


A Conditions Data Management System for 
HEP Experiments

2

Paul Laycock, on behalf of 
the HSF Conditions DB WG



Overview
• Conditions DB infrastructure today 

• Mainly from the ATLAS/CMS perspective 

• Convergence 
• Also for non-LHC experiments, in particular Belle II and NA62 

• Summary of design principles 

• Outlook

3



Conditions DB infrastructure today
• A lot of good experience with COOL 

• A versatile tool supporting many workflows 

• Nevertheless there are limitations 
• Caching is problematic 

• Some common solutions 
• Frontier solved the caching problem 

• Can we go further?

4



Conditions DB infrastructure today
• Schematic of today’s infrastructure, based on Cool on 

the client-side 

• Frontier caching layer required

5

Event processing

Relational 
DB

Software 
Framework

Coral
CoralFrontier

Cool

Tomcat

Frontier

JDBC

WEB

SQUID cache



Conditions DB infrastructure today
• Frontier model: Read-only, based on HTTP so allows 

squid-caching 

• JDBC used to generate generic queries 

• XML blobs sent back to the client, parsed by Cool-
Coral-CoralFrontierPlugin

6

Event processing

Relational 
DB

Software 
Framework

Coral
CoralFrontier

Cool

Tomcat

Frontier

JDBC

WEB

SQUID cache



Convergence
• REST communication 

between client and server 

• Ensures simple interfaces 

• Benefit from industry-
standard solutions 

• Loose coupling to allow 
component replacement

7



Convergence
• Data Model: relational DB 

• Single tables for payload, 
tags, IOVs 

• IOVs and payloads 
resolved independently 

• Cache-friendly design

8



Convergence
• File-system approach is appealing, e.g. NA62 is migrating 

from files-in-the-release to a file-system approach: 

• Staged approach, first to a file-system, then to database 
(running experiment) 

• Young experiments and e.g. HPC workflows, must keep 
cache-friendly feature 

• Git as another alternative (c.f. LHCb)?

9

/cvmfs/<experiment>/conditions/<gtag>/<system>/RunXYZ/payload



Summary of design principles
• High degree of separation between client and server, client-side is 

simple but takes care of (de)serialisation 

• Conditions accessed via a REST interface 

• Caching must be built in, good experience using web proxy 
technologies. Clients should be able to deal with multiple proxies 
and servers 

• Relational DB for data model is preferred 

• File-system approach also interesting and can be very useful 
(though not generally considered to be the master payload storage)

10



Outlook
• Conditions data infrastructure has been crucial to the 

successful running of the LHC experiments… 
• …and was also found to be a bottleneck 

• Based on good collaborative experience starting with 
CMS and ATLAS, move towards CDB infrastructure 
that follows some good (!) design principles 

• Caching built-in, and loosely coupled components to 
allow easier migration

11


