H-COUP: A Tool for Precise Calculation of the Higgs Boson Couplings

Kei Yagyu

University of Florence

In collaboration with Shinya Kanemura (Toyama), Mariko Kikuchi (NTU), Kodai Sakurai (Toyama)

> 3rd RISE Meeting 7th March, University of Toyama

H-COUP

Kanemura, Kikuchi, Sakurai, KY

Fortran code to calculate the h couplings at 1-loop level in non-minimal Higgs sectors based on the (modified) on-shell renormalization scheme.

	hVV	htt	hbb	hтт	hhh	hyy	hΖγ	hgg
HSM	\checkmark	√	\checkmark	√	\checkmark	√	\checkmark	√
Туре-І	\checkmark	√						
Type-II	\checkmark	√	\checkmark	√	\checkmark	√	\checkmark	√
Туре-Х	\checkmark							
Туре-Ү	\checkmark	√	√	√	\checkmark	√	\checkmark	√
IDM	\checkmark	√						
НТМ	\checkmark				\checkmark	√	\checkmark	√
H-COUP Ver. 1.0 (will be public soon)								

Kanemura, Kikuchi, KY, NPB907 (2016) Kanemura, Kikuchi, KY, NPB917 (2017)

Kanemura, Okada, Senaha, Yuan, PRD70 (2004) Kanemura, Kikuchi, KY, PLB731 (2014) Kanemura, Kikuchi, KY, NPB896 (2015)

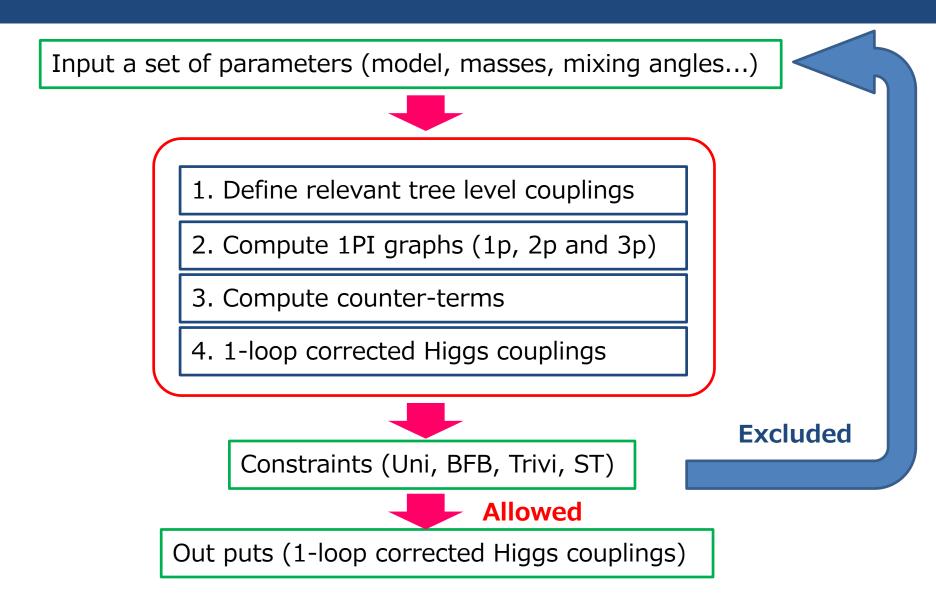
Kanemura, Kikuchi, Sakurai, PRD94 (2016)

Aoki, Kanemura, Kikuchi, KY, PLB714 (2012) Aoki, Kanemura, Kikuchi, KY, PRD87 (2022)

1. Define relevant tree level couplings

2. Compute 1PI graphs (1p, 2p and 3p)

3. Compute counter-terms


4. 1-loop corrected Higgs couplings

1. Define relevant tree level couplings

2. Compute 1PI graphs (1p, 2p and 3p)

3. Compute counter-terms

4. 1-loop corrected Higgs couplings

Higgs potential of 2HDM (CPC + Z_2)

\square Higgs potential with softly-broken Z₂ symmetry and CP-conservation

$$\begin{split} V &= m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - m_3^2 [\Phi_1^{\dagger} \Phi_2 + \text{h.c.}] \\ &+ \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{1}{2} \lambda_5 \Big[(\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \Big] \end{split}$$

■ 8 parameters

v (=246 GeV), m_h (=125 GeV), $m_H, m_A, m_{H^+}, \sin(\beta - \alpha), \tan\beta$, and M^2 $M^2 = m_3^2 / (\sin\beta\cos\beta)$

\square Mass parameters [sin(β -a) ~1]

$$m_h^2 \sim \lambda v^2$$
, $m_{\Phi}^2 \sim M^2 + \lambda' v^2$

$$\Phi = H^{\pm}$$
, A, H

Process of Renormalization

1. Count the # of parameters in the Lagrangian.

$$\mathcal{L}_B = \mathcal{L}_B(g_1^B, g_2^B, \dots)$$

2. Prepare the same # of counter terms by shifting the parameters.

$$\mathcal{L}_B(g_1^B, g_2^B, \dots) \to \mathcal{L}_R(g_1^R, g_2^R, \dots) + \delta \mathcal{L}(\delta g_1, \delta g_2, \dots)$$

