

Future Archiver (librarian) for WinCC OA Control Systems

Piotr Golonka, Jakub Guzik, Rafal Kulaga CERN BE-ICS-SDS

In Openlab collaboration with ETM/Siemens

- WinCC OA archiver status quo
 - Deployments
 - Scale (example of BE/ICS applications)
 - Challenges
- NextGen archiver
 - Motivation
 - Architecture and technologies
 - Status

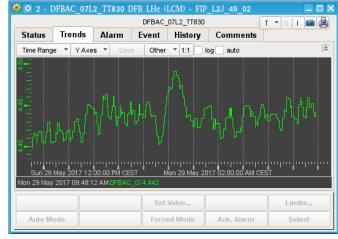
CERNOpenlab Archiver in a control system

Essential element of SCADA (Supervision) layer

Stores the history of values and alarms

(into a "database")

 Allows the operator to see the evolution of the process (historical trends)

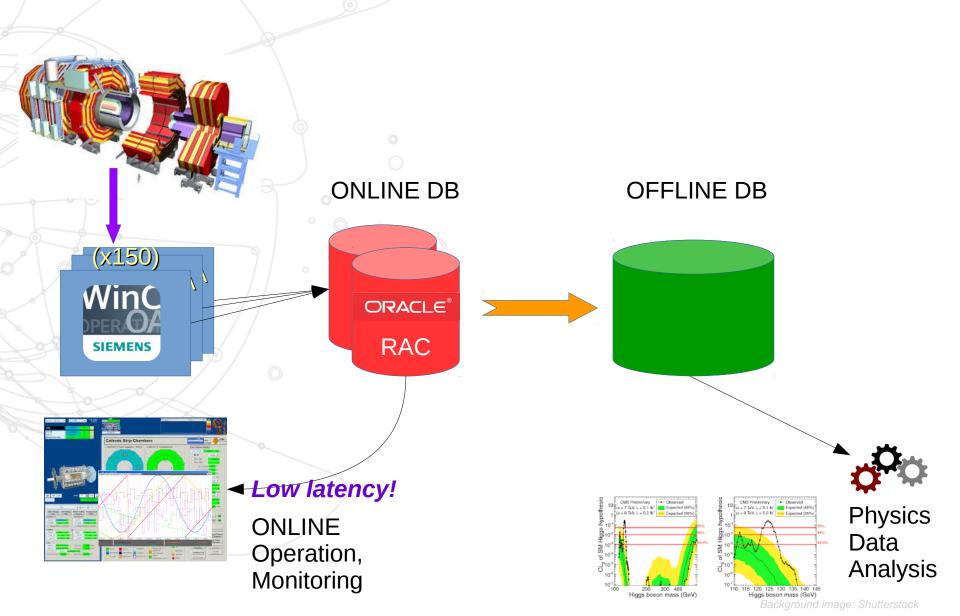

 Diagnostics and postmortem analysis "Event Screen"

Entry point for Data Analytics

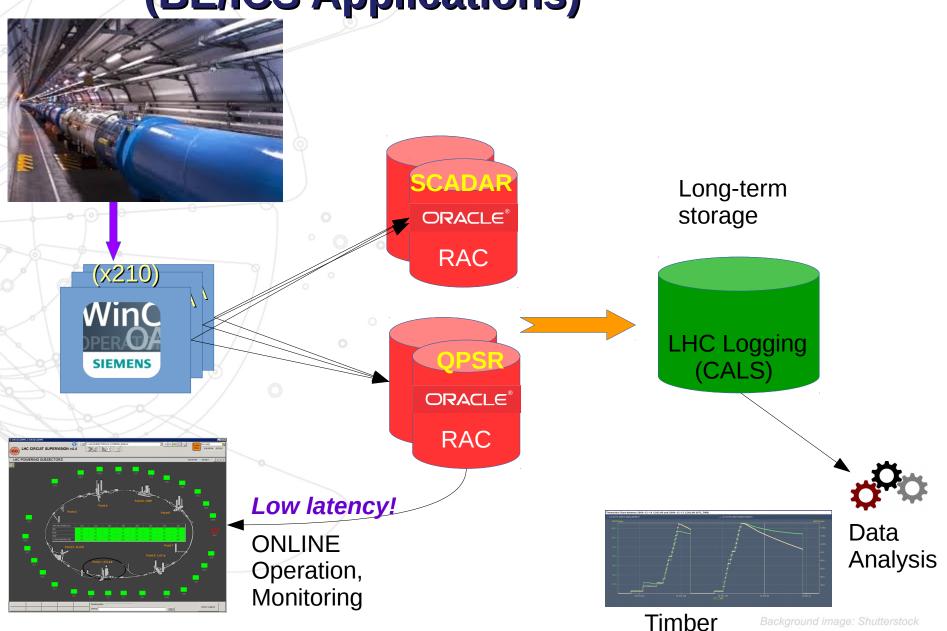
- For industrial processes
- but also for physics analyses ("conditions")

