Transport phenomena in strong magnetic fields

> Koichi Hattori Fudan University

6th Huada QCD School @ CCNU, May, 2017

Table of contents

0. Analytic estimate of B-field in HIC

KH and Xu-Guang Huang (Fudan), arXiv:1609.00747 [nucl-th]

1. Heavy Quark Diffusion Dynamics in QGP

K. Fukushima (Tokyo), KH, H.-U. Yee (UIC), Yi Yin (MIT), PRD. [arXiv:1512.03689 [hep-ph]]

Cf.) KH and Xu-Guang Huang (Fudan), arXiv:1609.00747 [nucl-th]

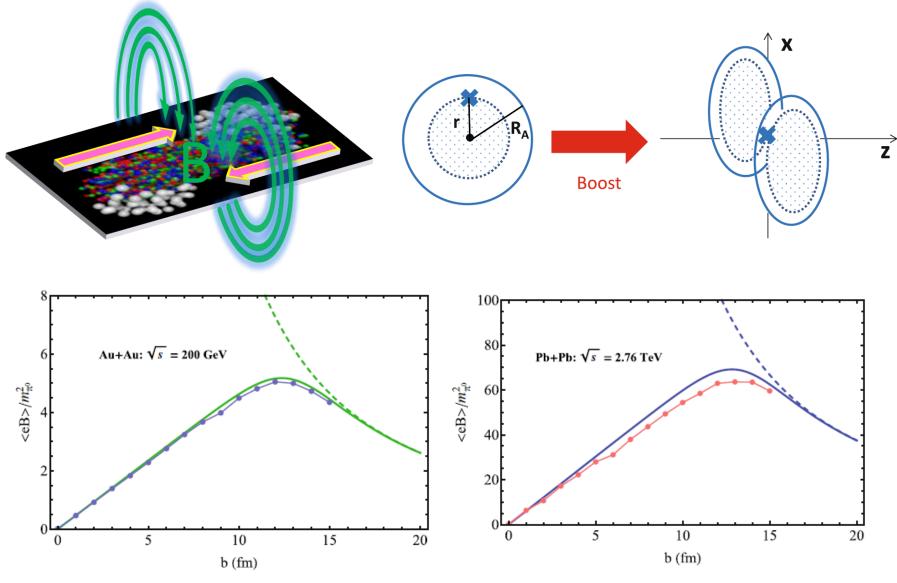
2. Electrical conductivity in QGP

KH, Shiyong Li (UIC), Daisuke Satow (Frankfurt), Ho-Ung Yee, PRD. arXiv:1610.06839 [hep-ph]KH and Daisuke Satow, PRD. [arXiv:1610.06818 [hep-ph]]

3. New magneto-hydrodynamic instability in a chiral fluid with CME

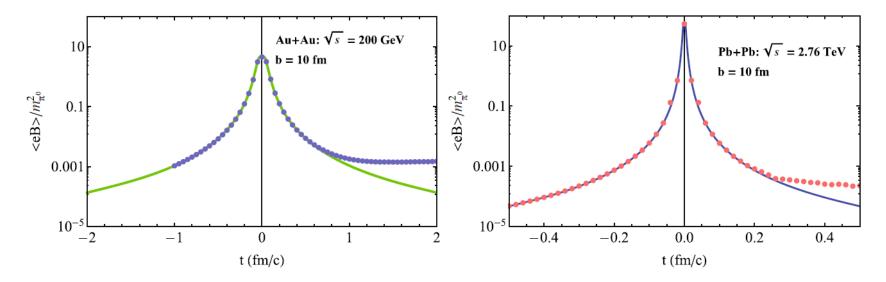
KH, Yuji Hirono (BNL), Ho-Ung Yee, and Yi Yin, In preparation.

Analytic estimate of the strong B -- Impact parameter dependences

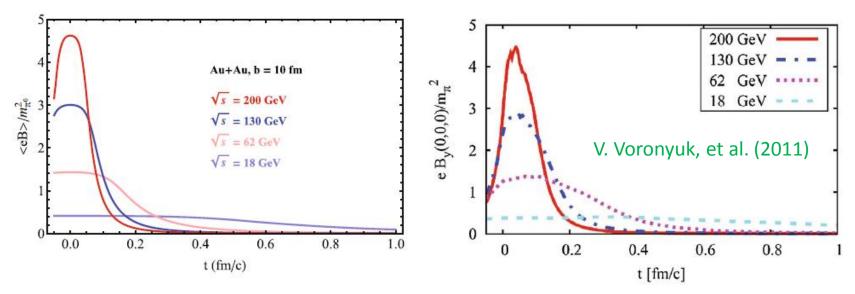


W.-T. Deng & X.-G. Huang, KH and X.-G. Huang

Time dependences



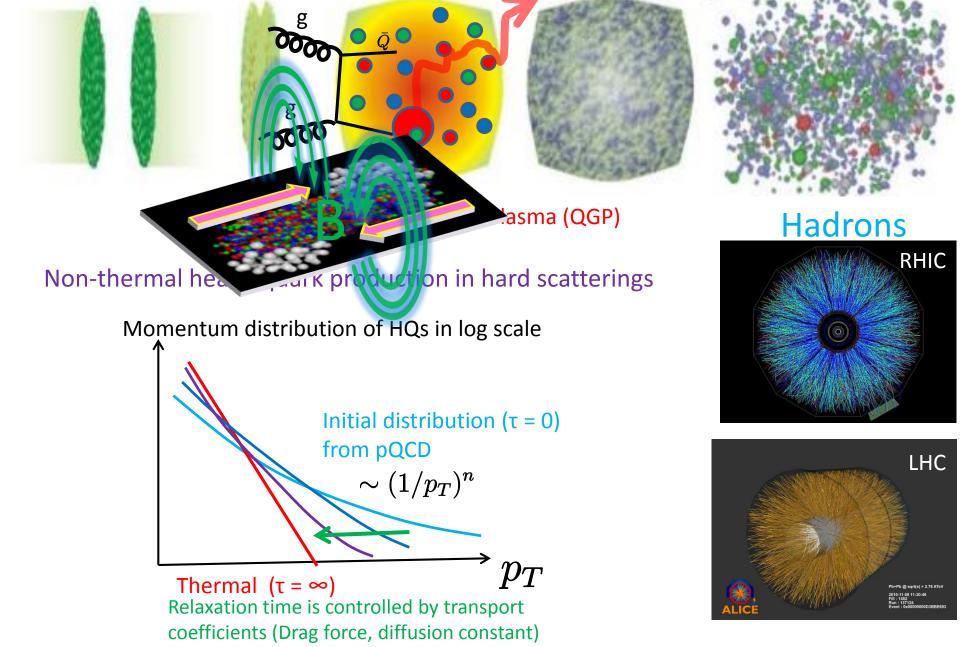
Collision-energy dependences



1. Heavy quark diffusion in magnetic fields

K. Fukushima (Tokyo), KH, H.-U. Yee (UIC), Yi Yin (BNL→MIT), Phys. Rev. D 93 (2016) 074028. [arXiv:1512.03689 [hep-ph]]

Heavy quarks as a probe of QGP

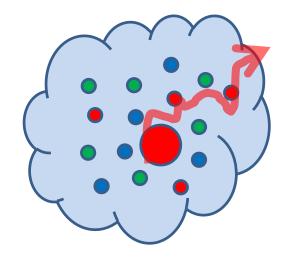


Heavy quark (HQ) dynamics in the QPG -- In soft regime

Langevin equation
$$\frac{d\boldsymbol{P}}{dt} = \boldsymbol{\xi}(t) - \eta_D \boldsymbol{P}$$