3. Set the same # of ren. conditions to determine the CT's.

4. Calculate the renormalized quantities.

Renormalization in the Higgs sector

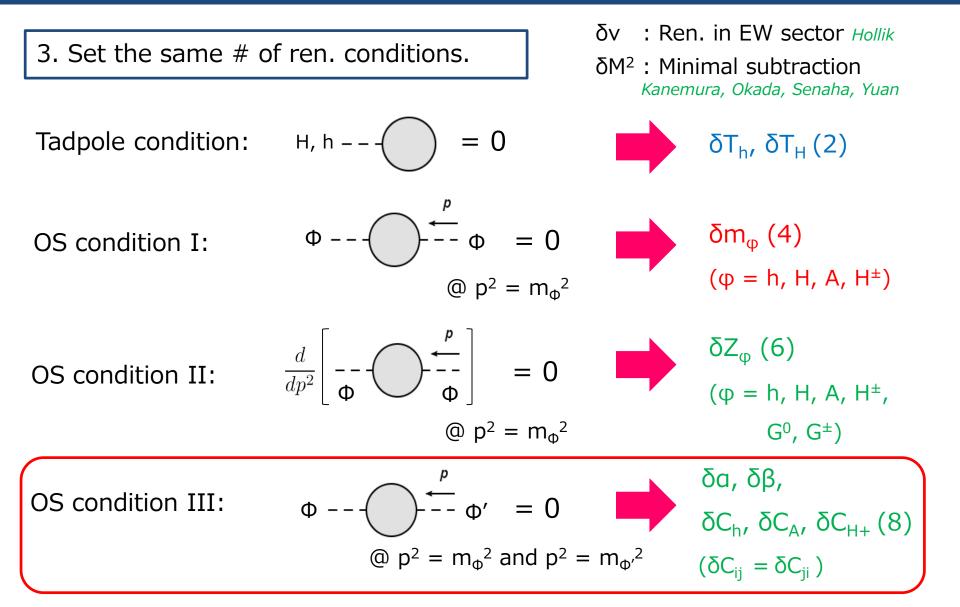
- 1. Count the # of parameters in the Lagrangian.
 - Parameters in the potential (8) : m_h , m_H , m_A , m_{H+} , a, β , v, M^2
 - Tadpoles (2) : T_b, T₁
 - Wave functions (12)

: $Z_{even}(2 \times 2), Z_{odd}(2 \times 2), Z_{+}(2 \times 2)$

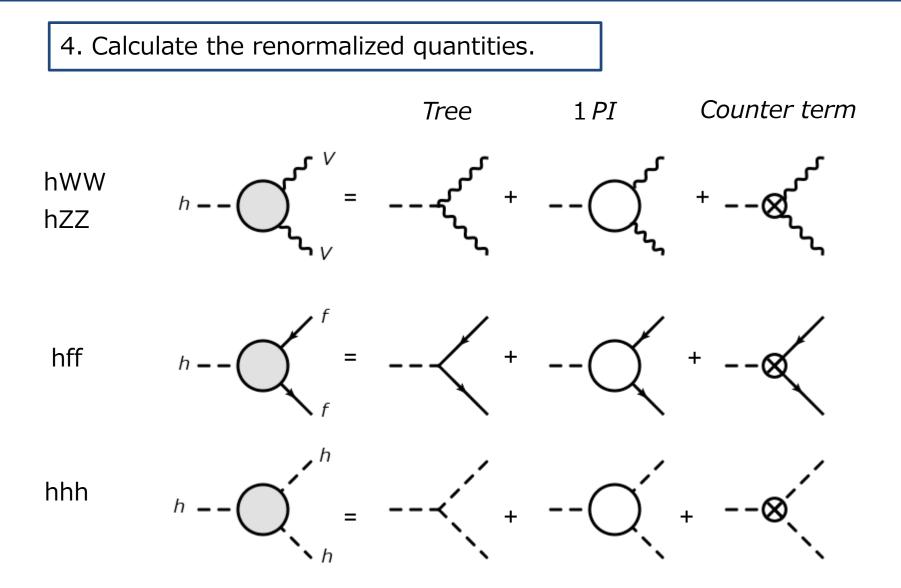
• Total (22)

2. Prepare the same # of counter terms by shifting the parameters.

- Parameter shift 2
- Tadpole shift


• Field shift :

$$m_{\phi} \rightarrow m_{\phi} + \delta m_{\phi}, a \rightarrow a + \delta a, \cdots$$


:
$$T_h \rightarrow 0 + \delta T_h, T_H \rightarrow 0 + \delta T_h$$

$$egin{pmatrix} m{H} \ h \end{pmatrix} o Z_{ ext{even}} egin{pmatrix} m{H} \ h \end{pmatrix} \qquad Z_{ ext{even}} = egin{pmatrix} 1+rac{1}{2}\delta Z_H & \delta C_{Hh} \ \delta C_{hH} & 1+rac{1}{2}\delta Z_h \end{pmatrix}$$

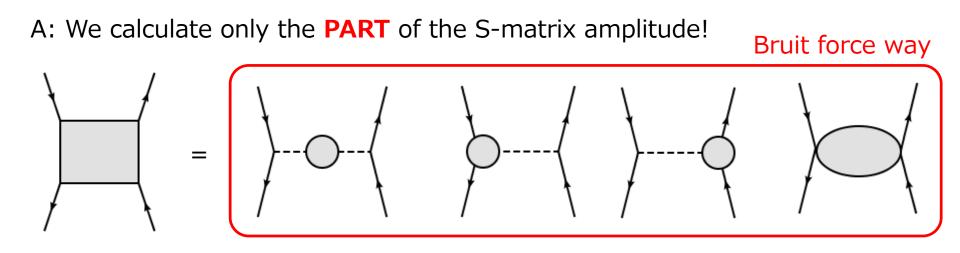
Renormalization in the Higgs sector

Renormalized Higgs Couplings

Gauge Dependence (Introduction)

a

N. K. Nielsen, Nucl. Phys. B 101, 173 (1975)


Nielsen Identity:
$$\partial_{\xi} \left[\int_{1}^{1} \cdots \int_{1}^{1} \int_{1}^{1} \left[q^2 - m_i^2 \right] \Lambda_i(q^2) + (q^2 - m_j^2) \Lambda_j(q^2)$$

On-shell condition: $\hat{\Pi}_{ij}(q^2 = m_i^2) = \hat{\Pi}_{ij}(q^2 = m_j^2) = 0$

Г

Gauge dependence reminds in renormalized mixing angles, e.g., δa , $\delta \beta$.

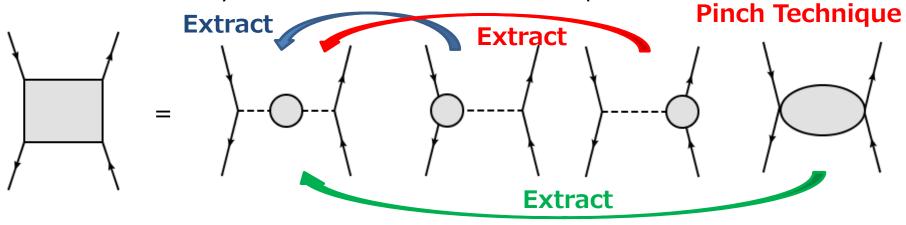
Q: Why does it happen?

