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Two Steps

1. Use a scheme for the SM where the renormalization constants are
all gauge independent except for the wave function renormalization

constants.

2. If the renormalization constants for the remaining parameters are
gauge independent no new gauge dependences are introduced.

Input parameters: my, mpy, my, my+, 11, I3, o, tan 3, m%2, M‘?V, M%, e, my




For historical reasons we have started with the corrections to a charged
Higgs decaying to a neutral Higgs and a W boson.
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Quantities are redefined according to

pio = pi + 0p; for the parameters.

624, .
Gj0 =1/ Zp; 05 = |1+ 5 o} for the fields.

Renormalization condition for the tadpoles



Step 1 - moving constants around
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One-loop corrections to the Higgs-boson decays Hr*7~, HW*W ~, and HZZ are calculated up to Higgs-boson
masses of about 1 TeV. The corrections are of the order of 10% for 200 GeVSm, =1 TeV within the

renormalization scheme adopted. Renormalization problems are discussed in detail. A complete set of one-loop
counterterms in the "t Hooft gauge is presented.
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In our choice of the renormalization procedure,

: we make use of the fact that apart from the gauge-
: 2 ; _ dependent wave-function renormalizations, all
~iAmy° = —=i6pvydv; = .
l other counterterms may be chosen to be gauge in-

variant. Starting from the bare Lagrangian we
generate counterterms by the shifts

e o @ s iy (@)

~Myo
5t Difference - the condition for
- (A13) the tadpole is the same.
However, the parameter is v
and not T



The difference in what we call "the tadpole scheme” is the inclusion of the
tadpole graph in the calculation of the self-energies
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Easier do understand in a three-point function - the other difference relative
to the usual on-shell scheme is to include diagrams with tadpoles whenever
there is a vacuum expectation value in the vertex
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Self-energies: The self-energies appearing in the definitions of the wave function renor-
malization constants and counterterms are changed such that they contain addi-

tional tadpole contributions: E(p2) - Etad(pQ) :

Tadpole counterterms: The tadpole counterterms 67,4, (7,7 = 1,2) in the scalar sector
vanish: 6Ty,4, — 0.

Vertex corrections: The virtual vertex corrections change to contain additional tadpole
contributions if the resulting coupling exists within the 2HDM.



Results for the alternative tadpole scheme
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The virtue of the alternative tadpole scheme is to lead to
gauge independent amplitudes when the angular
countertems are set to zero.

Now we just need a gauge independent way to define the angles
and soft breaking counterterms.



Step 2 - gauge independent renormalization for
angles and soft breaking parameter

Process dependent - On-shell plus two particular processes to
renormalize the angles and one more (with a triple Higgs coupling) for the
soft breaking parameter

Process independent - On-shell plus conditions for the angles based on
the mixing matrix properties plus MS for the soft breaking parameter
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But the wave function renormalization constants are gauge
dependent. So what to do?

Input parameters: my, my, my, my+, 11, ITs, a, tan 3, m%Q, ]\»I%,, AI;%, e, My




Since the angle counterterms are defined with the help of wave function
renormalization constants if these are gauge independent the angle
counterterms will also be gauge independent.

There is an unambiguous way to remove the gauge dependent part of the self-
energies
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Alternative tadpole scheme, OS-pinched
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Process dependent renormalization
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Process dependent renormalization
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For the two angles the conclusion is that by using the alternative tadople
scheme the counterterms for both o« and B become gauge independent
making it much easier to control the overall gauge dependence

Moreover, by analysing the amplitudes it is clear that the 3 schemes
proposed lead to gauge independent amplitudes: process-dependent, p*-
pinched and O-pinched
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tan 3 = 1.46, a=—057, m?, = 2.076 - 10° GeV?

Set of parameters consistent with main theoretical and
experimental constraints.



Results
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Values blow up for very small tree-level width due to different
behaviour with cos(B-c). In the right plot it is clear that NLO
behaviour is good relative to the LO one.

For H -> ZZ that when the tree-level width is zero the NLO correction
is of the order of A -> ZZ.
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Results
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Using scans makes it
clear that the
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schemes are stable
at least for the
parameter points

allowed after Run 1.