Others

- "Event replay"



Fundamentally: Time-series data



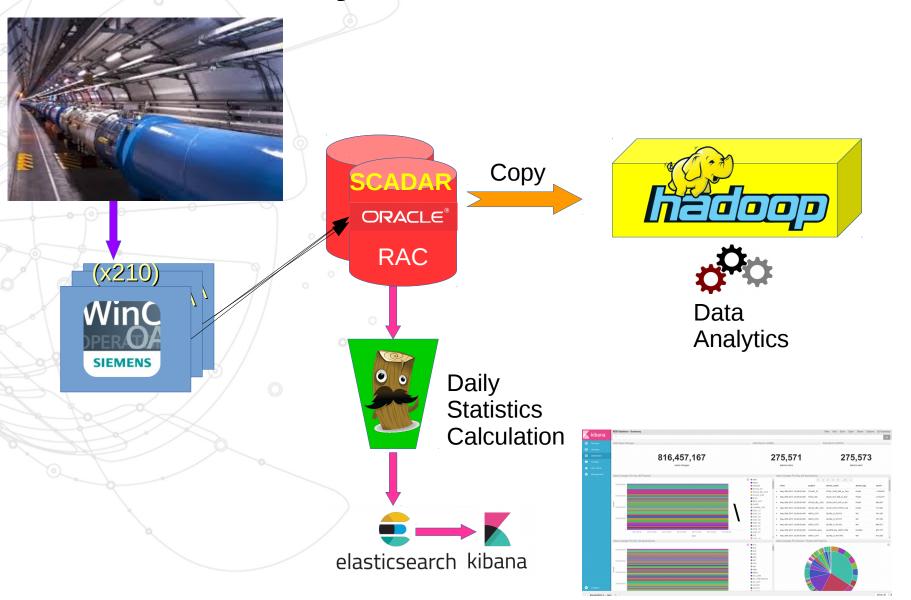
- WinCC OA: de facto standard for slow controls at CERN
 - Detector/Experiment Control Systems
 - the 4 LHC detectors
 - COMPASS, NA62, protoDUNE
 - Critical infrastructure of the LHC and injectors
 - QPS, Cryogenics, Vacuum, Powering
 - Technical infrastructure
 - C&V, Electrical network, ...
- All the system use the "Oracle RDB Archiver"
 - standard component of WinCC OA
 - Highly optimized over past 15 years
 - fruit of collaboration between CERN and ETM
 - 100 v/s → 100.000 v/s

Accelerators and tech. infrastructure (BE/ICS Applications)

CERNOpeniab Scale challenge (BE/ICS Applications)

LHC Quench Protection System

- 48 WinCC OA systems
- 150k signals, 400M rows/hour insert rate
- Dedicated Oracle instance: QPSR
- Complete data set transmitted to ACCLOG
- Dedicated optimizations in WinCC OA:
 for Run II of the LHC!


CERNOpeniab Scale challenge (BE/ICS Applications)

"Everyone else"

- 170 other WinCC OA systems, different clients
- 1 DB schema per system, some correlated
- 2.5 million signals, 34 million rows/hour insert rate
- Share the same common online DB: SCADAR
- Major parts of data transmitted to ACCLOG
- Online access with minimal latency for operators
 - Trends, event screens, event replay
- Statistics
 - how many changes per signal during last 24 hours?

