 vs. Herwig 7.1.0)

Conclusions

- $t\bar{t}b\bar{b}$ @NLO+PS preferable option for $t\bar{t} + b$ -jet simulations
 - 4F scheme provides access to full $g \rightarrow b\bar{b}$ splitting phase space
 - 5F scheme resummation not too imporant because IS $g \rightarrow b\bar{b}$ subdominant
- Theory uncertainity of $t\bar{t}b\bar{b}$ bottleneck for $t\bar{t}H(b\bar{b})$ searches
 - HXSWG YR4 MC comparisons reveal significant matching/shower dependence
 - We now have three independent $t\bar{t}b\bar{b}$ 4F generators: Sherpa, MG5_aMC@NLO, POWHEG BOX (new!)
 - First results: POWHEG BOX shows good agreement with Sherpa and very mild hdamp and shower dependence

UZH

• POWHEG radiation formula:

$$d\sigma = \overline{B}(\Phi_B) d\Phi_B \left[\Delta(q_{\text{cut}}) + \sum_{\alpha} \Delta(k_T^{\alpha}) \frac{R_{\alpha}^s(\Phi_{\alpha}(\Phi_B, \Phi_{\text{rad}}))}{B(\Phi_B)} d\Phi_{\text{rad}} \right] + (R_{\alpha}^r \text{contr.})$$

- where $R_{\alpha} = R_{\alpha}^{s} + R_{\alpha}^{r}$
- Separation of the real contribution introduced to deal with "Born zeroes"
 - if (r0.gt.5*abs(rc+rs-rcs)) then ... R^r_{lpha}
 - ▶ else … R^s_{α}
- More sophisticated separation introduced in the present form:

$$R_{\alpha}^{s} = R_{\alpha}F(k_{T}^{2})$$
, $R_{\alpha}^{r} = R_{\alpha}\left[1 - F(k_{T}^{2})\right]$, $F(k_{T}^{2}) = \frac{h^{2}}{k_{T}^{2} + h^{2}}$

- In top-pair production chosing $\mathbf{hdamp} \sim m_t$ improves the description of the data
 - ATLAS tunes hdamp = $1.5m_t$, CMS sets to the same value

hdamp

• POWHEG radiation formula:

$$d \sigma = \overline{B}(\Phi_B) d \Phi_B \left[\Delta(q_{cut}) + \sum_{\alpha} \Delta(k_T^{\alpha}) \xrightarrow{R_{\alpha}^{s}} (\Phi_{\alpha}(\Phi_B, \Phi_{rad})) \\ B(\Phi_B) \\ \bullet \text{ where } R_{\alpha} = \overline{R_{\alpha}^{s}} + \overline{R_{\alpha}^{r}} \quad \text{finite} \\ \end{array} \right] + (R_{\alpha}^{r} \text{contr.})$$

- Separation of the real contribution introduced to deal with "Born zeroes"
 - if (r0.gt.5*abs(rc+rs-rcs)) then ... R^r_{lpha}
 - ▶ else … R^s_{α}
- More sophisticated separation introduced in the present form:

$$R_{\alpha}^{s} = R_{\alpha}F(k_{T}^{2})$$
, $R_{\alpha}^{r} = R_{\alpha}\left[1 - F(k_{T}^{2})\right]$, $F(k_{T}^{2}) = \frac{h^{2}}{k_{T}^{2} + h^{2}}$

- In top-pair production chosing $hdamp \sim m_t$ improves the description of the data
 - ATLAS tunes hdamp = $1.5m_t$, CMS sets to the same value

UZH

• POWHEG radiation formula:

$$d\sigma = \overline{B}(\Phi_B) d\Phi_B \left[\Delta(q_{\text{cut}}) + \sum_{\alpha} \Delta(k_T^{\alpha}) \frac{R_{\alpha}^s(\Phi_{\alpha}(\Phi_B, \Phi_{\text{rad}}))}{B(\Phi_B)} d\Phi_{\text{rad}} \right] + (R_{\alpha}^r \text{contr.})$$

- where $R_{\alpha} = R_{\alpha}^{s} + R_{\alpha}^{r}$
- Separation of the real contribution introduced to deal with "Born zeroes"
 - if (r0.gt.5*abs(rc+rs-rcs)) then ... R^r_{lpha}
 - ▶ else … R^s_{α}
- More sophisticated separation introduced in the present form:

$$R_{\alpha}^{s} = R_{\alpha}F(k_{T}^{2})$$
, $R_{\alpha}^{r} = R_{\alpha}\left[1 - F(k_{T}^{2})\right]$, $F(k_{T}^{2}) = \frac{h^{2}}{k_{T}^{2} + h^{2}}$

