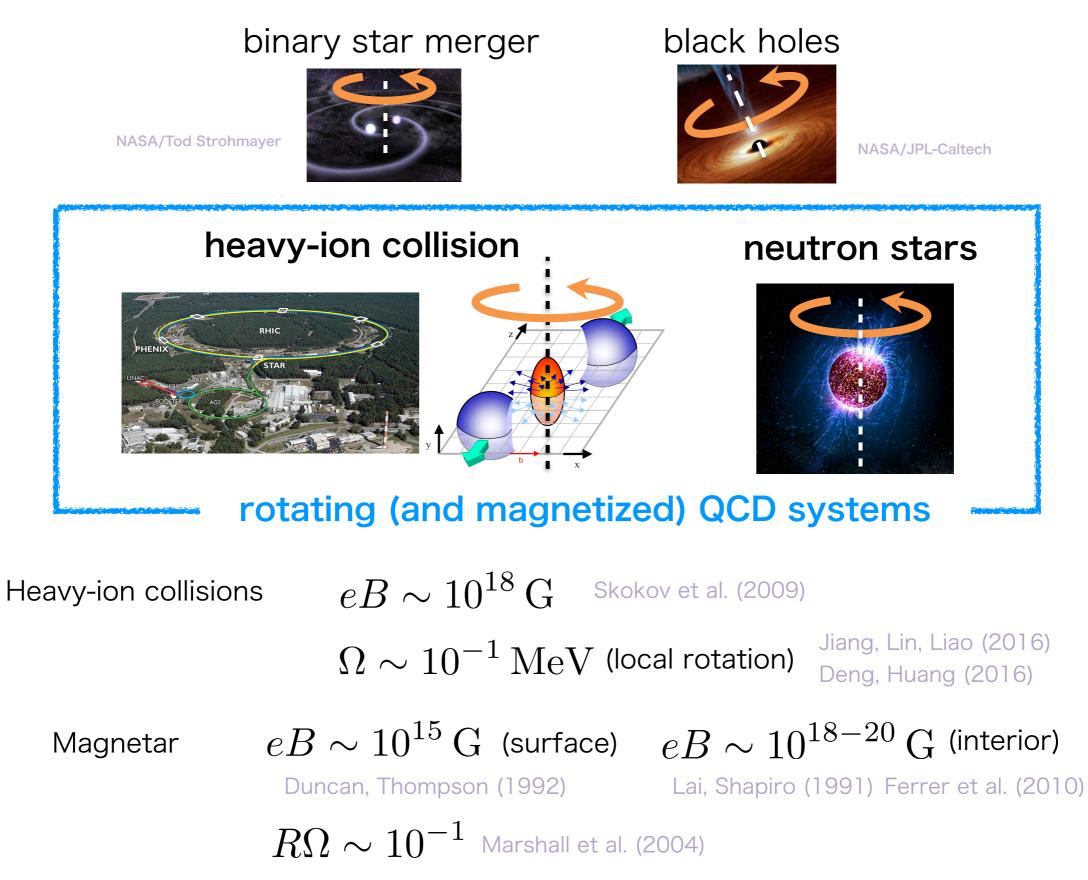
Finite-size effect on rotating and/or magnetized fermionic matter Kazuya Mameda Fudan University

HL. Chen, K. Fukushima, XG. Huang, KM, PRD 93, 104052 (2016) S. Ebihara, K. Fukushima, KM, PLB 764, 94 (2017) HL. Chen, K. Fukushima, XG. Huang, KM, arXiv:XXXXXXXXX (2017)

Rotating Relativistic systems



Contents

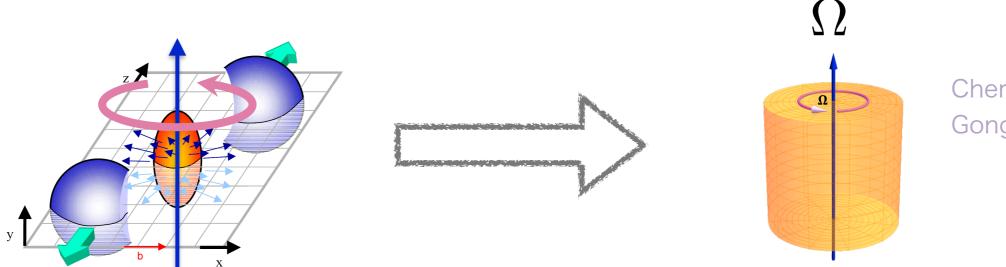
Part I Finite-size system with Ω

Part II Finite-size system with eB

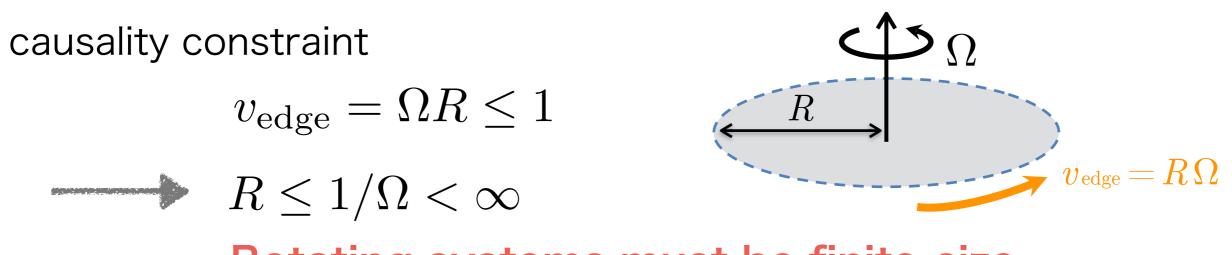
Part III Finite-size system with Ω and eB