Gauge Dependence (Introduction)

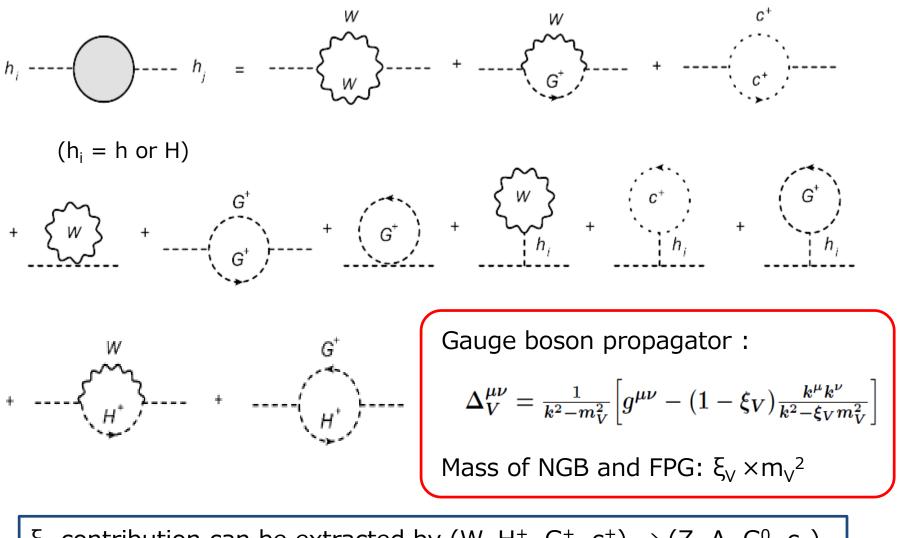
α

N. K. Nielsen, Nucl. Phys. B 101, 173 (1975)

Nielsen Identity:
$$\partial_{\xi} \left[\int_{1}^{1} \cdots \int_{1}^{1} \int_{1}^{1} \left[q^2 - m_i^2 \right] \Lambda_i(q^2) + (q^2 - m_j^2) \Lambda_j(q^2)$$


On-shell condition: $\hat{\Pi}_{ij}(q^2 = m_i^2) = \hat{\Pi}_{ij}(q^2 = m_j^2) = 0$

Г


Gauge dependence reminds in renormalized mixing angles, e.g., δa , $\delta \beta$.

Q: Why does it happen?

A: We calculate only the **PART** of the S-matrix amplitude!

Gauge Dep. in CP-even Sector in R_{ξ} Gauge

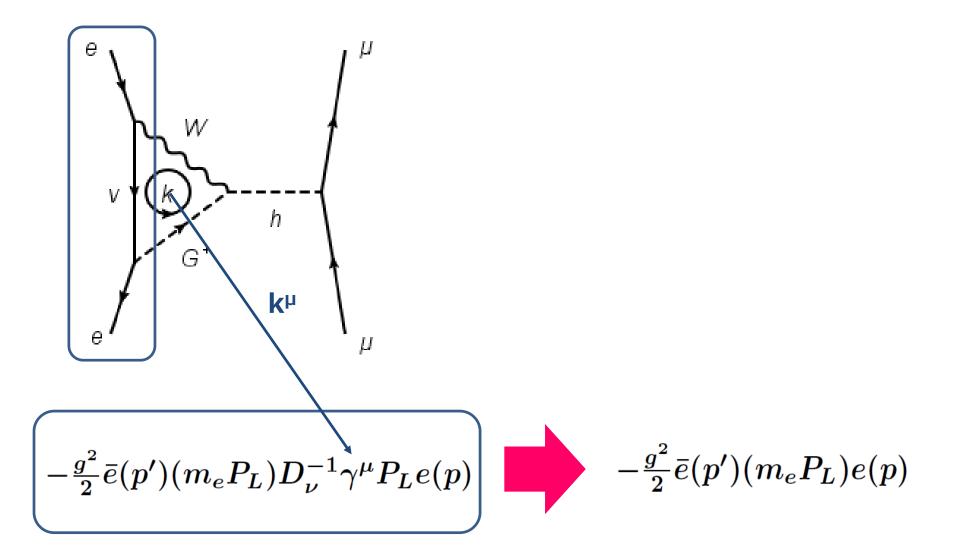
 ξ_Z contribution can be extracted by (W, H[±], G[±], c[±]) \rightarrow (Z, A, G⁰, c_Z)

Gauge Dep. in CP-even Sector in R_{ξ} Gauge

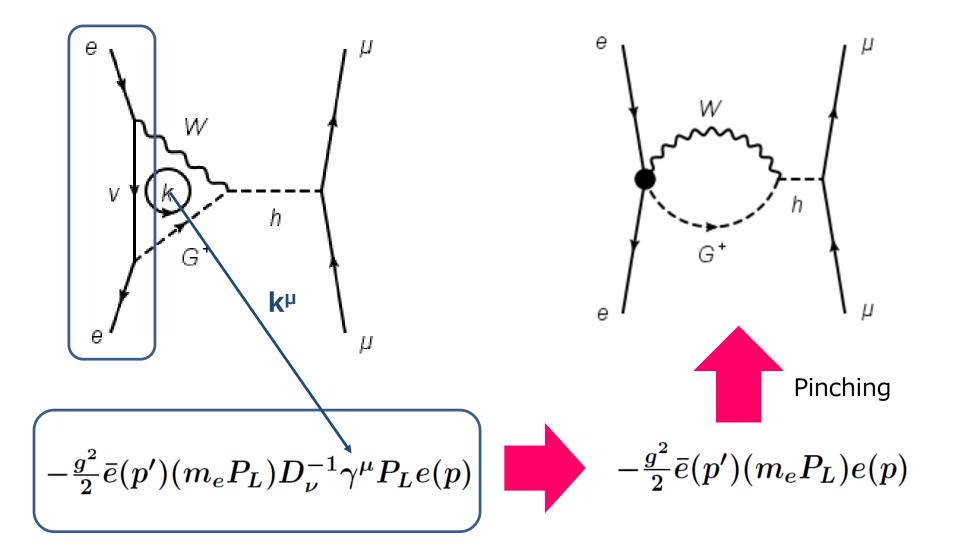
Gauge dependent part of the H-h mixing:

