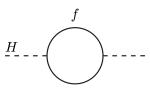
Naturalness and Dark Matter in the BLSSM

Simon J. D. King

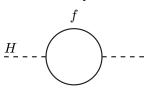
University of Southampton RISE - Toyama 2017

March 6, 2017


Outline

- Motivations and Explanation of BLSSM
- Solving Problems in the SM
- Results Fine-Tuning & Dark Matter
- 4 Conclusions

In collaboration with L. Delle Rose, S. Khalil, C. Marzo, S. Moretti, C.S. Ün [arXiv: 1702.01808]


Motivations

• Hierarchy Problem

Motivations

• Hierarchy Problem

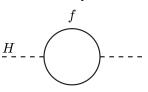

Dark Matter

Figure: Chandra X-ray Observatory

Motivations

• Hierarchy Problem

Dark Matter

Non-vanishing Neutrino Masses

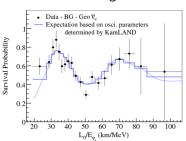
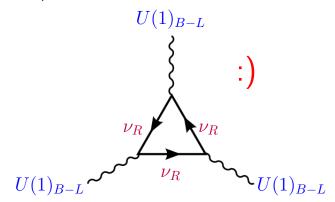


Figure: Chandra X-ray Observatory // KamLAND experiment, 0801.4589


Explaining the BLSSM - "B-L"

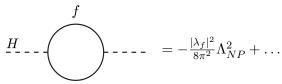
- SM has exact B-L conservation
- Promote accidental, global symmetry to local. SM gauge group now extended to: $G_{B-L} = SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$
- anomaly cancellation require SM singlet fermion (right-handed neutrinos)

Explaining the BLSSM - "B-L"

- SM has exact B-L conservation
- Promote accidental, global symmetry to local. SM gauge group now extended to: $G_{B-L} = SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$
- anomaly cancellation require SM singlet fermion (right-handed neutrinos)

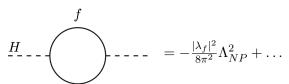
Explaining the BLSSM - "SSM"

Chiral Superfield		Spin 0 Spin 1/2		G_{B-L}	
Quarks/Squarks, (x3 generations)	\hat{Q} \hat{U} \hat{D}		$egin{array}{c} (u_L d_L) \ ar{u_R} \ ar{d_R} \end{array}$		
Leptons/Sleptons, (x3 generations)	\hat{L} \hat{E}	$(\tilde{\nu}_L \tilde{e}_L) \equiv \tilde{L}_L$ \tilde{e}_R^*	$(u_L e_L) \ e_R^-$		
Higgs/Higgsinos	\hat{H}_u \hat{H}_d	$(H_u^+ H_u^0) $ $(H_d^0 H_d^-)$	$ (\tilde{H}_u^+ \tilde{H}_u^0) \equiv \tilde{H}_u $ $ (\tilde{H}_d^0 \tilde{H}_d^-) \equiv \tilde{H}_d $	$(1, 2, \frac{1}{2}, 0)$ $(1, 2, -\frac{1}{2}, 0)$	
Vector Superfields		Spin 1/2	Spin 1	G_{B-L}	
Gluino, gluon		$ ilde{g}$	g	(8, 1 , 0,0)	
Wino/W bosons		$\tilde{W}^{\pm} \tilde{W}^{0}$	$W^{\pm}W^{0}$	(1 , 3 , 0, 0)	
Bino / B boson		$ ilde{B}^0$	B^0	(1 1 , 0, 0)	


Explaining the BLSSM - "SSM"

Content in addition to MSSM:

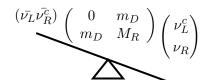
Chiral Superfield	Spin 0	Spin 1/2	G_{B-L}	
RH Sneutrinos / Neutrinos (x3) Bileptons/Bileptinos	$egin{array}{c} \hat{ u} \ \hat{\eta} \ \hat{ar{\eta}} \end{array}$	$egin{array}{c} ilde{ u}_R^* & \eta & & & & & & & & & & & & & & & & & $	$egin{array}{c} u_R \ ilde{\eta} \ ilde{ ilde{\eta}} \end{array}$	$ \begin{array}{c} (1, 1, 0, \frac{1}{2}) \\ (1, 1, 0, -1) \\ (1, 1, 0, 1) \end{array} $
Vector Superfields		Spin 1/2	Spin 1	G_{B-L}
BLino / B' boson	$ ilde{B}'^0$	B'^0	(1 1 , 0, 0)	