Part I Finite-size system with Ω

Rigidly Rotating System



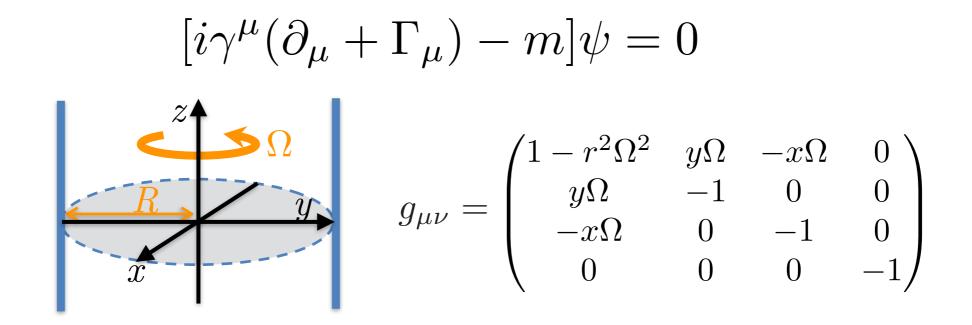
Chernodub, Gongyo (2016)



Rotating systems must be finite-size

coordinate transformation

Rotating Fermions



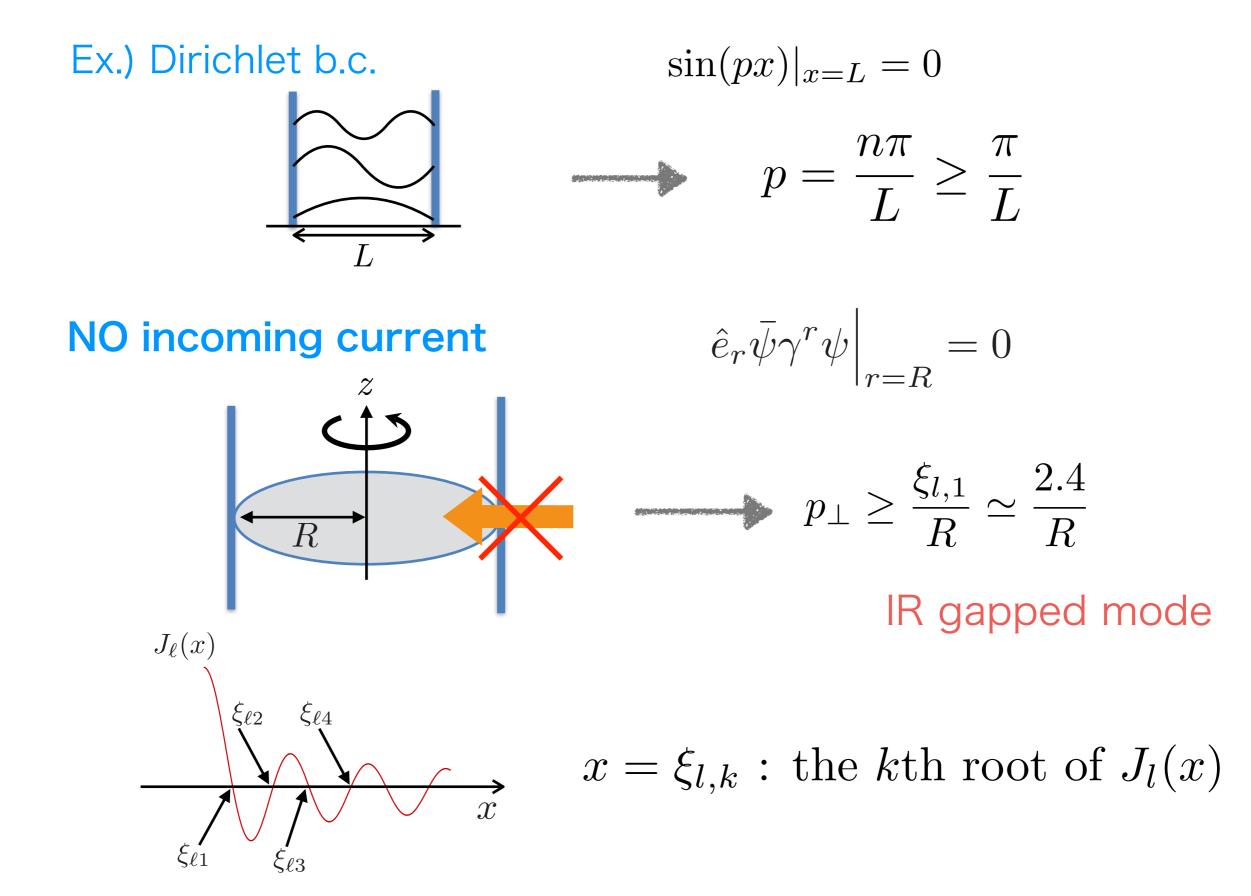
$$\int \left[i\gamma^{0} \left\{ \partial_{0} + \Omega \left(-x\partial_{2} + y\partial_{1} - \frac{i}{2}\sigma^{12} \right) \right\} + i\gamma^{1}\partial_{1} + i\gamma^{2}\partial_{2} + i\gamma^{3}\partial_{3} - m \right] \psi = 0$$
rotational energy
continuous
$$\int p_{z} discrete$$