Random kick (white noise)

$$\langle \xi_i(t)\xi_j(t')\rangle = \kappa \delta_{ij}\delta(t-t')$$



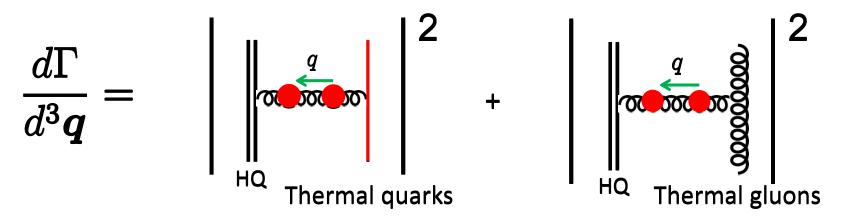
Drag force coefficient: η_D Diffusion constant: κ Einstein relation $\eta_D = \frac{\kappa}{2MT}$

Perturbative calculation by finite-T field theory (Hard Thermal Loop resummation) LO and NLO without B are known (Moore & Teaney, Caron-Huot & Moore).

Perturbative computation of momentum diffusion constant

$$\kappa_i = \int d^3 \boldsymbol{q} \, q_i^2 \frac{d\Gamma}{d^3 \boldsymbol{q}}$$

Momentum transfer rate in the LO Coulomb scatterings

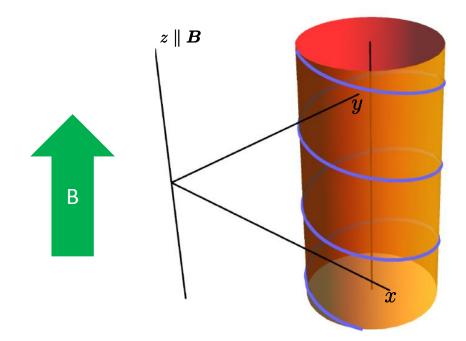


c.f.) LO and NLO without B (Moore & Teaney, Caron-Huot & Moore)

Effects of a strong magnetic field (eB >> T^2)

Modification of the dispersion relation of thermal quarks
 Modification of the Debye screening mass

Landau level discretization due to the cyclotron motion



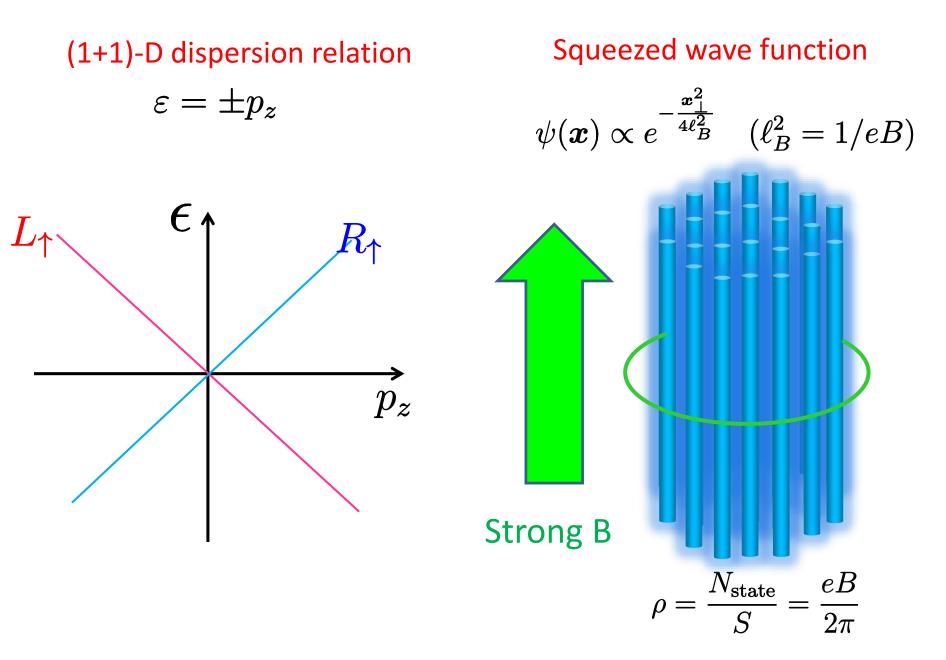
"Harmonic oscillator" in the transverse plane

Nonrelativistic: $\epsilon_n = \frac{p_z^2}{2m^2} + (n + \frac{1}{2})\frac{eB}{m^2}$ Cyclotron frequency

Relativistic:
$$\epsilon_n = \sqrt{p_z^2 + (2n+1)eB + m^2}$$

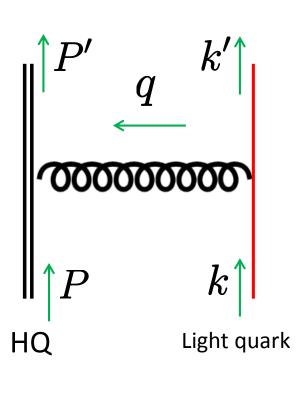
In addition, there is the Zeeman effect.

Schematic picture of the lowest Landau levels



Prohibition of the longitudinal momentum transfer

Massless limit

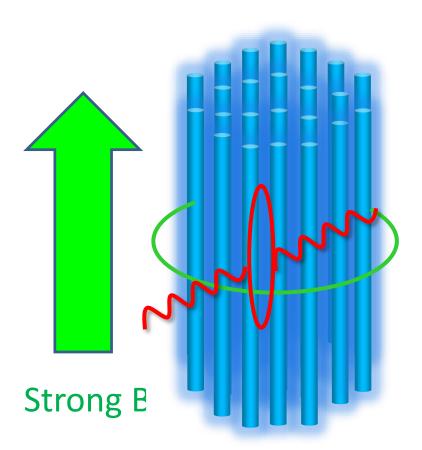


Linear dispersion relation
$$k^0 = \pm k_z$$

Energy and momentum transfers in the direction of B
 $q^0 = k'^0 - k^0$, $q_z = k'_z - k_z$
From the chirality conservation
 $q^0 = \pm (k'_z - k_z) = \pm q_z$
In the static limit (or HQ limit) $q^0 \rightarrow 0$
 $q_z \rightarrow 0$.

 $\kappa_{\parallel} = 0$ in massless limit, while $\kappa_{\perp} \neq 0$.

