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Rotating Relativistic systems

heavy-ion collision neutron stars
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      Part I     Finite-size system with Ω



Rigidly Rotating System

Ω
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causality constraint

Rotating systems must be finite-size
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Rotating Fermions
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Momentum Discretization
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pz"l � ⌦(l + 1/2) � ⇠l,1/R� ⌦(l + 1/2) > 0
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Rotational Effect at T = 0
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Rotational Effect at T = 0

visible

Ωj = effective chemical potential
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Rotational Effect at T = 0
f(", j) =
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invisible cf. Silver Blaze

Ωj = effective chemical potential
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Rotational Effect at T = 0

NO rotational effect at T = 0
Ebihara, Fukushima, KM (2016)

finite-size effect  

Note : visible at finite temperature j5 =
T 2
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  Part II    Finite-size system with eB



Cyclotron Motion
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Incomplete Landau Level

Landau zero mode

[i�µ(@µ + ieAµ)�m] = 0 with
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Wave Functions of Lowest Modes
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downup
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l = 0 l = 20

downup

downup

↵ = 4.5

↵ = 45

↵ = eBR2/2

No LLL for down-spins
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Landau localization

Wave Functions of Lowest Modes
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l = 0 l = 20

downup↵ = 45

↵ = eBR2/2

many localized down-spin modes (l = 0, · · · , 20)

strong magnetic effects around r = R

Wave Functions of Lowest Modes



usual  
magnetic catalysis 

M

much stronger  
enhancement

many localized modes

NJL model (mean field approx.) + Local density approx.
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  Part III    Finite-size system with Ω and eB



Gapped to Gapless
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Ex.1) Density induced by Rotation

Cf. Hattori, Yin (2016) 
hydrodynamical description
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Huang, KM (in preparation)
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magnetic field rotation

temperature independent
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 Hermandez, Kovtun (2017)
T ij = # eBi⌦j

hydrodynamical description

A similar discussion is applicable?



M (1)

(2)

Ex.2) Chiral Symmetry Breaking
Chen, Huang, Fukushima, KM (2016)

Inverse MC by Rotation(2)

(1) Magnetic CatalysiseB increases M increases

eB increases M decreases

NJL model (mean field approx.) + neglecting inhomogeneity

T = 0

R = 103 [⇤�1]



Summary

・No rotational effect at zero temperature

・Strong magnetic response around the boundary (not only in a cylinder)

[1] Rotating Systems

[2] Magnetized Systems

[3] Rotating Magnetized Systems
・Visible rotational effect even at zero temperature

MC on the boundary in Dirac/Weyl semimetals?

・Anomalous transport : electric current     energy-momentum tensor?
・Chiral structure : inverse phenomenon for the MC

・Chiral phase transition

spacial dependence?

Critical Point?



Distribution in Rotating Systems
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IR gap

Boundary effect (= IR gapped mode) is important
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