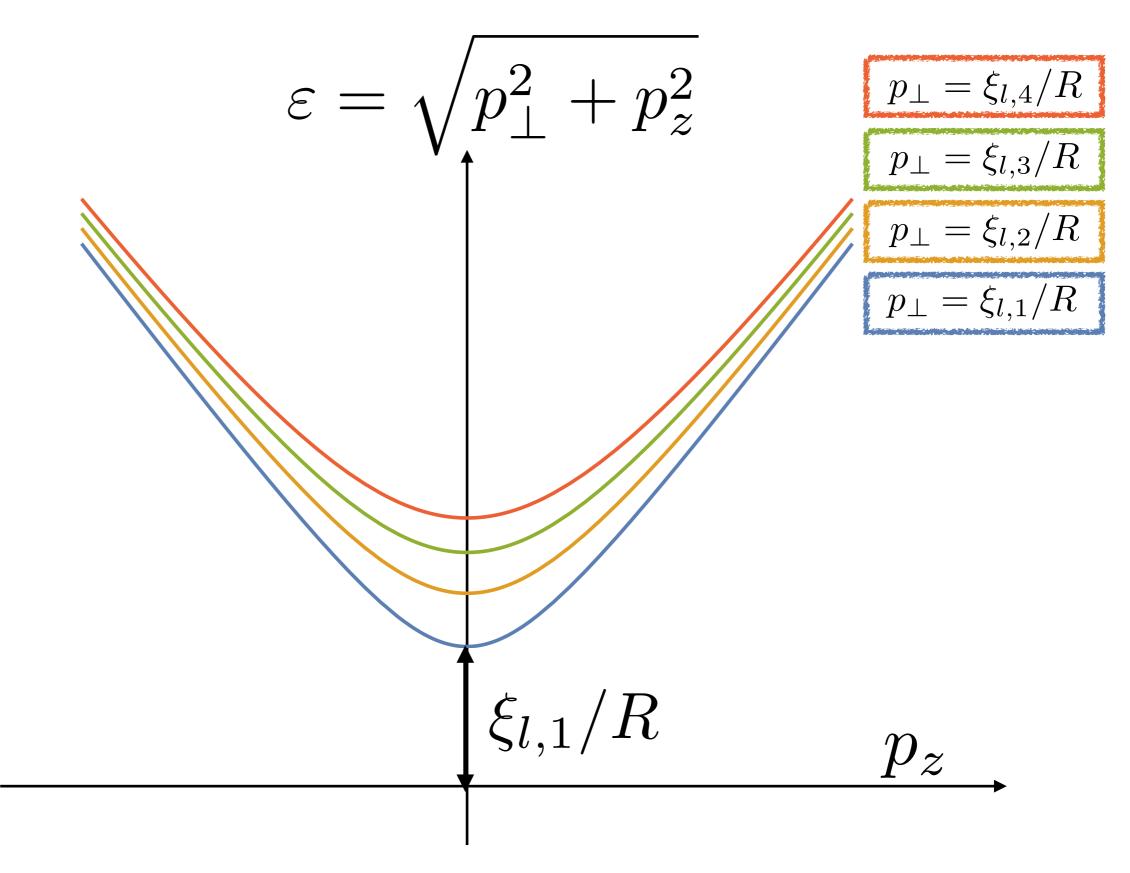
$$p_{\perp} discrete$$
finite-size effect