Screening effect in a strong B



Gluon self-energy $\Pi^{\mu\nu}(q) = \frac{eB}{2\pi} \Pi^{\mu\nu}_{1+1}$

Schwinger model

$$\Pi_{1+1}^{\mu\nu} = \operatorname{tr}[t^{a}t^{a}]\frac{g^{2}}{\pi}f(q_{\parallel}^{2})(q_{\parallel}^{2}g_{\parallel}^{\mu\nu} - q_{\parallel}^{\mu}q_{\parallel}^{\nu})$$
$$m_{D}^{2} \sim \frac{eB}{2\pi} \cdot \frac{g^{2}}{\pi} \gg (gT)^{2}$$

Transverse diffusion constant in massless limit

$$\kappa_{\perp} = \alpha_s \lim_{q^0 \to 0} \frac{T}{q^0} \int d^3 \boldsymbol{q} \, q_{\perp}^2 \frac{\mathrm{Im}\Pi(\boldsymbol{q})}{[\boldsymbol{q}^2 + m_D^2]^2}$$

Distribution of the quark scatterers $n(q^0) \sim rac{T}{q^0}$

Screened Coulomb scattering amplitude (squared) $m_D^2 \sim \alpha_s eB$

Spectral density

$$2\mathrm{Im}\Pi(\boldsymbol{q}) = \rho(\boldsymbol{q}) \sim m_D^2 q^0 \delta(q_z)$$

$$\kappa_{\perp} \sim \alpha_s T \int d^2 \boldsymbol{q}_{\perp} q_{\perp}^2 \frac{m_D^2}{[\boldsymbol{q}_{\perp}^2 + m_D^2]^2} \sim \alpha_s T m_D^2 \log 1/\alpha_s$$

Longitudinal diffusion constant

1. Quark contribution to the longitudinal diffusion constant

$$\kappa_{\parallel}^{\text{quark}} = 0$$

2. Gluon contribution to the longitudinal diffusion constant

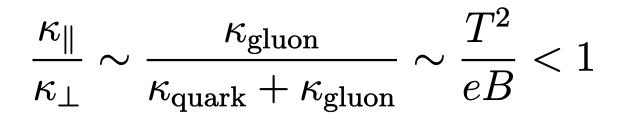
$$\kappa^{\rm gluon} \sim \alpha_s^2 T^3 \log 1/\alpha_s$$

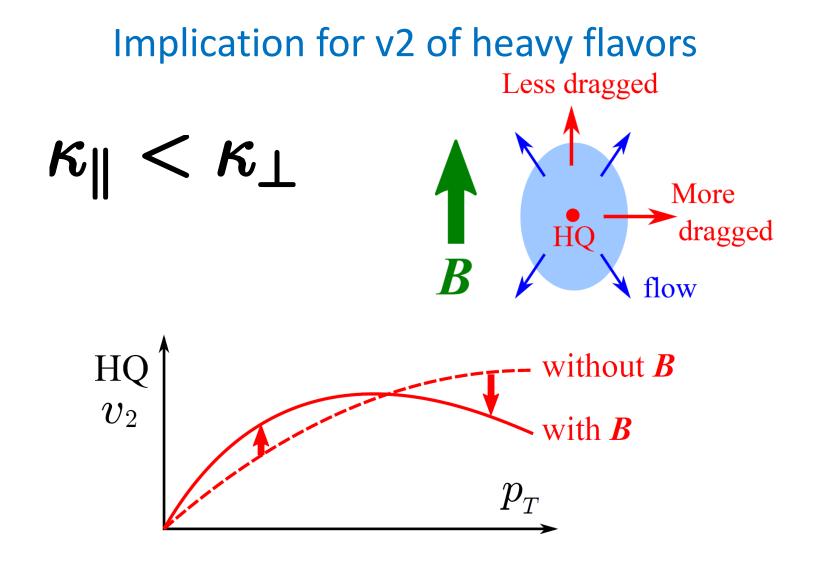
Same as Moore & Teaney up to constants

Anisotropic momentum diffusion constant

$$\begin{split} \kappa^{\rm quark}_{\perp} &\sim \alpha_s^2 T \times eB \times \log 1/\alpha_s \\ \kappa^{\rm gluon}_{\parallel} &\sim \alpha_s^2 T \times T^2 \times \log 1/\alpha_s \\ \end{split}$$
Remember the density of states in B-field, $\rho = \frac{N_{\rm state}}{S} = \frac{eB}{2\pi}$

In the strong field limit,



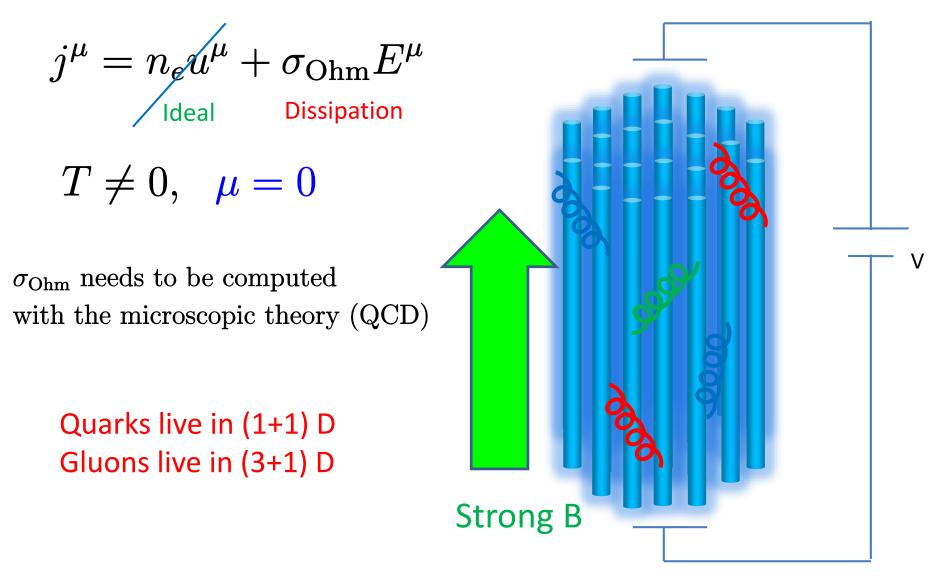


Magnetic anisotropy gives rise to v2 of HQs even without the v2 of medium.

 \rightarrow Possible to generate v2 of HQs in the early QGP stage.

2. Electrical conductivity in strong magnetic field

KH, Shiyong Li, Daisuke Satow, and Ho-Ung Yee, arXiv:1610.06839 [hep-ph]. KH and Daisuke Satow, arXiv:1610.06818 [hep-ph].



"Longitudinal conductivity" in the strong B

$$j^i = \sigma^{ij} E^j$$

Current only in z direction σ_{zz}

(1+1)-D effective Boltzmann eq.

$$\frac{\partial f_{\pm}}{\partial t} + \dot{z}\frac{\partial f_{\pm}}{\partial z} + \dot{p}_z\frac{\partial f_{\pm}}{\partial p_z} = C[f_{\pm}] \qquad \dot{p}_z = \pm q_f E_z$$

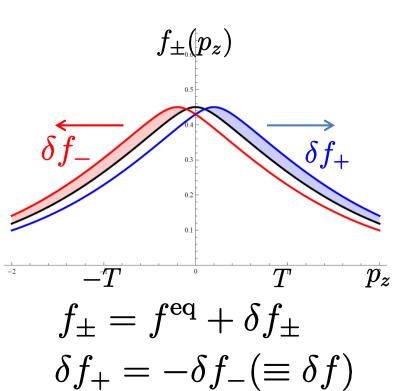
Total current integrated over p₇

 E_z

$$j_{z} = \frac{|q_{f}B|}{2\pi} \cdot q_{f} \int \frac{dp_{z}}{2\pi} v_{z}(f_{+} - f_{-})$$

$$2\delta f$$

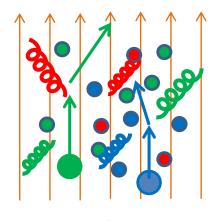
$$\sigma_{zz} = \frac{j_{z}}{E}$$



How linearized Boltzmann eq. works

Stationary and homogeneous limit

$$\frac{\partial f_{\pm}}{\partial t} + \dot{z}\frac{\partial f_{\pm}}{\partial z} + \dot{p}_z\frac{\partial f_{\pm}}{\partial p_z} = C[f_{\pm}]$$