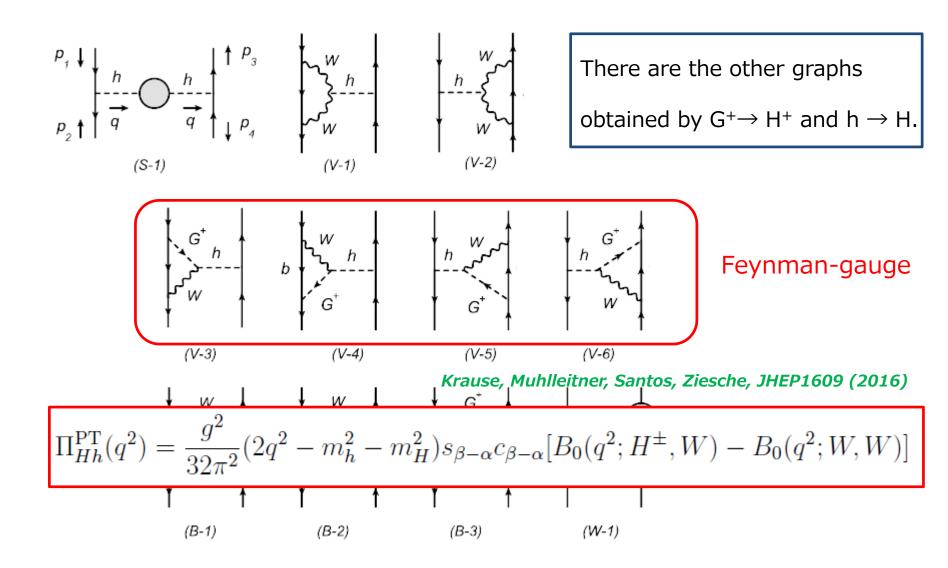
Yamada, PRD64, 0103064 Espinosa, Yamada, PRD67, 036003

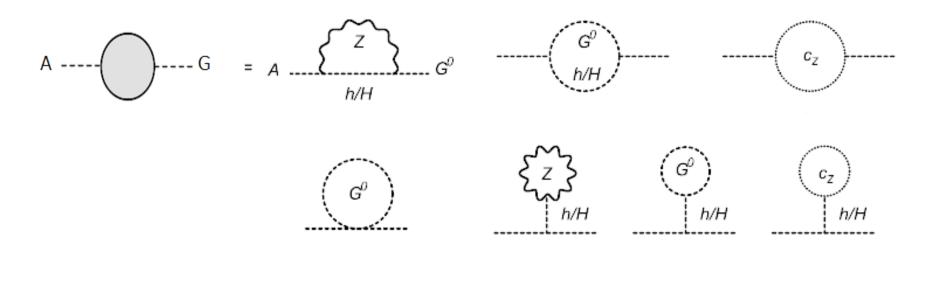
$$\begin{split} \Delta_{\xi} \Pi_{Hh}(p^2) &\equiv \Pi_{Hh}(p^2) - \Pi_{Hh}(p^2) \Big|_{\xi=1} \\ &= \frac{g^2}{64\pi^2} s_{\beta-\alpha} c_{\beta-\alpha} (1-\xi_W) \\ &\times [g_{Hh}(p^2,0) C_0(p^2;W,G^{\pm}) - 2g_{Hh}(p^2,m_{H^{\pm}}^2) C_0(p^2;W,G^{\pm},H^{\pm})] \\ C_0(p^2;A,B) &\equiv \frac{1}{m_A^2 - m_B^2} [B_0(p^2;A,A) - B_0(p^2;B,B)], \\ C_0(p^2;A,B,C) &\equiv \frac{1}{m_A^2 - m_B^2} [B_0(p^2;A,C) - B_0(p^2;B,C)]. \end{split}$$


Nielsen identity is satisfied!

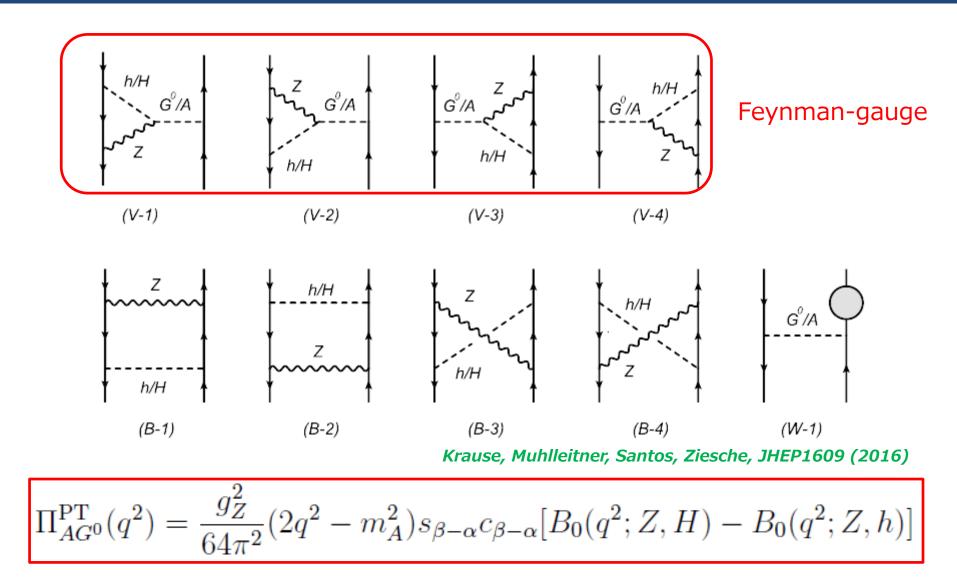
Essence of Pinch Technique




Essence of Pinch Technique


Essence of Pinch Technique

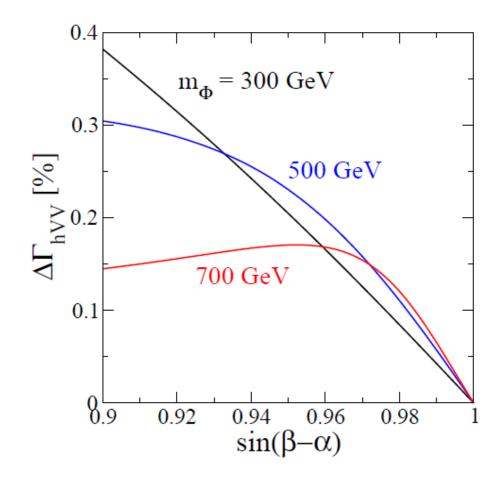
Pinch technique for the CP-even sector


Gauge Dep. in A-G mixing in R_{ξ} Gauge

$$\begin{split} \Delta_{\xi} \Pi_{AG^{0}}(p^{2}) &= -\frac{g_{Z}^{2}}{64\pi^{2}} s_{\beta-\alpha} c_{\beta-\alpha}(1-\xi_{Z}) \\ \times [g_{AG^{0}}(p^{2},m_{h}^{2})C_{0}(p^{2};Z,G^{0},h) - g_{AG^{0}}(p^{2},m_{H}^{2})C_{0}(p^{2};Z,G^{0},H)] \end{split}$$