l integer

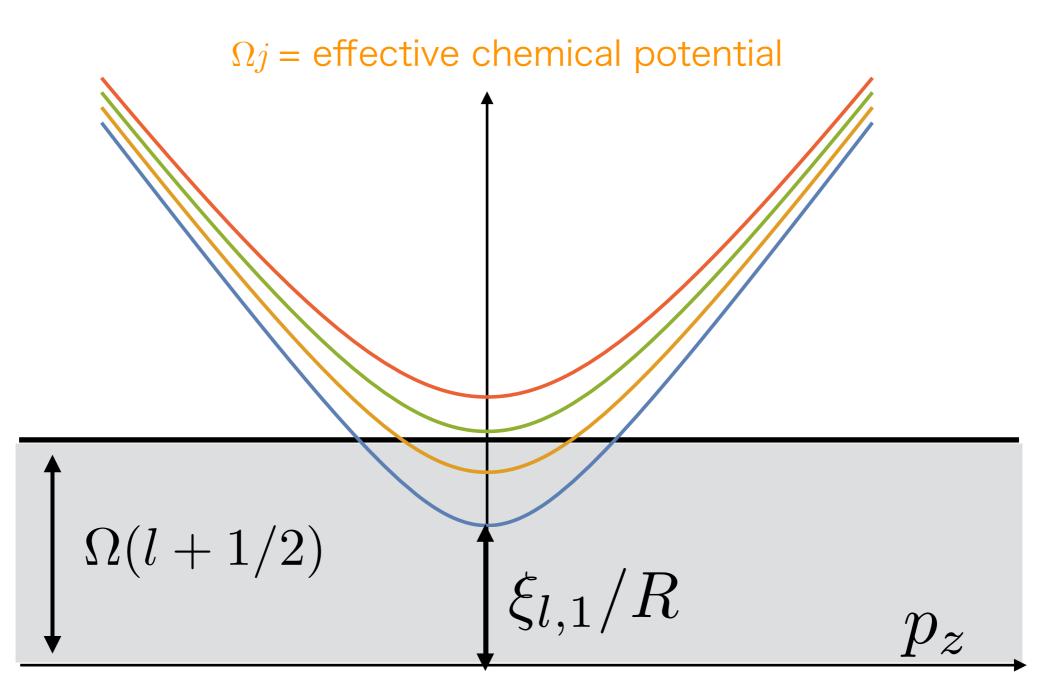
_

Momentum Discretization

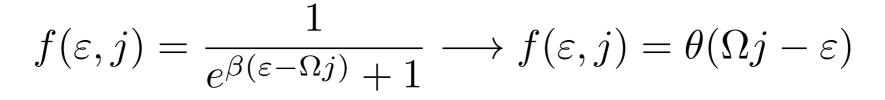


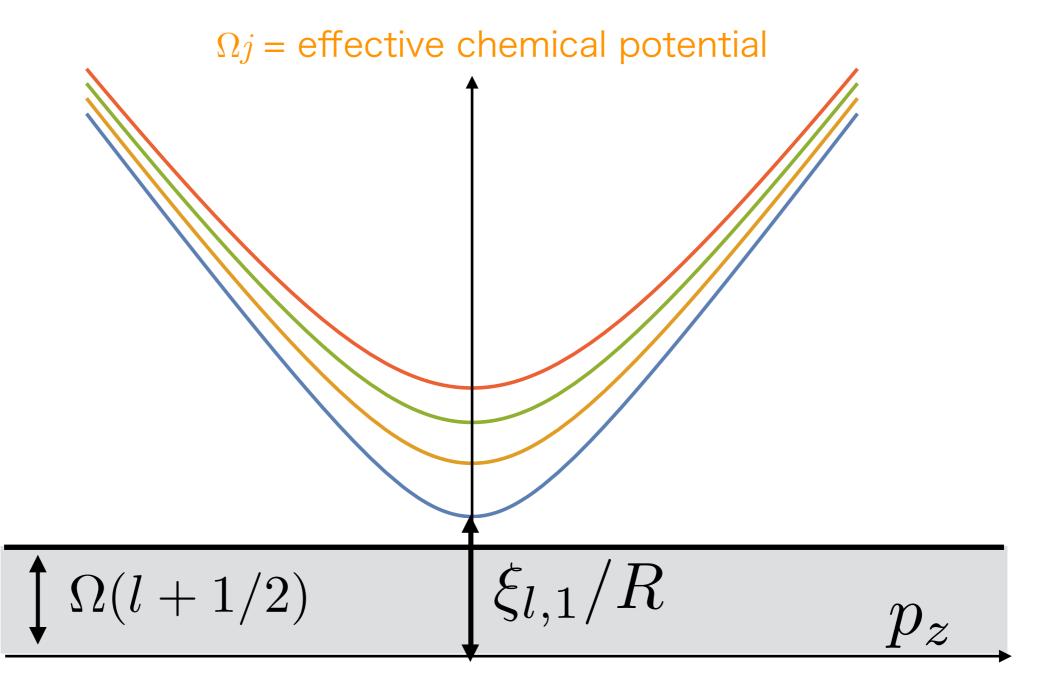


$$f(\varepsilon, j) = \frac{1}{e^{\beta(\varepsilon - \Omega j)} + 1} \longrightarrow f(\varepsilon, j) = \theta(\Omega j - \varepsilon)$$

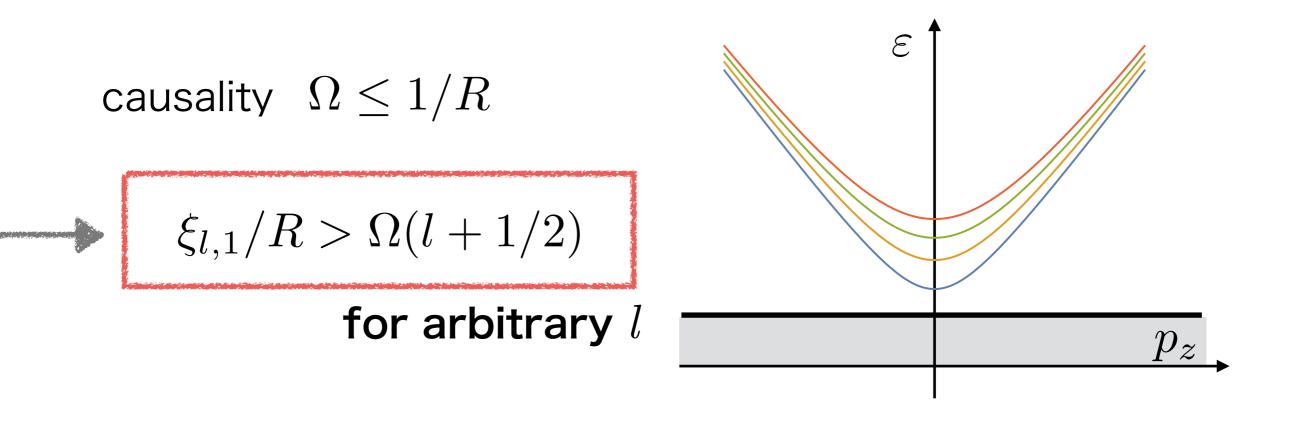


visible





invisible cf. Silver Blaze



finite-size effect \longrightarrow NO rotational effect at T=0Ebihara, Fukushima, KM (2016)

Note : visible at finite temperature

$$\mathsf{CVE} \quad j_5 = \frac{T^2}{12} \Omega$$

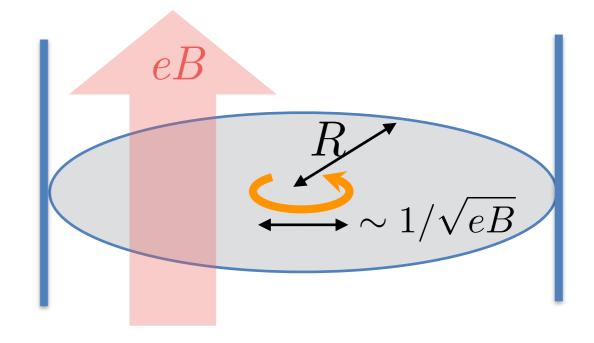
Vilenkin (1979)

Part II Finite-size system with eB

Cyclotron Motion

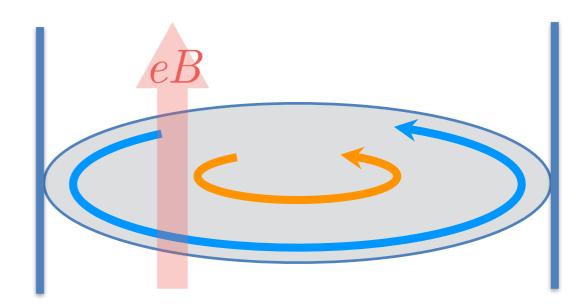
(1)
$$1/\sqrt{eB} \ll R$$

 $p_{\perp} = \sqrt{2neB}$
independent of l



(2)
$$1/\sqrt{eB} \lesssim R$$

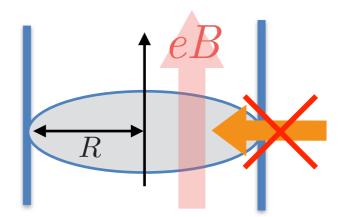
small $l \longrightarrow \text{still } p_{\perp} \simeq \sqrt{2neB}$
large $l \longrightarrow \text{modified}?$