External driving force v.s. Relaxation

Collision term: e.g., relaxation time approximation

E field

$$C[f_{\pm}] = -\frac{1}{\tau_R} \delta f$$

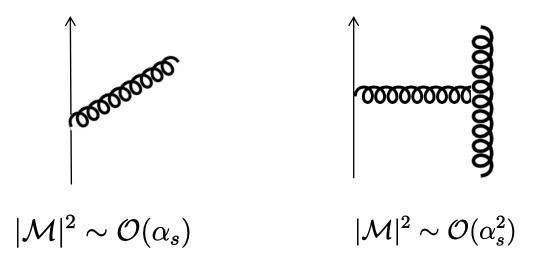
Linearized Boltzmann eq.

$$q_f E_z v_z f_{\pm}^{\text{eq}} (1 - f_{\pm}^{\text{eq}}) = \frac{1}{\tau_R} \delta f \qquad v_z = \frac{\partial \epsilon_p}{\partial p_z} = \frac{p_z}{\epsilon_p}$$

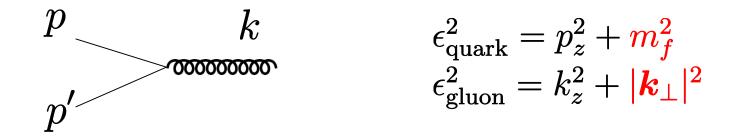
Solution

$$\sigma_{zz} = \frac{j_z}{E_z} = q_f \frac{|q_f B|}{2\pi} \frac{2\tau_{\mathbf{R}} q_f E_z}{E_z} \int \frac{dp_z}{2\pi} v_z^2 f^{\text{eq}} (1 - f^{\text{eq}})$$

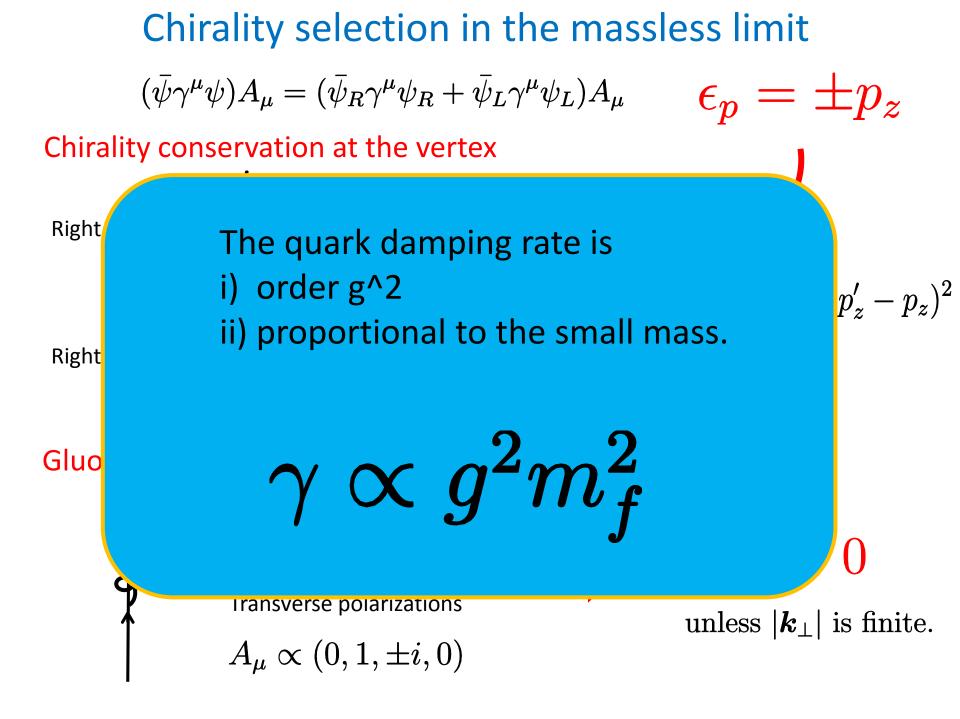
Quark-damping mechanism in magnetic fields



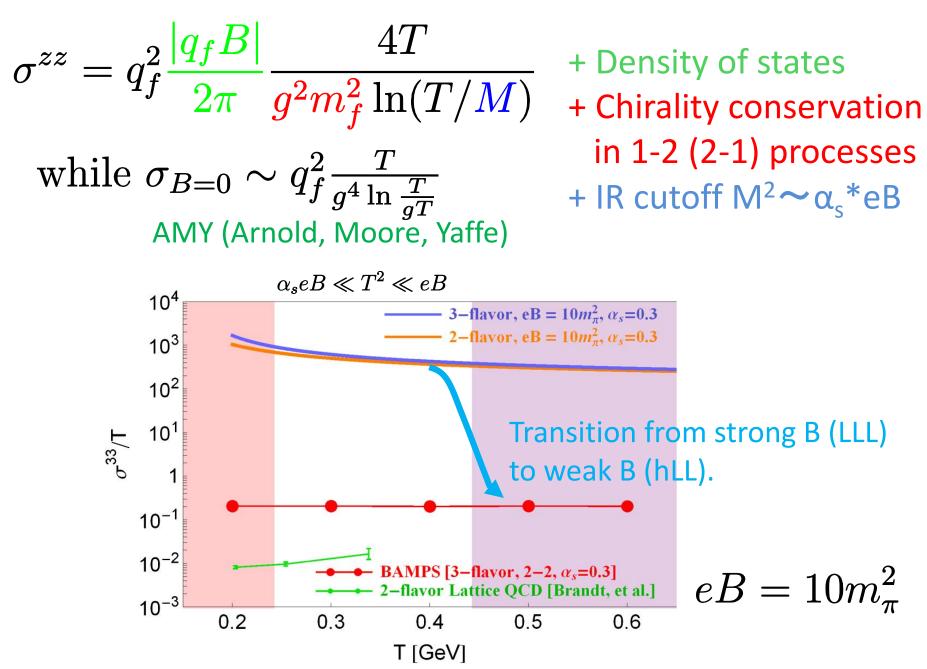
Finite B opens 1-2 processes



 $|\mathbf{k}_{\perp}|$ works as a gluon mass for 2D kinematics. Analogue of a massive weak boson production from $q\bar{q}$ annihilation in 4D.



Results



1

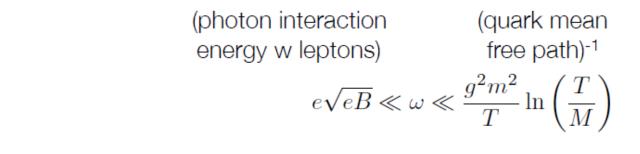
Possible Phenomenological Implications

2. Soft Dilepton Production

 $\frac{\alpha}{d^4p} = \frac{\alpha}{12\pi^4\omega^2} T\sigma^{33}$

$$p^{r}$$

 \therefore (virtual photon emission rate) $\sim n_B(\omega)$ Im $\Pi^{\mu}_{\mu} \sim T\sigma^{33}$

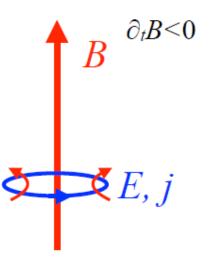


 σ^{33} is large

Soft dilepton production is enhanced by B?