There is no $\xi_{\scriptscriptstyle W}$ dependence in the A-G mixing

Pinch technique for A-G mixing


Gauge invariant mixing angles

A ---
$$G^0 = 0$$

(a) $p^2 = m_A^2$ and $p^2 = 0$
 $\delta\beta$, δC_A

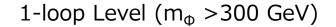
h ---
$$h = 0$$

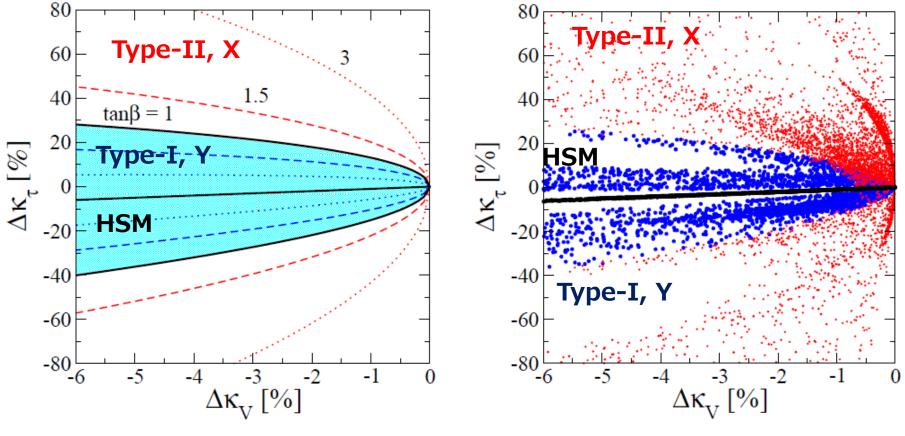
(a) $p^2 = m_h^2 = m_H^2$
 $\delta a , \delta C_h$

$$\begin{split} \delta\beta &= -\frac{1}{2m_A^2} \Big[\Pi_{AG}^{1\text{PI}}(m_A^2)_{\xi=1} + \Pi_{AG}^{1\text{PI}}(0)_{\xi=1} + \Pi_{AG}^{\text{PT}}(m_A^2) + \Pi_{AG}^{\text{PT}}(0) \Big] \\ \delta\alpha &= \frac{1}{2(m_H^2 - m_h^2)} \Big[\Pi_{Hh}^{1\text{PI}}(m_H^2)_{\xi=1} + \Pi_{Hh}^{1\text{PI}}(m_h^2)_{\xi=1} + \Pi_{Hh}^{\text{PT}}(m_H^2) + \Pi_{Hh}^{\text{PT}}(m_h^2) \Big] \end{split}$$

Issue of Gauge Dependence

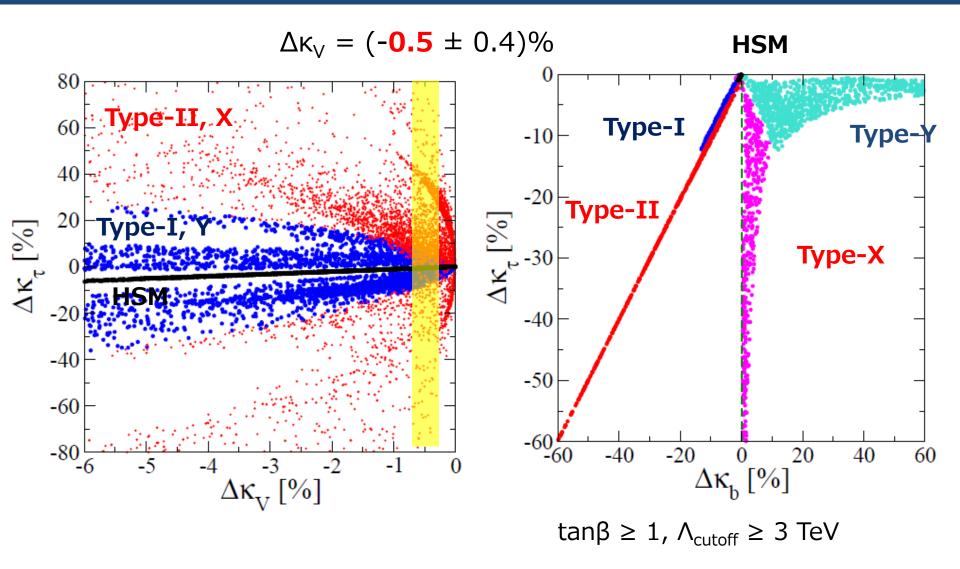
$$-rac{m_V^2}{m_A^2 v}c_{eta-lpha}[\Pi^{ ext{PT}}_{AG}(m_A^2)+\Pi^{ ext{PT}}_{AG}(0)]$$

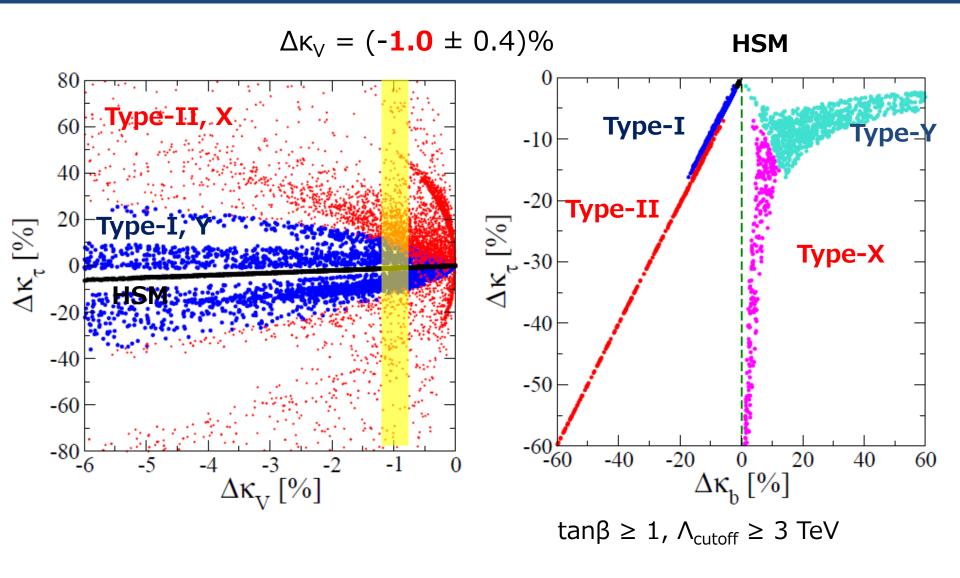

$$\Delta \hat{\Gamma}_{hVV} \equiv \frac{\left[\hat{\Gamma}_{hVV}^{\overline{\text{OS}}} - \hat{\Gamma}_{hVV}^{\overline{\text{OS}}}\right]}{\hat{\Gamma}_{hVV}^{\overline{\text{OS}}}}$$