Conclusion: among these schemes the OS tadpole-pinched scheme turns
out to be more stable when changing the renormalization scale than the
p~ scheme for our investigated scenarios. It is clear that the process
dependent scheme is the more unstable of them all.




Renormalization of the soft breaking term
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Renormalization of the soft breaking term

a) MSbar scheme counterterm for (m,,)? is chosen such that it cancels
all residual terms in the amplitude proportional to

A= % —vE + In(4m) .

The condition is written as
dmiy = 5"121)2(A)|m
b) We have also used a process dependent scheme using H-> AA

TLO(H — AA) = TNWO(H 5 A4)

The counterterm for (m;,)? is gauge independent irrespective of the
scheme and can be MS or process-dependent renormalized.



Results

_ m3, has been MS renormalized with un_= 2mn.
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Scatter plot for the relative NLO corrections to H-> hh for all
points passing main experimental and theoretical constraints, as a
function of the LO width.
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Results
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Scatter plot same data, but with following restrictions:

(i) The parameter sets are chosen such that the decay H — hh is kinematically possible,

!
Condition (i): My > 2My,

(i) The parameter sets are chosen such that the decay H — hh is kinematically possible.
Additionally, we require the heavy Higgs boson masses to maximally deviate by +5% from

M, with M? = m%,/(sgcg). We hence have

!
Condition (ii): Mg > 2M, and

m¢heavy ; A/I + 5% ) Wlth mtheavy € {mH,mA, mH:i:} .

In these scenarios the non-SM Higgs bosons are approximately mass degenerate and of the

order of the Zs breaking scale.
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Thank you
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Results
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Scatter plot for the relative NLO corrections to H->hh (same
data set) as a function of the LO width for three different
scales. Angles are pOS tadpole pinched renormalized and soft

breaking parameter is Msbar renormalized.
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Comparison between minimal subtraction and process
dependent for the soft breaking term.
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In this appendix we consider the problems re-
lated to the shift (2.4) of the Higgs field. The
quantities considered in this appendix are the bare
ones if not indicated otherwise. If the shift param- '
eter v has the correct value, the physical Higgs . ) _ @
~iAmy° = —=i6vydov; =

field satisfies the gauge-invariant condition i
-1

-it ’
<H> = 0-———-X + o————-@ =0 (Al

when the trivial tadpole b = o--~%) L ()]

t=vmy’ =v(\0* = 1) (A2) ~MHo
and the Higgs-boson mass = Lz (A13)
Muo
m,,,2=37\v2 —u2 (A3)

are given the ground-state values

my? =0 and m,® =2x\0? . (A4)

The proper value of v, however, is not known
a priori and it must be determined order by order
in the perturbation expansion. We denote by v, and
v the proper values of » to the nth and the (n + 1)th ). FLEISCHER AND F. JEGERLEHNER (1981).
order, respectivély. Thus we write

v =1y + 0v,. - (A5) 27



The gauge-dependences are similar in structure, no matter their origin. In the language
of Feynman diagrams, it can be shown that all gauge dependences of a certain process
have structures like e.g. self-energies. The pinch technique allows to isolate and extract
these gauge-dependences in a unique way. It is then possible to construct e.g. self-
energies and mass counterterms which are manifestly gauge-independent by themselves.

e the extension of the PT from one-loop to higher orders is neither unique nor trivial,

e the process-independence of the PT is not generally proven, but only shown for specific
examples,

e the PT is not generally applicable to all possible one-loop Green’s functions,

Choose a process where by collapsing the vertices you obtain the self energy you want to
calculate.

The process-independence of the PT is indeed not proven in general, which has to be accepted
as one of the major weak points when using the technique. While the gauge-independence
of the pinched self-energies is ensured by the BRST symmetry [93], a process-dependence of
the PT might result in different forms of the additional gauge-independent terms presented
in Egs. (4.159) — (4.161). However, the PT was applied to a variety of different toy processes,
so far yielding a universal result [109]. As a consequence, the process-independence of the
PT is postulated until falsified with a suitable counter-example.
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PT is postulated until falsified with a suitable counter-example.