Possible Phenomenological Implications

3. Back Reaction to EM Fields



Bad news:

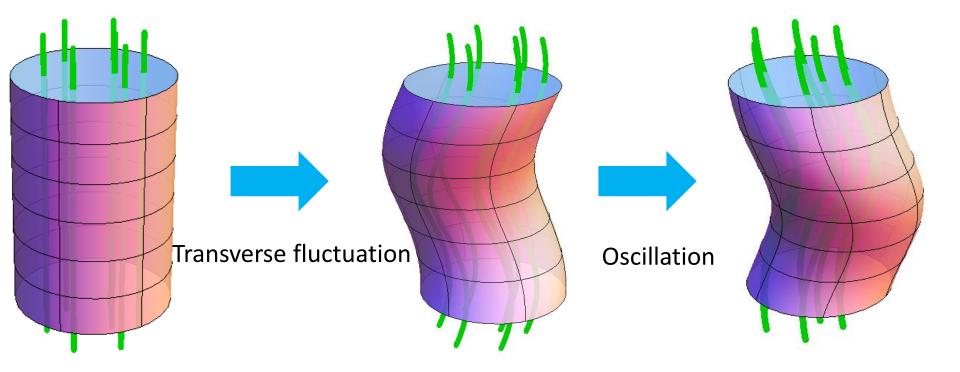
In LLL approximation, we have **no current in transverse plane**, so **Lenz's law does NOT work!** The lifetime of *B* does not increase...

3. New magnetohydrodynamic instability in a chiral fluid with CME

KH, Yuji Hirono, Ho-Ung Yee, and Yi Yin, In preparation.

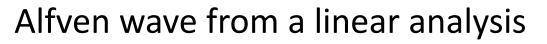
Magneto-hydrodynamics (MHD) in conducting plasmas

Alfven's theorem = "Frozen-in" condition: Magnetic flux is frozen in a fluid volume and moves together with the fluid.

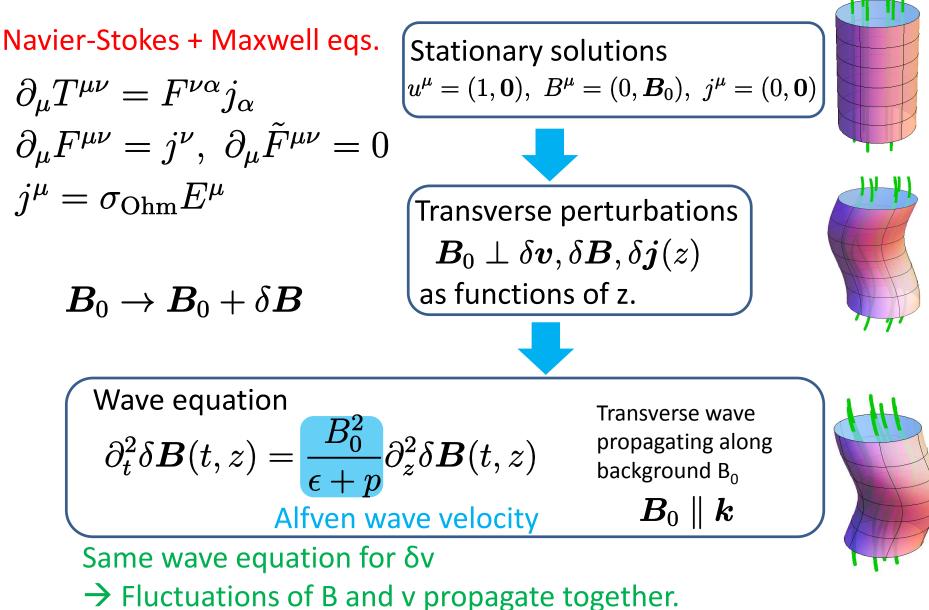


Tension of B-field = Restoring force Fluid mass density = Inertia

Transverse Alfven wave



$$B_0 \neq 0, \ T > 0, \ \mu_V = 0$$



Anomalous MHD in conducting plasmas $\mu_A \neq 0$, $B_0 \neq 0$, T > 0, $\mu_V = 0$

A finite CME current without CVE: $j^{\mu} = \sigma_{\text{Ohm}} E^{\mu} + \sigma_{\text{CME}} B^{\mu}$

Wave equation

$$\partial_t^2 \delta \boldsymbol{B}(t,z) = v_{Alf}^2 \partial_z^2 \delta \boldsymbol{B}(t,z) + \sigma_{CME} \nabla \times \partial_t \delta \boldsymbol{B}$$

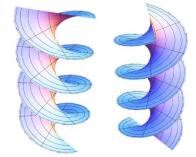
and a similar wave equation for δv .
 $v_{Alf}^2 = \frac{B_0^2}{\epsilon + p}$

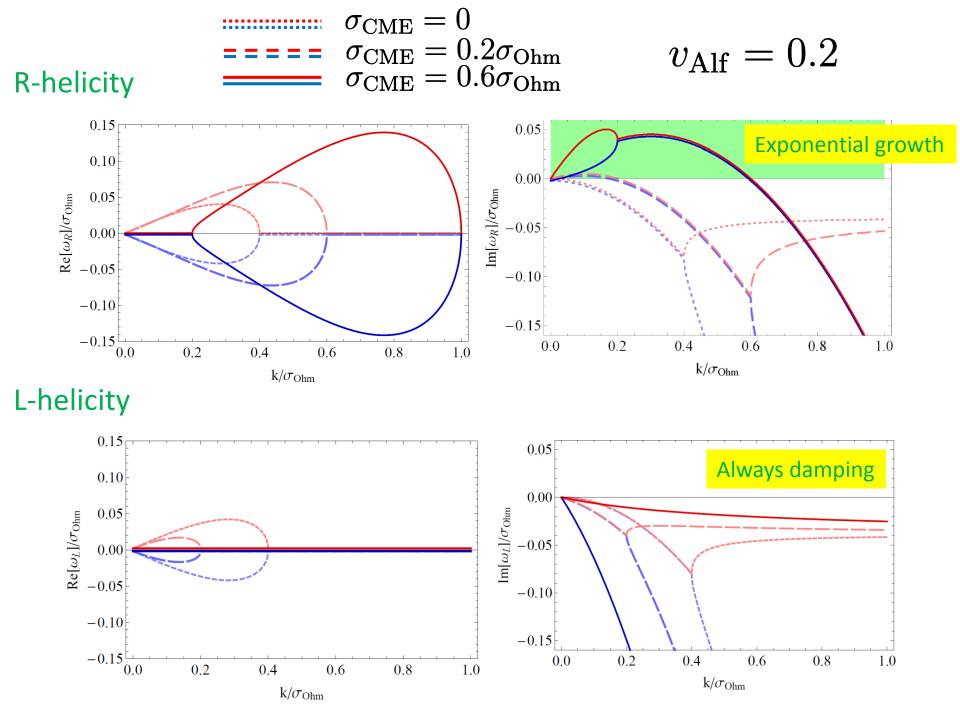
Helicity decomposition (Circular R/L polarizations)

$$abla imes oldsymbol{e}_{R/L} = \pm oldsymbol{e}_{R/L}$$

Two modes for each helicity propagating in parallel to B AND in antiparallel to B.