Typically, the difference

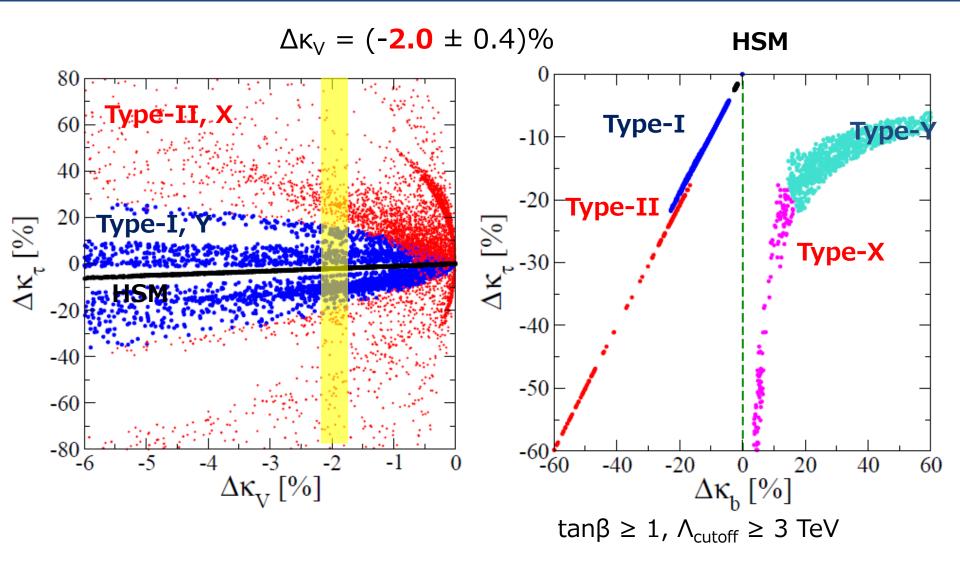
is **O(0.1)%** level.

$\Delta \kappa_{V}$ - $\Delta \kappa_{T}$ at 1-loop level

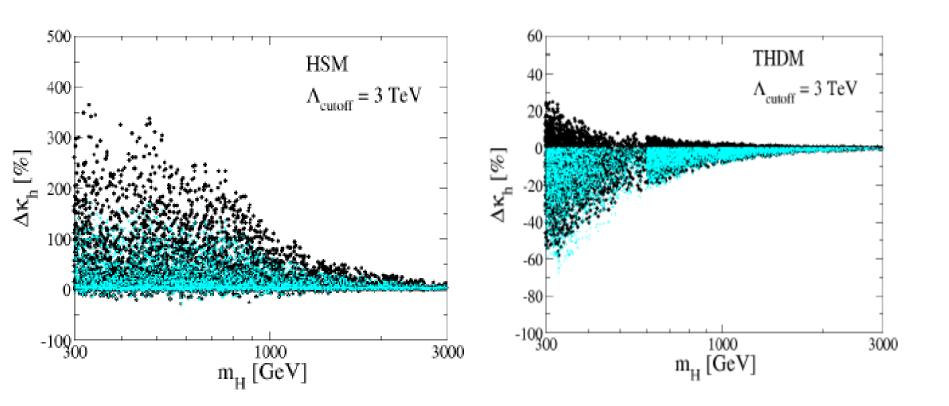

Tree Level



 $\tan\beta \ge 1$, $\Lambda_{cutoff} \ge 3$ TeV


$\Delta \kappa_{\rm b}$ - $\Delta \kappa_{\rm T}$ at 1-loop level

$\Delta \kappa_{\rm b}$ - $\Delta \kappa_{\rm T}$ at 1-loop level



$\Delta \kappa_{\rm b}$ - $\Delta \kappa_{\rm T}$ at 1-loop level

hhh coupling

Tree Level, 1-loop Level

Summary

- □ H-COUP is the tool to calculate the Higgs couplings at 1-loop level.
- □ Gauge dependence remains in the **mixing angles** in the OS scheme.
- □ Gauge dependence can be removed by using the **pinch-technique**.

□ Numerical impact of the gauge dependence is negligibly small ~ O(0.1)%

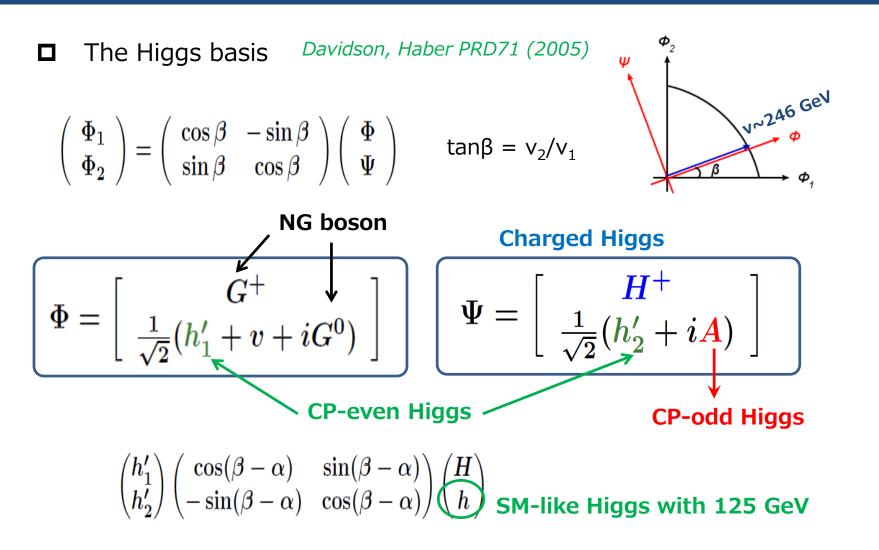
Using H-COUP, we can do the fingerprinting of the Higgs sector in a quite precise way.