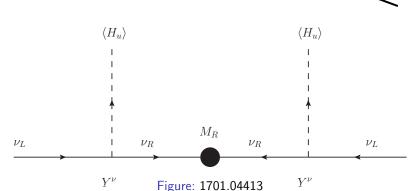

- Three extra RH neutrinos + SUSY partner (from anomaly cancellation condition)
- Two extra Higgs (for breaking gauged $U(1)_{B-L}$)
- ullet One B' + SUSY partners (from broken $U(1)_{B-L}$)

Hierarchy Problem

• Self energy correction to bare Higgs mass. Treating Λ_{NP} at GUT scale ($10^{16} {\rm GeV}$) means the bare Higgs mass is fine-tuned to $m_H^2/\Lambda_{UV}^2 \sim ~{\bf 1}~{\rm in}~{\bf 10^{30}}!$

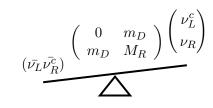
Hierarchy Problem

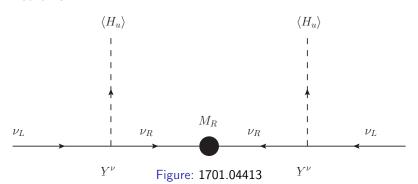



- Self energy correction to bare Higgs mass. Treating Λ_{NP} at GUT scale ($10^{16} {\rm GeV}$) means the bare Higgs mass is fine-tuned to $m_H^2/\Lambda_{UV}^2 \approx ~{f 1}~{
 m in}~{f 10^{30}}!$
- Supersymmetry for every fermion, there is a scalar partner providing the opposite sign contribution

Non-vanishing Neutrino Masses I

- ν_L have mass!
- Introducing RH neutrinos can explain mass for ν_L





8 / 20

Non-vanishing Neutrino Masses I

- ν_L have mass!
- Introducing RH neutrinos can explain mass for ν_L
- Large RH mass can explain small LH mass in a see-saw mechanism

Non-vanishing Neutrino Masses II

• ...However, this leads to B-L violation, as in $0\nu2\beta$ -decay

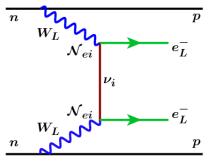
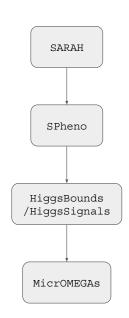


Figure: 1301.4784

• In BLSSM, gauge symmetry is broken with a Higgs mechanism

BLSSM Review

Superpotential:


$$W = \mu H_u H_d + Y_u^{ij} Q_i H_u u_j^c + Y_d^{ij} Q_i H_d d_j^c + Y_e^{ij} L_i H_d e_j^c$$

$$+ Y_{\nu}^{ij} L_i H_u N_i^c + Y_N^{ij} N_i^c N_j^c \eta_1 + \mu' \eta_1 \eta_2$$

- ullet Type-I see-saw mechanism, RH neutrinos have \lesssim TeV mass
- Natural R-parity: $R = (-1)^{3(B-L)+2S}$. If B-L broken by Higgs with even B-L charge, then Z_2 remains unbroken
- ullet M_{Z^\prime} fixed at 4 TeV, from LEP-II EWPOs and LHC di-lepton searches
- Complete universality at GUT scale, $g_{bl}=g_1=g_2=g_3,\ \tilde{g}=0.$ From RGE evolution, at EW scale, $\tilde{g}\simeq -0.1$ and $g_{bl}\simeq 0.5$

Numerical work

- Mathematica package SARAH makes a spectrum generator based on SPheno
- SPheno then calculates the full spectrum, for 60,000 data points, over a range of the GUT parameters $(m_0, m_{1/2}, A_0, \mu, B\mu, \mu', B\mu')$
- Current Higgs constraints are applied in HiggsBounds / HiggsSignals
- Finally, MicroOMEGAs finds the relic density.