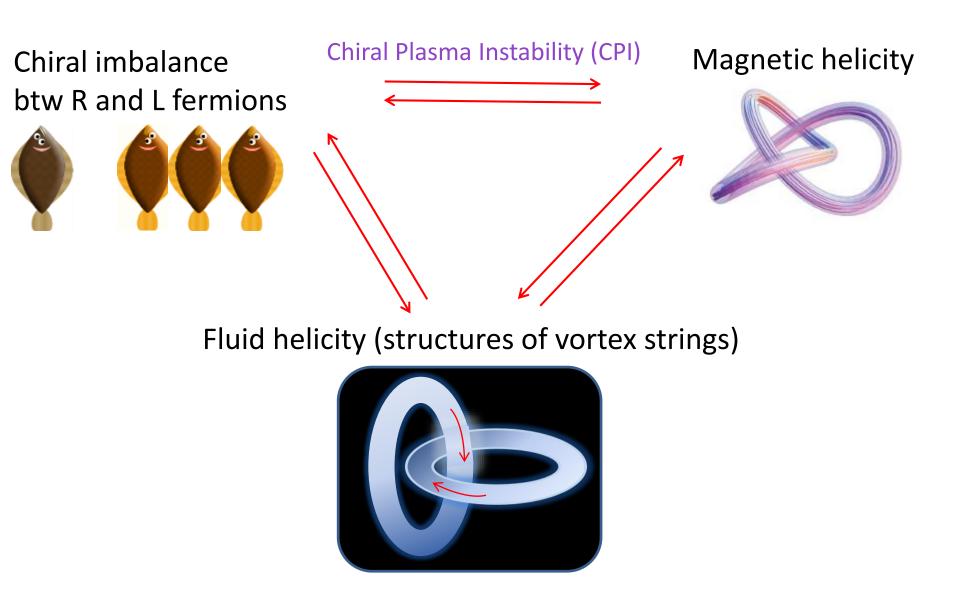
In total, there are 4 modes.





Helicity conversions

Akamatsu, Yamamoto Hirono, Kharzeev, Yin Xia, Qin, Wang



Summary 1

The chirality selection plays crucial roles in the non-anomalous transports as well as in the anomalous transports.

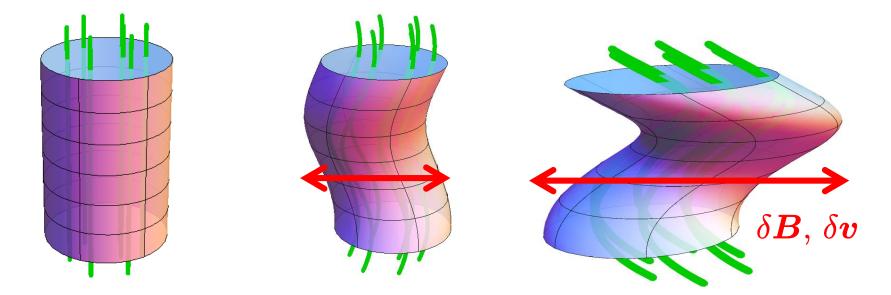
Consequences of the chirality selections

HQ diffusion: $\kappa_{\parallel}^{\text{quark}} = 0 \quad \Rightarrow \quad \kappa_{\parallel} \ll \kappa_{\perp}$ Electrical conductivity: $\sigma_{zz} \propto g^{-2} \frac{eB}{m_f^2}$

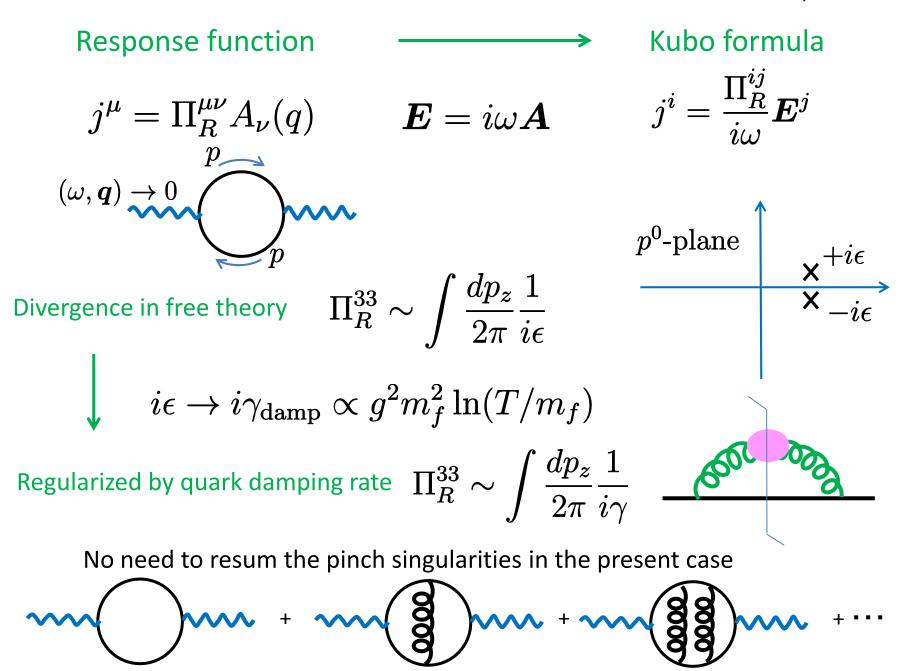
Summary 2

We observed an onset of instabilities in both B and fluid velocity v in anomalous hydrodynamics, when a chiral imbalance induces a CME current.

Amplitudes of both B and v grow exponentially in time.



Stay tuned for more results in publication.



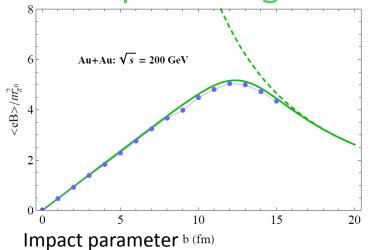
3. Anomalous transports from magneto-vorticity coupling

KH and Yi Yin, Phys. Rev. Lett. 117 (2016) 15. [arXiv:1607.01513 [hep-th]]

Strong magnetic field & vorticity/angular momentum induced by heavy-ion collisions

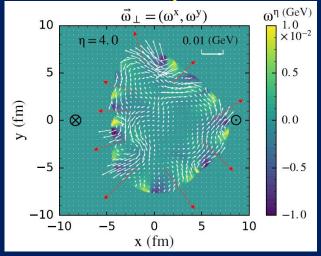
Super-strong B

 $\omega = V$



Deng & Huang (2012), KH & Huang (2016) Skokov et al. (2009), Voronyuk et al. (2011), Bzdak, Skokov (2012) McLerran, Skokov (2014)

Vorticity in HIC



Pang, Petersen, Wang, Wang (2016) Becattini et al., Csernai et al., Huang, Huovinen, Wang Jiang, Lin, Liao(2016) Deng, Huang (2016)

Anomaly-induced transports in a magnetic OR vortex field

$$\begin{pmatrix} j_V^{\mu} \\ j_A^{\mu} \end{pmatrix} = C_A \begin{pmatrix} q_f \mu_A & q_f \mu_V \\ \mu_V \mu_A & (\mu_V^2 + \mu_A^2)/2 + C_A^{-1} T^2/12 \end{pmatrix} \begin{pmatrix} B^{\mu} \\ \omega^{\mu} \end{pmatrix}$$

$$B^{\mu} = \tilde{F}^{\mu\nu} u_{\nu} \qquad \omega^{\mu} = \frac{1}{2} \epsilon^{\mu\alpha\beta\gamma} u_{\alpha} \partial_{\beta} u_{\gamma}$$

Coefficients are time-reversal even. Non-dissipative transport phenomena is due to topology in quantum anomaly and is nonrenormalizable.