Current and Future Measurements

$\kappa_{\rm X} = g_{\rm hXX}({\rm Exp})/g_{\rm hXX}({\rm SM})$

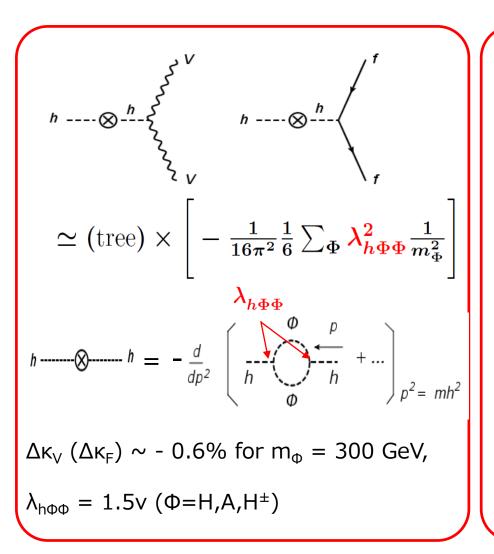
Present (LHC Run-I: ATLAS + CMS)

arXiv: 1606.02266 [hep-ex]


arXiv: 2210.8361 [hep-ex]

Future

		1	r ,				
	KZ	-0.98		Facility	LHC	HL-LHC	ILC500
~10%		$[-1.08, -0.88] \cup$ [0.94, 1.13]		\sqrt{s} (GeV)	14,000	14,000	250/500
	ĸw	0.87		$\int \mathcal{L} dt \ (\text{fb}^{-1})$	$300/\mathrm{expt}$	$3000/\mathrm{expt}$	250 + 500
		[0.78, 1.00]		κ_{γ}	5-7%	2-5%	8.3%
				κ_g	6-8%	3-5%	2.0%
~20%	K _t	$1.40^{+0.24}_{-0.21}$		κ_W	4 - 6%	2 - 5%	0.39%
~15%	$ \kappa_{\tau} $	$0.84^{+0.15}_{-0.11}$		κ_Z	4-6%	2-4%	0.49%
~20%	$ \kappa_b $	$0.49^{+0.27}_{-0.15}$		κ_{ℓ}	6 - 8%	2 - 5%	1.9%
~10%	$ \kappa_g $	$0.78^{+0.13}_{-0.10}$		$\kappa_d = \kappa_b$	10-13%	4-7%	0.93%
	$ \kappa_{\gamma} $	$0.87^{+0.14}_{-0.09}$		$\kappa_u = \kappa_t$	14-15%	7-10%	2.5%


To compare future precise measurements, precise calculations are necessary!

Ex. 1 2HDM

Important diagrams

 $\kappa_{\rm X} = g_{\rm hXX}({\rm MHM})/g_{\rm hXX}({\rm SM}), \quad \Delta\kappa_{\rm X} = \kappa_{\rm X} - 1$

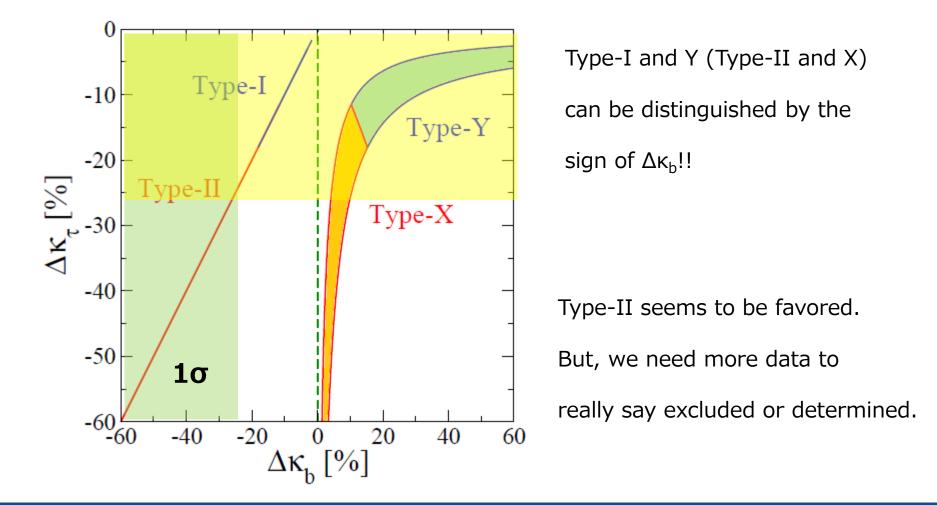
 $\lambda_{h\Phi\Phi} = 1.5 v (\Phi=H,A,H^{\pm})$

Ex. 1 2HDM with NFC

Kinetic term

$$\mathcal{L}_{kin} = |D_{\mu}\Phi_1|^2 + |D_{\mu}\Phi_2|^2 = |D_{\mu}\Phi|^2 + |D_{\mu}\Psi|^2$$

□ Yukawa couplings


$$\mathcal{L}_Y = \bar{Q}_L Y_d \Phi_d d_R + \cdots$$
$$= \frac{\sqrt{2}}{v} \bar{Q}_L M_d (\Phi + \xi_d \Psi) d_R + \cdots$$

	ξ _u	ξ _d	ξ _e
Туре І	cotβ	cotβ	cotβ
Type II	cotβ	-tanβ	-tanβ
Туре Х	cotβ	cotβ	-tanβ
Туре Ү	cotβ	-tanβ	cotβ

$$h - - \begin{cases} V \\ V \end{cases} = (SM) \times \frac{\sin(\beta - \alpha)}{1} \qquad h - - - \begin{cases} f \\ f \end{cases} = (SM) \times \frac{1}{f} \qquad \frac{\sin(\beta - \alpha)}{f} + \xi_f \cos(\beta - \alpha) \end{cases}$$

Coupling deviations at the tree level

 $\Delta \kappa_{V} = (-1 \pm 0.4)\%$, tan $\beta \geq 1$

Kei Yagyu (U. of Florence) Higgs boson couplings in the non-minimal Higgs sectors

Buck up

Enomoto and Watanabe, JHEP 1605, 002 (2016)