- In top-pair production chosing $hdamp \sim m_t$ improves the description of the data
 - ATLAS tunes hdamp = $1.5m_t$, CMS sets to the same value

hdamp

• POWHEG radiation formula:

hdamp

$$d\sigma = \overline{B}(\Phi_B) d\Phi_B \left[\Delta(q_{\text{cut}}) + \sum_{\alpha} \Delta(k_T^{\alpha}) \frac{R_{\alpha}^s(\Phi_{\alpha}(\Phi_B, \Phi_{\text{rad}}))}{B(\Phi_B)} d\Phi_{\text{rad}} \right] + (R_{\alpha}^r \text{contr.})$$

- where $R_{\alpha} = R_{\alpha}^{s} + R_{\alpha}^{r}$
- Separation of the real contribution introduced to deal with "Born zeroes"
 - if (r0.gt.5*abs(rc+rs-rcs)) then ... R^r_{lpha}
 - ▶ else … R^s_{α}
- More sophisticated separation introduced in the present form:

$$R_{\alpha}^{s} = R_{\alpha}F(k_{T}^{2})$$
, $R_{\alpha}^{r} = R_{\alpha}\left[1 - F(k_{T}^{2})\right]$, $F(k_{T}^{2}) = \frac{h^{2}}{k_{T}^{2} + h^{2}}$

maybe be thought of as an analogue to μ_Q in MC@NLO

- In top-pair production chosing $hdamp \sim m_t$ improves the description of the data
 - ATLAS tunes hdamp = $1.5m_t$, CMS sets to the same value

• POWHEG radiation formula:

$$d\sigma = \overline{B}(\Phi_B) d\Phi_B \left[\Delta(q_{\text{cut}}) + \sum_{\alpha} \Delta(k_T^{\alpha}) \frac{R_{\alpha}^s(\Phi_{\alpha}(\Phi_B, \Phi_{\text{rad}}))}{B(\Phi_B)} d\Phi_{\text{rad}} \right] + (R_{\alpha}^r \text{contr.})$$

- where $R_{\alpha} = R_{\alpha}^{s} + R_{\alpha}^{r}$
- Separation of the real contribution introduced to deal with "Born zeroes"
 - if (r0.gt.5*abs(rc+rs-rcs)) then ... R^r_{lpha}
 - ▶ else … R^s_{α}
- More sophisticated separation introduced in the present form:

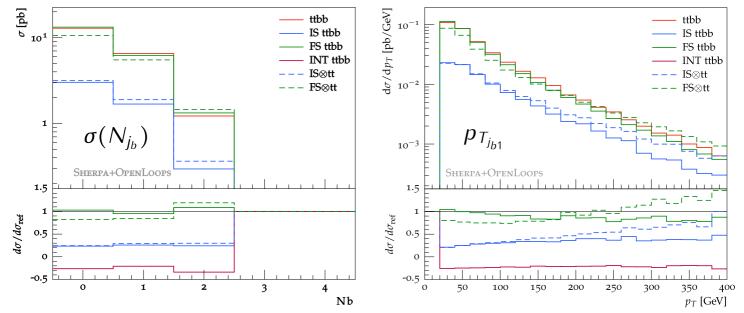
$$R_{\alpha}^{s} = R_{\alpha}F(k_{T}^{2})$$
, $R_{\alpha}^{r} = R_{\alpha}\left[1 - F(k_{T}^{2})\right]$, $F(k_{T}^{2}) = \frac{h^{2}}{k_{T}^{2} + h^{2}}$

- In top-pair production chosing $\operatorname{hdamp} \sim m_t$ improves the description of the data
 - ATLAS tunes hdamp = $1.5m_t$, CMS sets to the same value

• POWHEG radiation formula:

$$d \sigma = \overline{B}(\Phi_B) d \Phi_B \left[\Delta(q_{\text{cut}}) + \sum_{\alpha} \Delta(k_T^{\alpha}) \frac{R_{\alpha}^s(\Phi_{\alpha}(\Phi_B, \Phi_{\text{rad}}))}{B(\Phi_B)} d \Phi_{\text{rad}} \right] + (R_{\alpha}^r \text{contr.})$$

where $R_{\alpha}^s = R_{\alpha}F(k_T^2)$, $F(k_T^2) = \frac{h^2}{k_T^2 + h^2}$


• In $t\bar{t}b\bar{b}$:

- Default behaviour of hdamp needs modifying:
 - ▷ Default "hdamp applied only to IS" manifests convergence issues
 - We apply hdamp also to massive FS, with hdamp_{IS} and hdamp_{FS} independent
 - Further investigation underway
 - New POWHEG BOX RES features could be exploited for better understanding of the hdamp dependence

QCD production of *ttbb*

- Key features of 4F $pp \rightarrow t\bar{t}b\bar{b}$:
 - Dominated by topologies with FS $g \rightarrow bb$ splittings

- FS $g \rightarrow b\bar{b}$ dominant, also away from collinear regime
- IS $g \rightarrow b\bar{b}$ subdominant (no need for 5F resummation)

supports choice of 4F scheme with $m_b > 0$ and no *b*-quark PDF