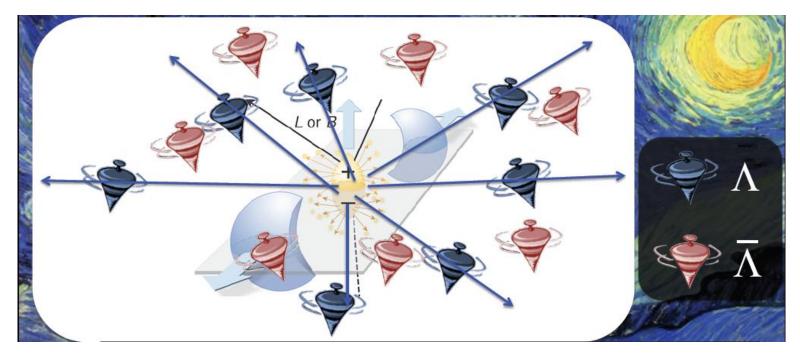
Anomaly relation:
$$\partial_{\mu}j^{\mu}_{A} = q_{f}^{2}C_{A}E\cdot B$$

 $C_{A} = \frac{1}{2\pi^{2}}$

Spin polarizations from spin-rotation coupling

$$f^{\pm}(\epsilon,\omega) = f_0^{\pm}(\epsilon - \boldsymbol{S} \cdot \boldsymbol{\omega}) \qquad f_0^{\pm}(\epsilon) = \frac{1}{e^{\pm\beta(\epsilon-\mu)} + 1}$$

Λ polarization

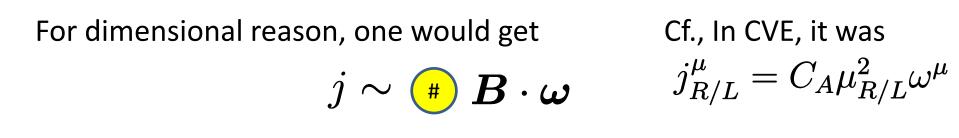


Slide by M. Lisa

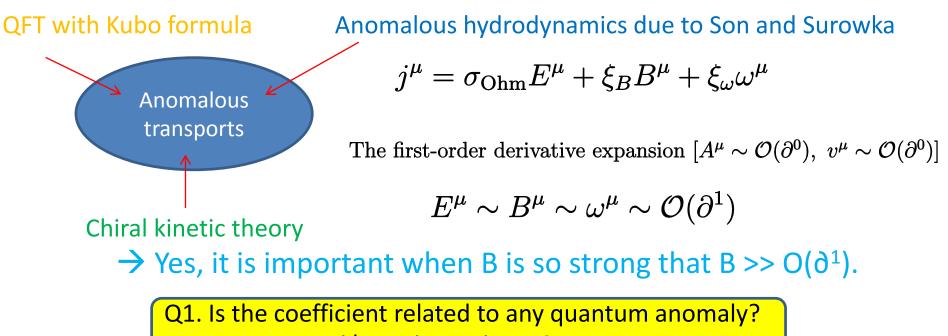
See talks by Becattini, Niida, Konyushikhin, Li

Becattini et al., Glastad & Csernai, Gyulassy & Torrieri, Xie,,,,

An interplay B $\otimes \omega$



Could the magneto-vorticity coupling be important ??



Q2. How is T and/or μ dependence?

Consequences of a magneto-vorticity coupling

Shift of thermal distribution functions by the spin-vorticity coupling

1

Spin-vorticity coupling

$$f^{\pm}(\epsilon,\omega) = f_0^{\pm}(\epsilon - \mathbf{S} \cdot \boldsymbol{\omega}) \qquad f_0^{\pm}(\epsilon) = \frac{1}{e^{\pm\beta(\epsilon-\mu)} + 1}$$

Landau & Lifshitz, Becattini et al.

In the LLL, the spin direction is aligned along the magnetic field .

$$\Delta \epsilon^{\pm} \equiv -\boldsymbol{S} \cdot \boldsymbol{\omega} = \mp \operatorname{sgn}(q_f) \frac{1}{2} \hat{\boldsymbol{B}} \cdot \boldsymbol{\omega} \quad \begin{array}{l} \text{- for particle} \\ \text{+ for antiparticle} \end{array}$$

Number density
$$n_{R} = \frac{|q_{f}B|}{2\pi} \left[\int_{0}^{\infty} \frac{dp_{z}}{2\pi} f^{+}(p) + \int_{-\infty}^{0} \frac{dp_{z}}{2\pi} f^{-}(p) \right]$$
At the LO in the energy shift $\Delta \varepsilon$

$$\Delta n_{R} = \frac{|q_{f}B|}{2\pi} \left[\Delta \epsilon^{+} \int_{0}^{\infty} \frac{dp_{z}}{2\pi} \frac{\partial f_{0}^{+}(p_{z})}{\partial p_{z}} + \Delta \epsilon^{-} \int_{-\infty}^{0} \frac{dp_{z}}{2\pi} \frac{\partial f_{0}^{-}(p_{z})}{\partial p_{z}} \right]$$

$$\Delta n_R = q_f \frac{C_A}{4} \boldsymbol{B} \cdot \boldsymbol{\omega} [f_0^+(0) + f_0^-(0)]$$

= $q_f \frac{C_A}{4} \boldsymbol{B} \cdot \boldsymbol{\omega}$ $f_0^+(0) + f_0^-(0) = 1$ identically for any T and μ .

The shift is independent of the chirality, and depends only on the spin direction.

$$\Delta n_L = \Delta n_R$$

In the V-A basis,
$$\Delta n_V = \Delta n_R + \Delta n_L = q_f \frac{C_A}{2} \mathbf{B} \cdot \boldsymbol{\omega}$$

 $\Delta n_A = \Delta n_R - \Delta n_L = 0$

Spatial components of the current

 $\Delta n_R = \Delta n_R - \Delta n_L = 0$

 $\Delta n_R = \Delta n_R - \Delta n_L = 0$

 $\Delta n_R = \Delta n_R - \Delta n_L = 0$

 $\Delta n_R = \Delta n_R - \Delta n_L = 0$

 $\Delta n_R = \Delta n_R - \Delta n_L = 0$

 $\Delta n_R = \Delta n_R - \Delta n_L = 0$

 $\Delta n_R = \Delta n_R - \Delta n_L = 0$

 $\Delta n_R = \Delta n_R - \Delta n_L = 0$

 $\Delta n_R = \Delta n_R - \Delta n_L = 0$

$$\Delta j_R^3 = v_R \,\Delta n_R \qquad \qquad j^1 = j^2 = 0$$
 for the LLL

Velocity: $v_{R/L} = \pm \operatorname{sgn}(q_f B)$

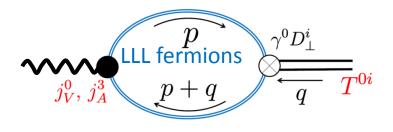
The shift depends on the chirality through the velocity.

$$\Delta j_R^3 = -\Delta j_L^3$$
 In the V-A basis, $\Delta j_V^3 = 0$
 $\Delta j_A^3 = |q_f| \mathrm{sgn}(B) \frac{C_A}{2} \mathbf{B} \cdot \omega$

Field-theoretical computation by Kubo formula

$$\lambda = -2i \lim_{q_x \to 0} \frac{\partial}{\partial q_x} \langle n_V(x) T^{02}(x') \rangle \theta(t - t')$$

Perturbative ω in a strong B



Similar to the Kubo formula used to get the T² term in CVE (Landsteiner, Megias, Pena-Benitez)

We confirm

- 1. the previous results obtained from the shift of distributions.
- 2. a relation of $\langle n_v T^{02} \rangle$ to the chiral anomaly diagram in the (1+1) dim.