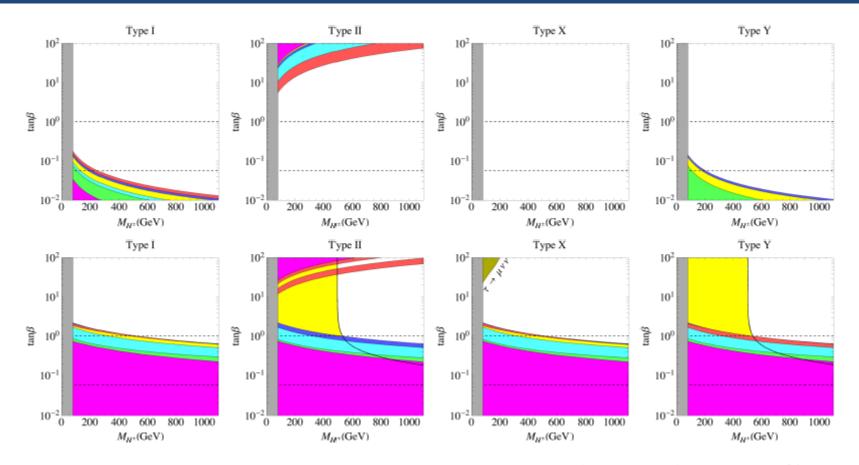
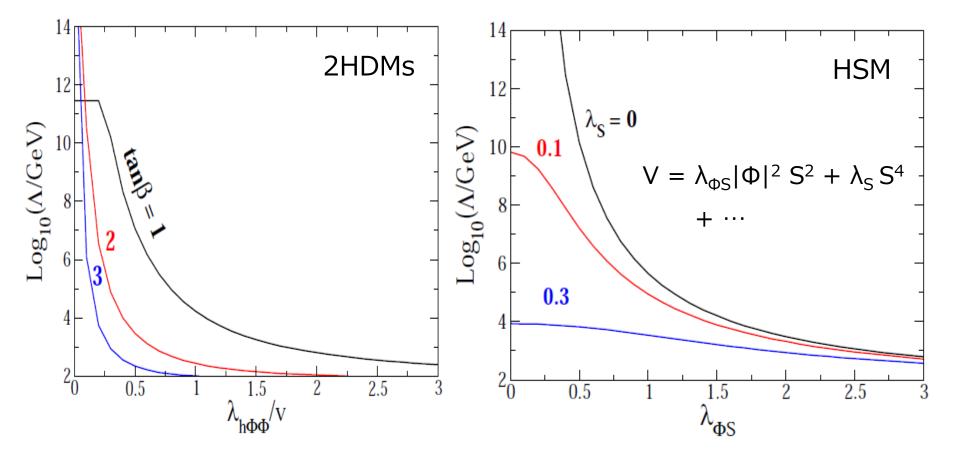



Figure 3. Excluded regions in the Z_2 symmetric models on the $(m_{H^+}, \tan\beta)$ plane at 95% CL individually from the tree level processes $B \to \tau\nu$ (red), $D \to \mu\nu$ (green), $D_s \to \tau\nu$ (blue), $D_s \to \mu\nu$ (yellow), $K \to \mu\nu/\pi \to \mu\nu$ (cyan), $\tau \to K\nu/\tau \to \pi\nu$ (magenta) in the upper panels, and the loop induced processes $B_s^0 \to \mu^+\mu^-$ (red), $B_d^0 \to \mu^+\mu^-$ (magenta), $\bar{B} \to X_s\gamma$ (yellow), ΔM_s (blue), ΔM_d (cyan), $|\epsilon_K|$ (green) in the lower panels. The black line contour in the type II and Y is the

Upper limit on $\lambda_{h\Phi\Phi}$ from triviality

Higgs potential of HSM

□ The most general potential

$$\begin{split} V(\Phi,S) = & m_{\Phi}^2 |\Phi|^2 + \lambda |\Phi|^4 + \mu_{\Phi S} |\Phi|^2 S + \lambda_{\Phi S} |\Phi|^2 S^2 \\ &+ t_S S + m_S^2 S^2 + \mu_S S^3 + \lambda_S S^4 \end{split}$$

D 7 parameters

v (=246 GeV), m_h (=125 GeV), m_H , sin(a), $~\lambda_S,~\lambda_{\Phi S},$ and μ_S

□ Scalar Masses

$$V_{\text{mass}} = \frac{1}{2} (s, \phi) \begin{pmatrix} M_{11}^2 & M_{12}^2 \\ M_{12}^2 & M_{22}^2 \end{pmatrix} \begin{pmatrix} s \\ \phi \end{pmatrix}$$

$$M_{11}^2 = 2m_S^2 + v^2 \lambda_{\Phi S}, \quad M_{22}^2 = 2\lambda v^2, \quad M_{12}^2 = v\mu_{\Phi S}.$$

Uncertainty for QCD corrections

Lepage,	Mackenzie	and Peskin,	1404.0319	[hep-ph]
---------	-----------	-------------	-----------	----------

$$\delta_A = \frac{1}{2} \frac{\Delta \Gamma(h \to A\overline{A})}{\Gamma(h \to A\overline{A})}.$$

	$\delta m_b(10)$	$\delta \alpha_s(m_Z)$	$\delta m_c(3)$	δ_b	δ_c	δ_g
current errors [10]	0.70	0.63	0.61	0.77	0.89	0.78
+ PT	0.69	0.40	0.34	0.74	0.57	0.49
+ LS	0.30	0.53	0.53	0.38	0.74	0.65
$+ LS^2$	0.14	0.35	0.53	0.20	0.65	0.43
+ PT + LS	0.28	0.17	0.21	0.30	0.27	0.21
$+ PT + LS^2$	0.12	0.14	0.20	0.13	0.24	0.17
$+ PT + LS^2 + ST$	0.09	0.08	0.20	0.10	0.22	0.09
ILC goal				0.30	0.70	0.60

Table 1: Projected fractional errors, in percent, for the $\overline{\text{MS}}$ QCD coupling and heavy quark masses under different scenarios for improved analyses. The improvements considered are: PT - addition of 4th order QCD perturbation theory, LS, LS² - reduction of the lattice spacing to 0.03 fm and to 0.023 fm; ST - increasing the statistics of the simulation by a factor of 100. The last three columns convert the errors in input parameters into errors on Higgs couplings, taking account of correlations. The bottom line gives the target values of these errors suggested by the projections for the ILC measurement accuracies.