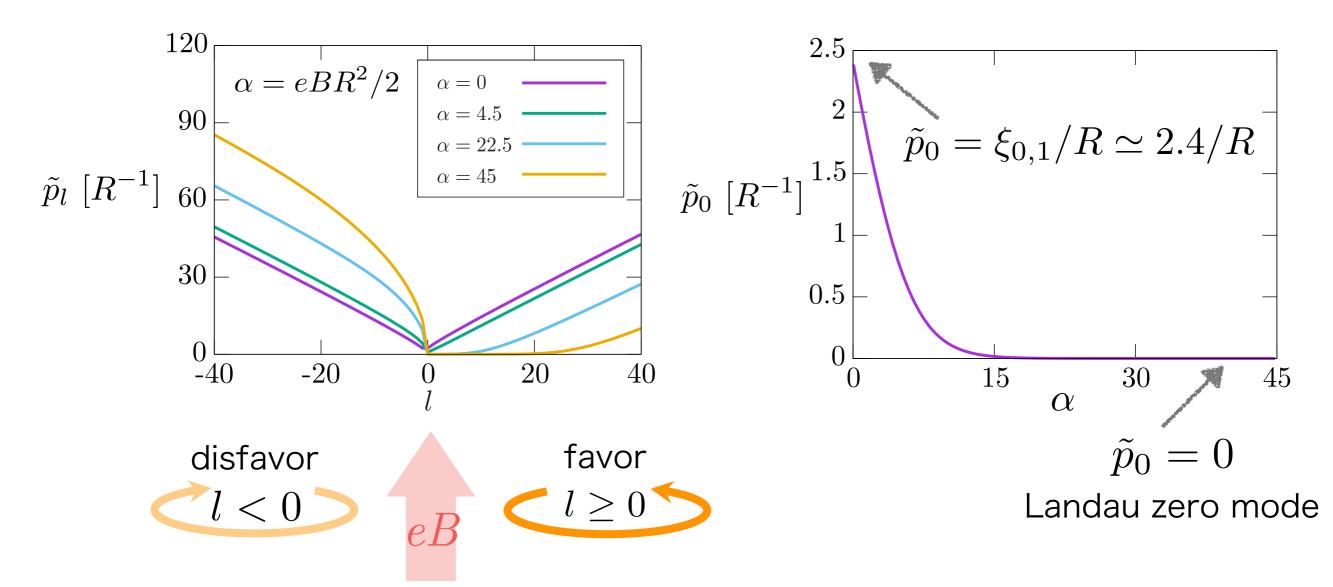
"Incomplete Landau quantization"

Incomplete Landau Level

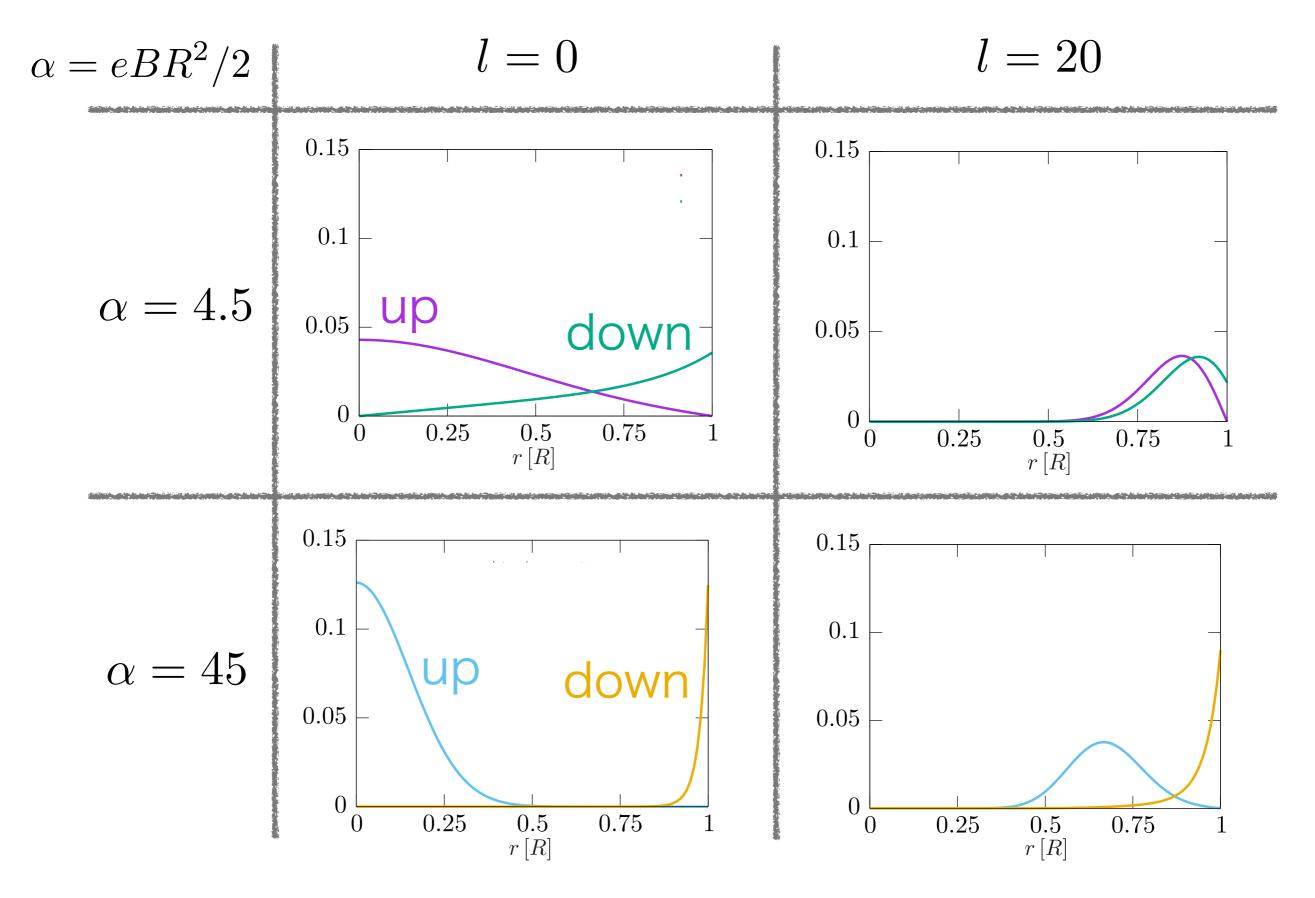
$$[i\gamma^{\mu}(\partial_{\mu}+ieA_{\mu})-m]\psi=0$$
 with