CERNOpenlab Data analytics at the moment

CERNOpeniab Challenging use cases of Oracle Archiver

Three main use cases are in conflict:

- "Trend Plot": history of one (or few) signals over a possibly long period of time
 - Access through PK on IOT table, time-based partitioning
- "Event Screen": history of all value changes/alarms over relatively short period of time
 - Scan over a partition
- "Event Replay": massive data retrieval for all signals over a period of time of unknown bounds
 - "give me the last value before the t_{start}, and then all following values"
 - A killer for current Oracle setup
 - Seems significantly better executed on the Hadoop data copy

CERNopenlab Why "Future Archiver"?

ETMs motivation

- Alternative(<u>s</u>) to very expensive Oracle
- Easy to deploy and manage
- Easy to integrate new technology
- Lookout to NOSQL and data analytics
- Opportunity for code cleanup

CERNs motivation

- IT drive to alternative(s) to Oracle
- We face Big Data (3V)
 - Unknown limits really!
- Enable data analytics
- NXCALS
- New features
 - Parallel archiving, proper treatment of meta-data history, ...
 - Ready to integrate new technologies

CERN Openlab Future Archiver for WinCC OA

- Successor of Oracle RDB Archiver
 - High-performance
 - Cost-effective
 - Robustness
- Open architecture (plugins)
- SQL and NOSQL
- New architecture compatible with evolution of WinCC OA

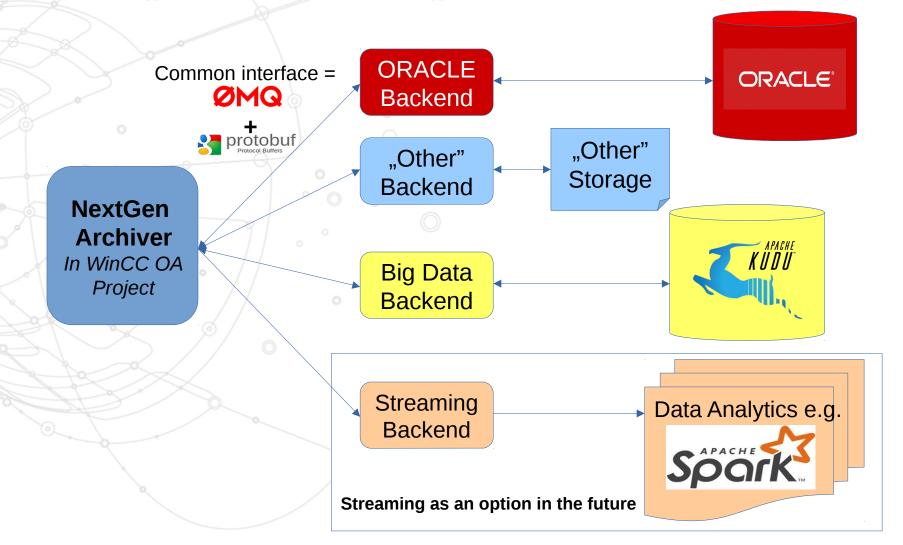
Siemens/ETM and Intel/Cloudera

At CERN:

- Piotr Golonka (technical supervision)
- Jakub Guzik (developer of the core archiver part)
- Rafal Kulaga ("BigData" prototype backend with Apache Kudu)
- IT/DB coleagues (Luca, Prasanth, Zbyszek)

> At Siemens/ETM:

- Development of the core archiver part
- Evaluation of DB technologies
- Oracle-compatible backend
- MongoDB backend
- Project ongoing since 1 year now with first prototypes becoming available


At Intel/Cloudera: (kickoff stage)

- Expertise for Kudu technology
 - Low latency data access
 - Quality of service and resource allocation

"Frontend" and "Backend"

14

"Generic data fan-out" for WinCC OA

- Streaming data analytics
- Data bridge for the ALICE O2
 - 100.000 conditions parameters acquired asynchronously (on change)
 - Most recent values need to be interleaved into the online data frames every 50 ms
 - This yields 2 mln v/s to be streamed out (!)
 - "NextGen Archiver" could provide this data to a custom ALICE-developed backend
 - Open architecture (!)
 - In parallel to "standard" archiving

Research & Development project

- First functional prototype of complete architecture
- Oracle, MongoDB and Kudu backend prototypes being implemented and tested
- Baseline performance and functional tests ongoing
- Likely to become available in a future version of WinCC OA
- Use cases and requirements of the Experiments to be formulated, cross-checked and covered
- Further synergies with NXCALS to be explored
- No plans for deployment before the end of LS2