

1

Overview of Database systems in CMS

G. Govi (FNAL) On behalf of the CMS experiment

Introduction

- The Database infrastructure plays a primary role in the CMS operations
 - Involved in all of the main production activities
 - Fairly complex architectures, with several dependent subsystems
 - Main backend choice is RDBMS/Oracle.
 - Went through several iterations of tuning over the past years

• About this overview

- \circ $\,$ Does not cover the whole database usage in CMS $\,$
- Focus is on the most critical systems for the database operation
- Many other systems not mentioned are relying on Oracle
- Notable cases of system adopting other types of RDBMS or No-SQL
 - iCMS recently moved to PostgreSQL
 - Prod Request Manager went to CouchDB

Oracle databases and applications

Online/Offline interplay - conditions

CERN P5

OMDS

Conditions

Online applications: DCS

- Conditions
 - Logging
- Configurations
 - Slow control parameters
- Schema based on PVSS
 - many tables, many relations
- One schema per system
 - detectors + various h/w
- Massive amount of data
 - keeping the history
 - need to save on change!
 - currently 4.6 TB (1.5 for the Tracker!)
- Requirements
 - relational consistency features
 - limited transactional activity
 - storage scalability
 - partitioning
 - disk size expanded at every warranty period

0

Online applications: DAQ

- Conditions/Configuration
 - Run Control
 - Java-based system
 - Simple schema with name-value pairs
 - Core DAQ
 - XDAQ software DB abstraction (XDATA)
 - Normalized schema mapping C++ structures
 - Large amount of data
 - 660 Gb Core
 - > 1Tb with various subsystems

Requirements

- Relational features
- Transactions

Condition Database

Condition data

- \circ $\,$ In the "offline" format
- consumed by HLT and offline workflows => critical for data taking and data processing
- described by very simple data model
- complexity of data structure hidden in the payload details

Access patterns

- Write once, never update, read many times
- Multi-source writing
- Payloads are immutable

• Use cases

- \circ Write from online processes
- Write from manual updates by the detector experts
- Read from thousands of jobs running at P5 and on the Grid
 - Caching provided by Frontier
- Size
 - \circ 227 Gb at the moment, mostly for the payloads

Condition Database

- Condition metadata
 - Identify/label the data set (TAG, GLOBAL TAG)
 - Define the time validity (IOV)
 - Operation/Data management
 - strategical data
 - Logging
 - Historical data
 - Design exploits RDBMS features
 - Data integrity (relations)
 - Transactions (concurrent writing, consistency)

8

Condition Database: future directions

- Going towards a multi-tier model
 - Adding a dedicated service for the database access
 - Clients become agnostic about the storage details
 - Simplifies/relaxes the requirements about Transactions
 - Allows smooth back-end technology evolution
 - A joint project with other experiments is active in this direction
 - See presentations by A.Formica and P.Laycock
- The Relational Storage could be enhanced with file-system solutions
 - Specific subset can be entirely exported in sqlite-files (data and metadata)
 - supports the use cases of data preservation
 - Payload data exported into files in CVMFS
 - providing easier and faster access

Computing applications I

• Tier0

- Depends on the 3 databases Orcon, Orcon ADG and Orcoff
- Communication with Storage Manager
 - orcon orcon ADG
 - Ensures the data transfer from P5 => critical!
 - Does not need to archive mainly strategic
 - Still quite large: 600 Gb!
- Bookkeeping
 - orcoff
 - Track the activity state: files, jobs and associated metadata
 - Drives the processing and data handling (software is stateless)
 - Highly transactional
 - Internal data mostly not persistent
 - Except Some monitoring data for studies: 14Gb

Computing applications II

• DBS

- Dataset Bookkeeping System
 - Catalogue by production and analysis operation
 - Runs and Lumi granularity
 - Growing continuously (currently 2 Tb)
 - Require to support a relevant load of user-defined queries
- PHEDEX
 - Data replication/ File transfer
 - Tracking the state of the files, driving the operation
 - Highly transactional
 - Currently 290 Gb

Outlook

- No big revolution planned...
 - Designs and implementations have been mostly targeted to RDBMS
 - Most of the schema are highly relational, with several levels of complexity
 - Transactions and consistency check play a key role to drive key applications
 - Expertise in this area is well established
 - ensure the reliability of the implementations
 - easy the development/deployment cycle of 'small ' application
 - The main systems are tightly bound to the Oracle choice
 - Good connection with the excellent IT/DB team
 - No other service (perceived) with production-level available at Cern
 - The availability of a support service is a key aspect
 - To help in the optimization and performance tuning
 - To maintain the backend infrastructure
 - To intervene in the emergencies
- Condition Database special case
 - The metadata handling fit very well in a RDBMS model
 - The Payload storage is "weakly" relational
 - Export of on-demand of payloads to file systems may improve the caching