 \tilde{p}_l = lowest transverse momentum for l



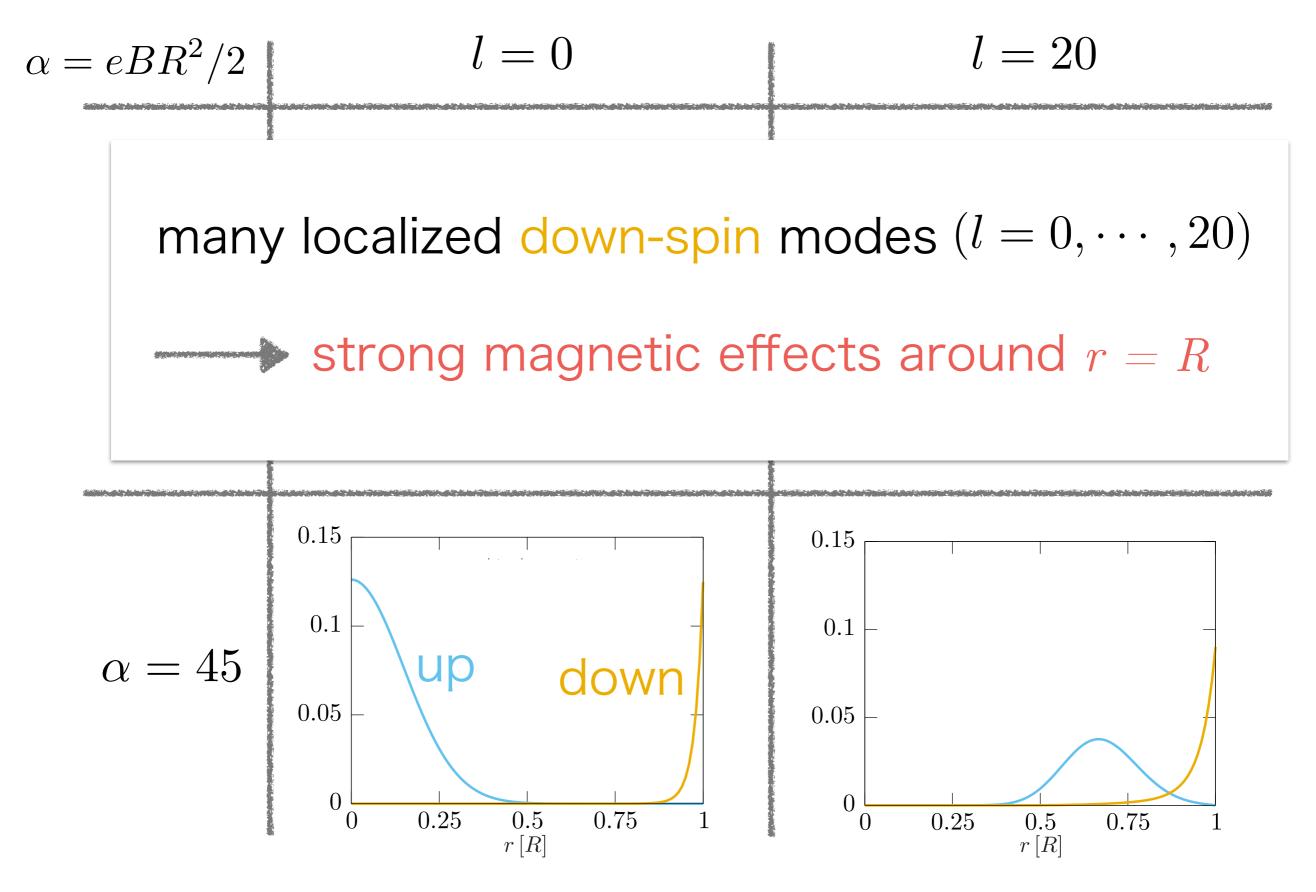
Wave Functions of Lowest Modes



Wave Functions of Lowest Modes



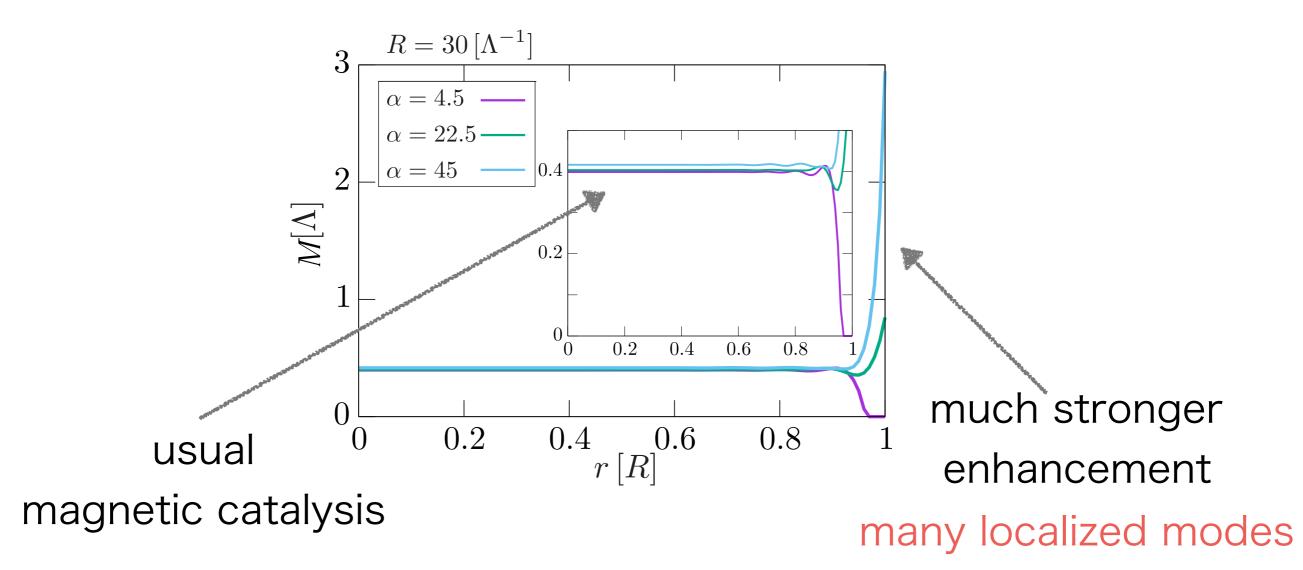
Wave Functions of Lowest Modes



Dynamical Mass at T = 0

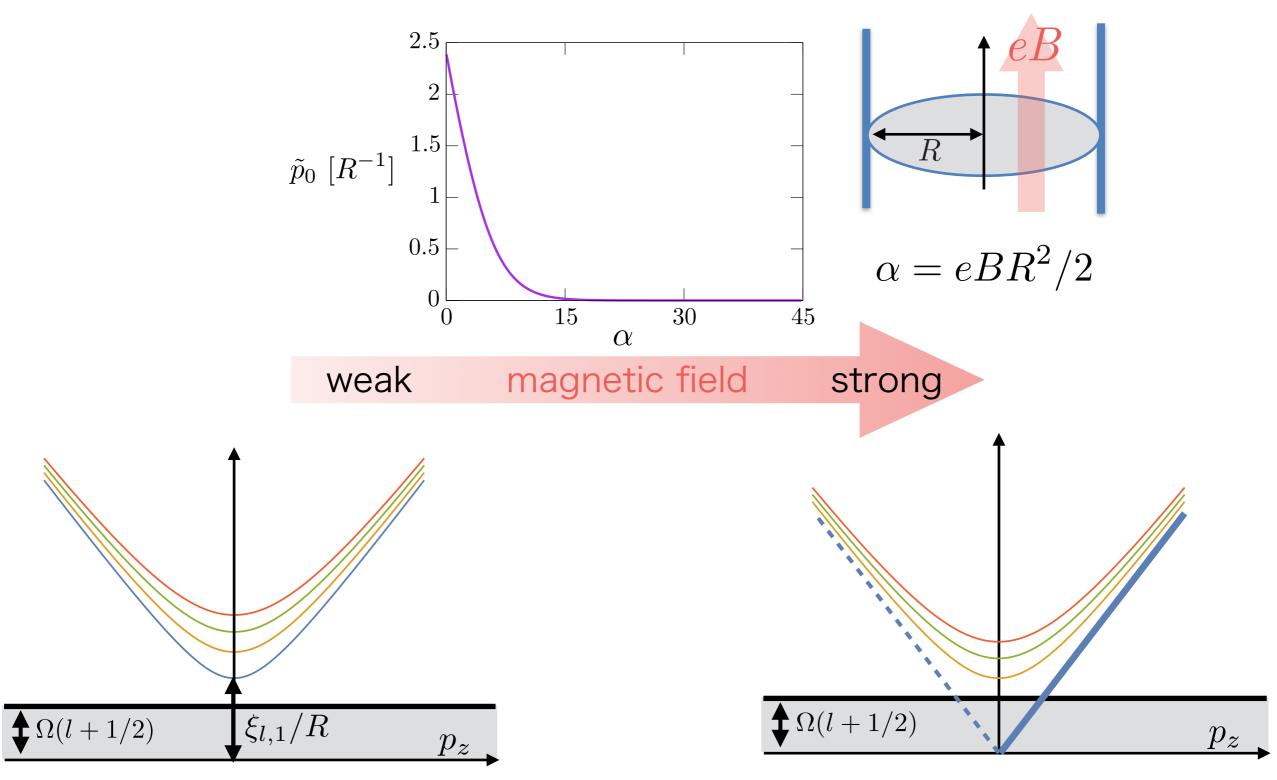
$$\mathcal{L}_{\rm NJL} = \bar{\psi} \, i\gamma^{\mu} (\partial_{\mu} + ieA_{\mu})\psi + \frac{G}{2} \left[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma^5\psi)^2 \right]$$

NJL model (mean field approx.) + Local density approx. $\partial_r M \!\ll\! M^2$ Jiang, Liao (2016)



Part III Finite-size system with Ω and eB

Gapped to Gapless



visible rotational effect due to magnetic field

Ex.1) Density induced by Rotation

Huang, KM (in preparation)

O < 13

$$\begin{bmatrix} i\gamma^{\mu}(\partial_{\mu} + ieA_{\mu} + \Gamma_{\mu}) \end{bmatrix} \psi = 0 \quad \text{with}$$

$$\prod_{\text{magnetic field}} \text{rotation}$$

$$\Omega j = \text{effective chemical potential} \quad f_{\pm}(\varepsilon) = \frac{1}{e^{\beta(\varepsilon \mp \Omega j)} + 1}$$

$$n(r) = \langle \psi^{\dagger}(x)\psi(x) \rangle$$

$$= \sum_{p_{z},p_{\pm}} \left[f_{\pm}(\varepsilon) - f_{\pm}(\varepsilon) \right] \times \left(r\text{-dependence} \right) \quad \longrightarrow \quad n(r = 0) \underset{\sqrt{eB} \gg \Omega}{\longrightarrow} \quad \frac{eB\Omega}{4\pi^{2}}$$
temperature independent
Cf. Hattori, Yin (2016)
hydrodynamical description

A similar discussion is applicable?