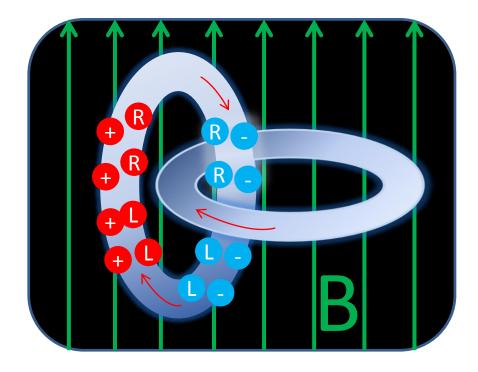
$$\Pi^{\mu\nu}_{AV} = \checkmark j^{\mu}_{AV} \qquad j^{\nu}_{V} \qquad q_{\mu} \Pi^{\mu\nu}_{AV} \neq 0 \ !!!$$

There is no T or μ correction in the massless limit, since it is related to the chiral anomaly!

Summary 2

A magneto-vorticity coupling B $\otimes \omega$ induces charge redistributions without μ_A .

- Related to the chiral anomaly in the (1+1) dimensions.
- No T or μ correction.

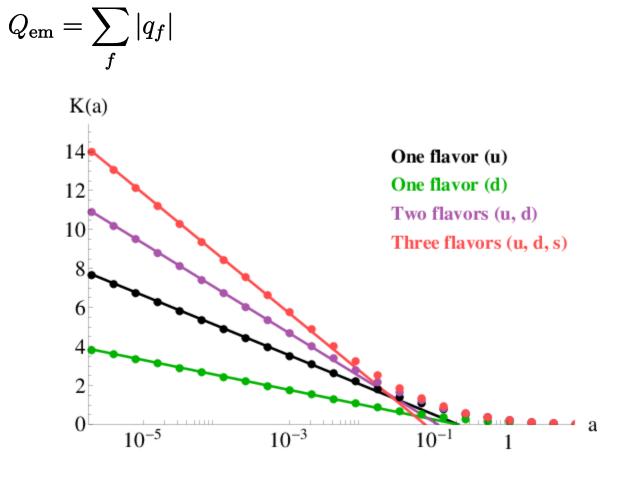


When
$$\boldsymbol{B} \cdot \boldsymbol{\omega} \neq 0$$
,
 $j_{EM,V}^0 = q_f^2 \frac{C_A}{2} (\boldsymbol{B} \cdot \boldsymbol{\omega})$
 $j_{EM,A}^3 = \operatorname{sgn}(q_f) q_f^2 \frac{C_A}{2} (\boldsymbol{B} \cdot \boldsymbol{\omega}) \hat{\boldsymbol{B}}$

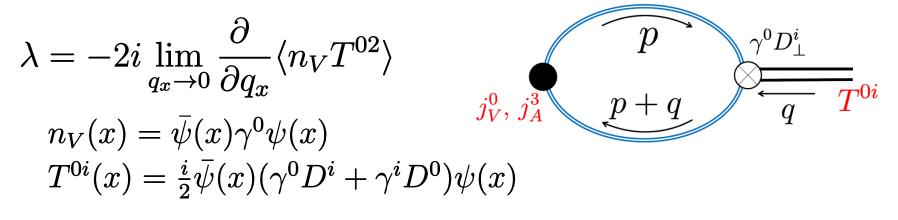
Emerges even without μ_A .

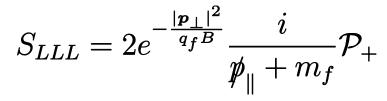
Coupling between the CME and fluid velocity induces a new instability in MHD. Take by Y. Hiron. KH, Hirono, Yee, Yin, In preparation.

$$\int_0^\infty dx \, \frac{x \sum_f |q_f| e^{-x/|q_f|}}{[x+a \sum_f |q_f| e^{-x/|q_f|}]^2}$$
$$= Q_{\rm em} \left[\log \left(\frac{1}{\alpha_s}\right) - \log \left(\frac{T_R}{\pi}\right) - \gamma_E - 1 + \sum_f \frac{|q_f|}{Q_{\rm em}} \log(\frac{|q_f|}{Q_{\rm em}}) \right]$$



Field-theoretical computation by Kubo formula





$$\mathcal{P}_{+} = (1 + i \operatorname{sgn}(q_f B) \gamma^1 \gamma^2) / 2$$

$$\langle n_V T^{02} \rangle \propto \frac{|q_f B|}{2\pi} q_x \Pi^{00}_{1+1}$$

$$\Pi_{1+1}^{\mu\nu} = \int \frac{d^2 p_{\parallel}}{(2\pi)^2} \operatorname{tr}[\gamma_{\parallel}^{\mu} S_{1+1}(p_{\parallel} + q_{\parallel})\gamma_{\parallel}^{\nu} S_{1+1}(p_{\parallel})] = \frac{1}{\pi} \frac{1}{q_{\parallel}^2} (q_{\parallel}^2 g_{\parallel}^{\mu\nu} - q_{\parallel}^{\mu} q_{\parallel}^{\nu})$$

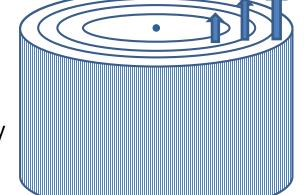
There is no T or μ correction in the massless limit! \rightarrow Consistent with the previous observation from the shift of distributions.

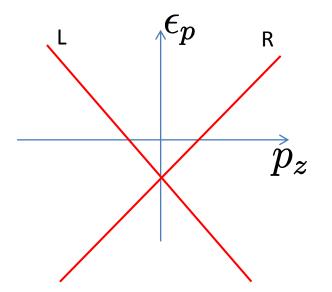
 $v = r\omega$

Causality problem: A rigid rotation of an infinite-size system breaks causality in the peripheral region.

One must have a finite-size system with an exterior boundary or a local vortex field.

Local shift of the charge density
→ Redistribution of charge in the system





E.g., when $v \to 0$ sufficiently fast, $\Delta n_{\text{net}} \propto \int d^3 x \boldsymbol{B} \cdot \boldsymbol{\omega} = \frac{1}{2} \int d^3 x \nabla \cdot (\boldsymbol{B} \times \boldsymbol{v}) = \frac{1}{2} \int_{\partial S} dS \cdot (\boldsymbol{B} \times \boldsymbol{v}) = 0$