Introduction to Fine-Tuning

We use the Ellis / Barbieri-Giudice definition of fine-tuning

$$\Delta = Max \left\{ \left| \frac{a_i}{M_Z^2} \frac{\partial M_Z^2(a_i, m_t)}{\partial a_i} \right| \right\}$$

- Definition applied for two scales:
 - ▶ GUT-scale parameters $(m_0, m_{1/2}, A_0, \mu, B\mu, \mu', B\mu')$
 - ▶ SUSY-scale parameters $(m_{H_u}, m_{H_d}, m_{Z'}, \mu, \Sigma_u, \Sigma_d)$, where $\partial \Delta V$

$$\Sigma_{u,d} = \frac{\partial \Delta V}{\partial v_{u,d}^2}$$

- Recent work¹ has shown that loop contributions to tadpole equations may be important to GUT fine-tuning
- ullet Both CMSSM and the BLSSM with universality have GUT-FT reduced by factor ~ 2

¹Ross, Schmidt-Hoberg, Staub, 1701.03480

GUT Scale Fine-Tuning

- Simply input GUT parameters into fine-tuning measure: $a_i = (m_0, m_{1/2}, A_0, \mu, B\mu, \mu', B\mu') \longrightarrow \Delta = Max \left\{ \left| \frac{a_i}{M_Z^2} \frac{\partial M_Z^2(a_i, m_t)}{\partial a_i} \right| \right\}$, tadpole loop effects absorbed into parameters
- Histogram: Counts for each parameter determining fine-tuning

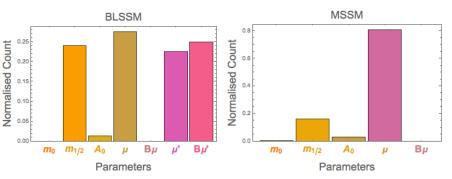


Figure: 1702.01808 - This work

SUSY Scale Fine-Tuning - CMSSM

 Fine-tuning measure may also be applied to MSSM SUSY-Scale parameters:

•
$$\frac{1}{2}M_Z^2 = \left(\frac{(m_{H_d}^2 + \Sigma_d) - (m_{H_u}^2 + \Sigma_u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2\right) \longrightarrow \Delta = \left|\frac{a_i}{M_Z^2} \frac{\partial M_Z^2(a_i, m_t)}{\partial a_i}\right|$$

•
$$\Delta_{\text{SUSY}} \equiv \text{Max}(C_i)/(M_Z^2/2),$$

•
$$C_{H_d} = \left| m_{H_d}^2 \frac{1}{(\tan^2 \beta - 1)} \right|,$$

•
$$C_{\Sigma_d} = \left| \Sigma_d \frac{1}{(\tan^2 \beta - 1)} \right|,$$

$$C_{\mu} = \left| \mu^2 \right|, \dots$$

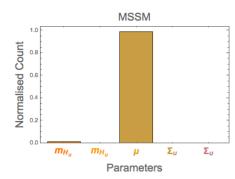


Figure: 1702.01808 - This work

SUSY Scale Fine-Tuning - BLSSM

 Fine-tuning measure may also be applied to BLSSM SUSY-Scale parameters:

•
$$\frac{1}{2}M_Z^2 = \frac{1}{X} \left(\frac{m_{H_d}^2 + \Sigma_d}{(\tan^2(\beta) - 1)} - \frac{(m_{H_u}^2 + \Sigma_u)\tan^2(\beta)}{(\tan^2(\beta) - 1)} + \frac{\tilde{g}M_{Z'}^2 Y}{4g_{BL}} - \mu^2 \right)$$

$$X = 1 + \frac{\tilde{g}^2}{(g_1^2 + g_2^2)} + \frac{\tilde{g}^3 Y}{2g_{BL}(g_1^2 + g_2^2)}$$

$$Y = \frac{\cos(2\beta')}{\cos(2\beta)}$$

• $\Delta_{\text{SUSY}} \equiv \text{Max}(C_i)/(M_Z^2/2),$

$$\bullet \ C_{Z'} = \left| M_{Z'}^2 \frac{\tilde{g}Y}{4g_{BL}X} \right|$$

•
$$C_{\Sigma_d} = \left| \Sigma_d \frac{1}{X(\tan^2 \beta - 1)} \right|,$$

$$C_{\mu} = \left| \frac{\mu^2}{X} \right|, \dots$$

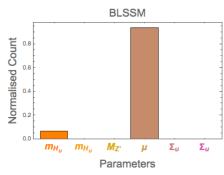


Figure: 1702.01808 - This work

Fine-Tuning Results GUT scale

 \bullet Fine-tuning plotted in m_0 , $m_{1/2}$ frame. Points are blue for FT < 500, orange 500 < FT < 1000, green 1000 < FT < 5000, red FT > 5000