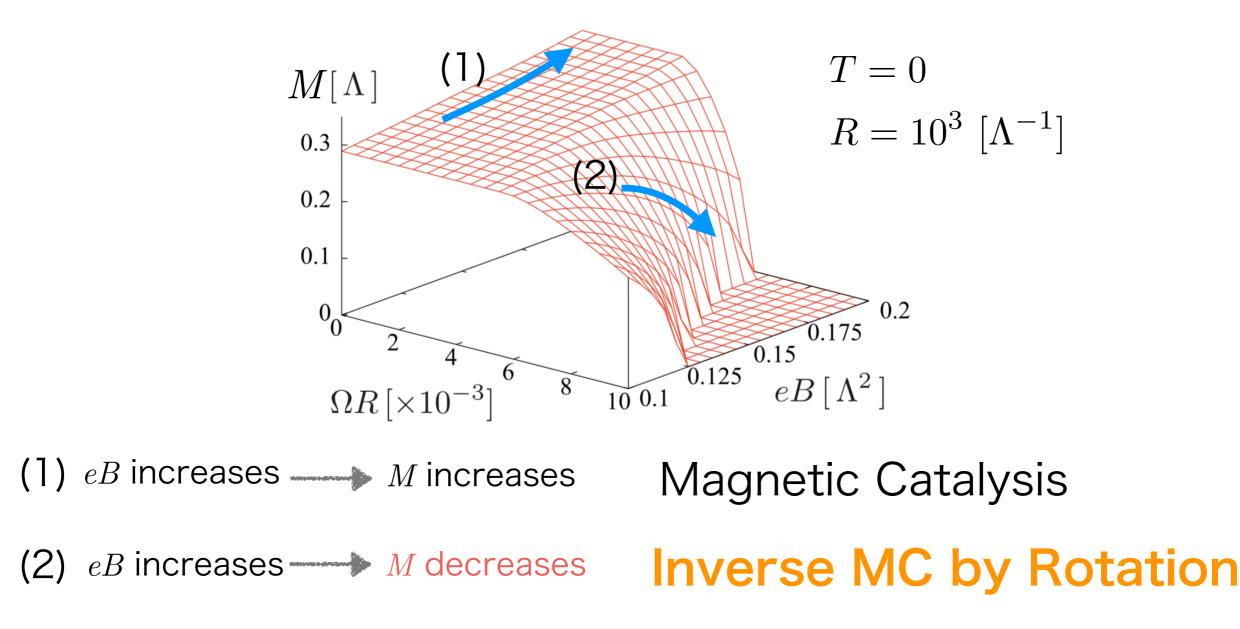
$$T^{ij} = \# eB^i \Omega^j$$

Hermandez, Kovtun (2017) hydrodynamical description

Ex.2) Chiral Symmetry Breaking

Chen, Huang, Fukushima, KM (2016)

NJL model (mean field approx.) + neglecting inhomogeneity



Summary

[1] Rotating Systems

- \cdot No rotational effect at zero temperature
- Chiral phase transition Critical Point?

[2] Magnetized Systems

Strong magnetic response around the boundary (not only in a cylinder)
 MC on the boundary in Dirac/Weyl semimetals?

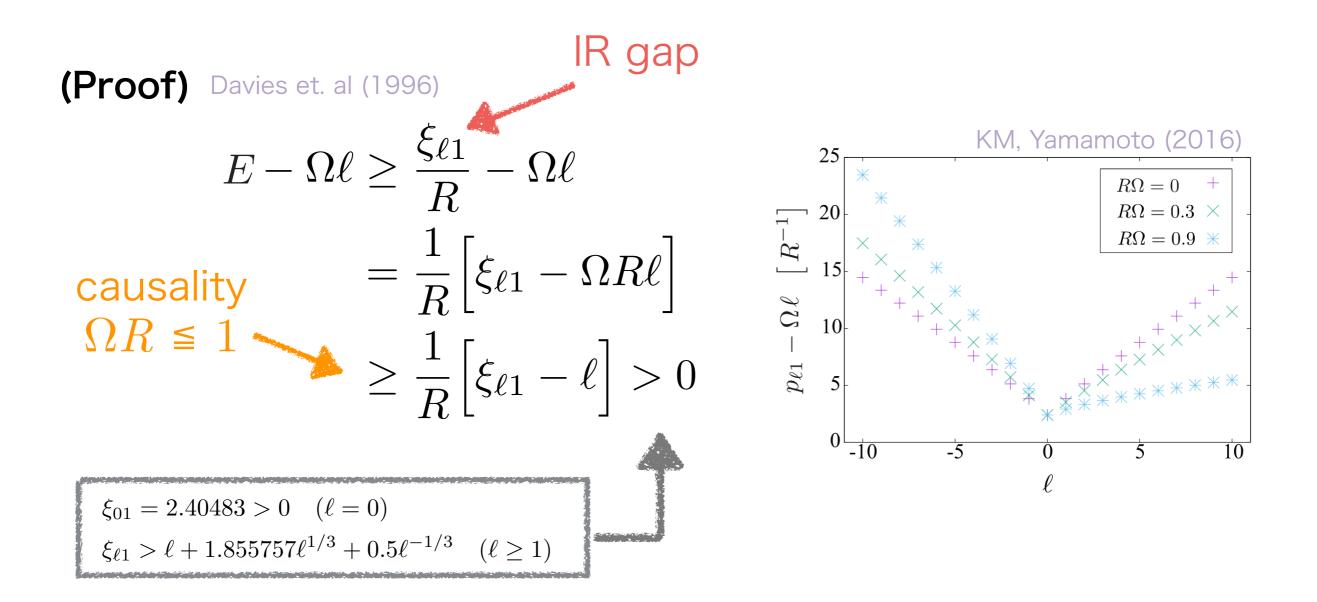
[3] Rotating Magnetized Systems

- Visible rotational effect even at zero temperature
- Anomalous transport : electric current energy-momentum tensor?
- \cdot Chiral structure : inverse phenomenon for the MC

spacial dependence?

Distribution in Rotating Systems

$$p_{\ell k} = \xi_{\ell k} / R \longrightarrow E - \Omega \ell > 0 \longrightarrow n_{\rm BE} = \frac{1}{e^{\beta (E - \Omega \ell)} - 1} > 0$$



Boundary effect (= IR gapped mode) is important