

NAG2 [y

A Conditions Data Management System for
HEP Experiments

Paul Laycock, on behalf of
the HSF Conditions DB WG

NAG2 [y
Overview

Conditions DB infrastructure today
Mainly from the ATLAS/CMS perspective

Convergence
Also for non-LHC experiments, in particular Belle Il and NAG2

Summary of design principles

Outlook

NAG2 ()
Conditions DB infrastructure today

A lot of good experience with COOL

A versatile tool supporting many workflows

Nevertheless there are limitations
Caching is problematic

Some common solutions
Frontier solved the caching problem

Can we go further?

NAG2 [y

Conditions DB infrastructure today

Schematic of today’s infrastructure, based on Cool on

the client-side

(Event processing

Software
Framework

Coral

| CoralFrontier |<—|

Tomcat

WEB

Frontier

JDBC

P

—
—

Relational
DB

| SQUID cache |

Frontier caching layer required

——

NAG2 [y
Conditions DB infrastructure today

Frontier model: Read-only, based on HTTP so allows
squid-caching

JDBC used to generate generic queries

XML blobs sent back to the client, parsed by Cool-
Coral-CoralFrontierPlugin

(Event processing

Software ’ N
Framework Tomcat A
Cool i Relational
WEB Frontier DB
Coral
JDBC

CoralFrontier
SQUID cache
~ e~

NAG2 [y

Convergence
- REST communication
between client and server || == | | S
HTTP(S)

Web Server
Interceptors: monitoring, security

- Ensures simple interfaces e

- Benefit from industry-
standard solutions

- Loose coupling to allow
component replacement

Convergence

Data Model: relational DB

Single tables for payload, o]

tags, IOVs T

since : open intervals only

insertion time: versioning

PAYLOAD L_

hash

|OVs and payloads v
resolved independently

Cache-friendly design

NAG2 [y

— GLOBAL TAG I

name (unique id)

snapshot - used for versioning
insertion time

validity
B

[1ac |
TAG |

€ GLOBAL TAG MAP

name (unique id)

global tag name

endCfvalidiy : close last iov

tag name

insertion time: versioning

object type: serialization

record: client software

time type (runflumi, time, ..}

NAG2 [y
Convergence

File-system approach is appealing, e.g. NAG2 is migrating
from files-in-the-release to a file-system approach:

/cvmis/<experiment>/conditions/<gtag>/<system>/RunXY/Z/payload

Staged approach, first to a file-system, then to database
(running experiment)

Young experiments and e.g. HPC workflows, must keep
cache-friendly feature

Git as another alternative (c.f. LHCb)?

NAG2 [y
Summary of design principles

High degree of separation between client and server, client-side is
simple but takes care of (de)serialisation

Conditions accessed via a REST interface

Caching must be built in, good experience using web proxy
technologies. Clients should be able to deal with multiple proxies
and servers

Relational DB for data model is preferred

File-system approach also interesting and can be very useful
(though not generally considered to be the master payload storage)

NAG2 ()
Outlook

Conditions data infrastructure has been crucial to the
successful running of the LHC experiments...

...and was also found to be a bottleneck

Based on good collaborative experience starting with
CMS and ATLAS, move towards CDB infrastructure
that follows some good (!) design principles

Caching built-in, and loosely coupled components to
allow easier migration