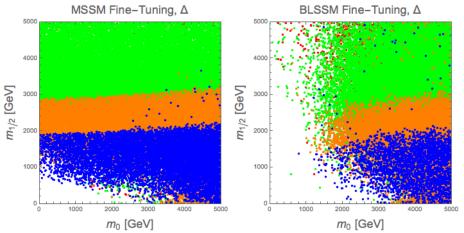


Figure: 1702.01808 - This work

Fine-Tuning Results SUSY scale

• Fine-tuning plotted in m_0 , $m_{1/2}$ frame. Points are blue for FT < 500, orange 500 < FT < 1000, green 1000 < FT < 5000, red FT > 5000

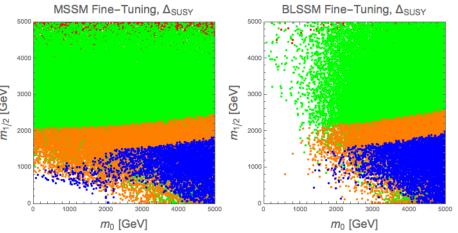


Figure: 1702.01808 - This work

Dark Matter

- In SUSY models, the lightest super-partner is *stable* from R-parity conservation.
- CMSSM only candidate Bino (\tilde{B}^0) . BLSSM also has Sneutrino $(\tilde{\nu}_R^*)$, Bileptino $(\tilde{\eta}, \tilde{\tilde{\eta}})$, BLino (\tilde{B}'^0)

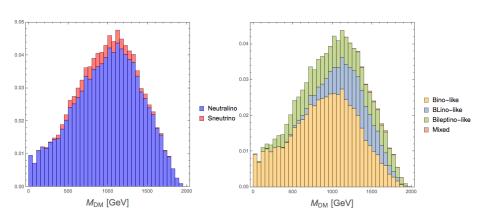
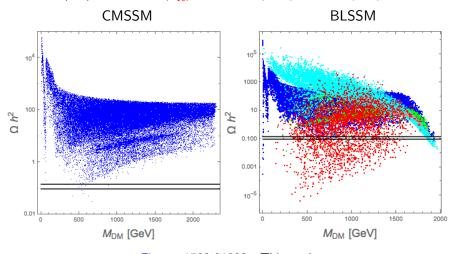
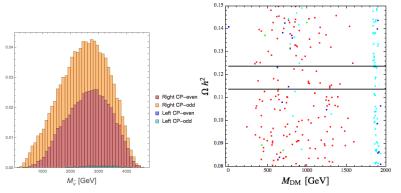


Figure: BLSSM DM candidates - 1702.01808 - This work

Dark Matter

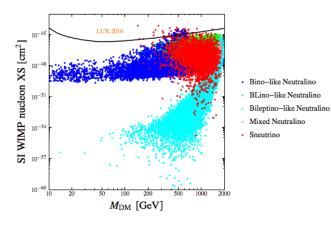
- CMSSM severely constrained by relic-density limits
- Bino (\tilde{B}^0) , Sneutrino $(\tilde{\nu}_R^*)$, Bileptino $(\tilde{\eta}, \tilde{\bar{\eta}})$, BLino (\tilde{B}'^0)




Figure: 1702.01808 - This work

Conclusions

- The BLSSM . . .
 - Solves the hierarchy problem
 - predicts light, non-vanishing left-handed neutrino masses
 - offers multiple dark matter candidates
- Fine-tuning in BLSSM is comparable to CMSSM
- ...But with much larger parameter space available


For more details, see: arXiv: 1702.01808

Back-up slides

- Bino-like Neutralino
 - BLino-like Neutralino
- Bileptino-like Neutralin
- Mixed Neutralino
- Sneutrino

Back-up slides

Scan range:

Parameter	range		
$\overline{m_0}$	[0, 5] TeV		
$m_{1/2}$	[0, 5] TeV		
$\tan(\beta)$	[0, 60]		
$\tan(\beta')$	[0, 2]		
A_0	[-15, 15] TeV		
$Y^{(1,1)}$	[0,1]		
$Y^{(3,3)}$	[0,1]		
$M_{Z'} =$	4.0TeV		