Southampton

U(1)' models at the LHC

Luigi Delle Rose

University of Southampton and Rutherford Appleton Laboratory

RISE meeting 2017

Based on E. Accomando, C. Corianò, LDR, J. Fiaschi, C. Marzo, S. Moretti JHEP 1607 (2016) 086, arXiv:1605.02910

Luigi Delle Rose, UoS and RAL

RISE meeting 2017

06-07 March

- 1. The minimal Z' model
- 2. LHC constraints
- 3. RG and high energy behaviour
- 4. LHC phenomenology

The minimal Z' model

- Z' naturally arises from many GUT scenarios such as SO(10), E₆, L-R, string-theory constructions, KK theories, etc.
- Interesting phenomenology potentially accessible at colliders:
 Z' usually accompanied by extra degrees of freedom (seesaw can be implemented)
- Possibility to explain baryogenesis through resonant leptogenesis
- SU(3)_C × SU(2)_L × U(1)_Y × U(1)'
- Fermion sector

SM-singlet right-handed neutrinos v_R required by anomaly cancellation

Scalar sector

SM-singlet scalar χ required by SSB of U(1)' provides Majorana masses for ν_R New states: Z' gauge boson, 3 heavy neutrinos, 1 real scalar

New parameters:

 $g'_1, \tilde{g}, M_{Z'}, \alpha, m_{H2}, m_{\nu_h}$

RISE meeting 2017

The minimal Z' model: a comment on the kinetic mixing

• The most general Lagrangian allowed by gauge invariance admits a *kinetic mixing* between the two abelian field strengths

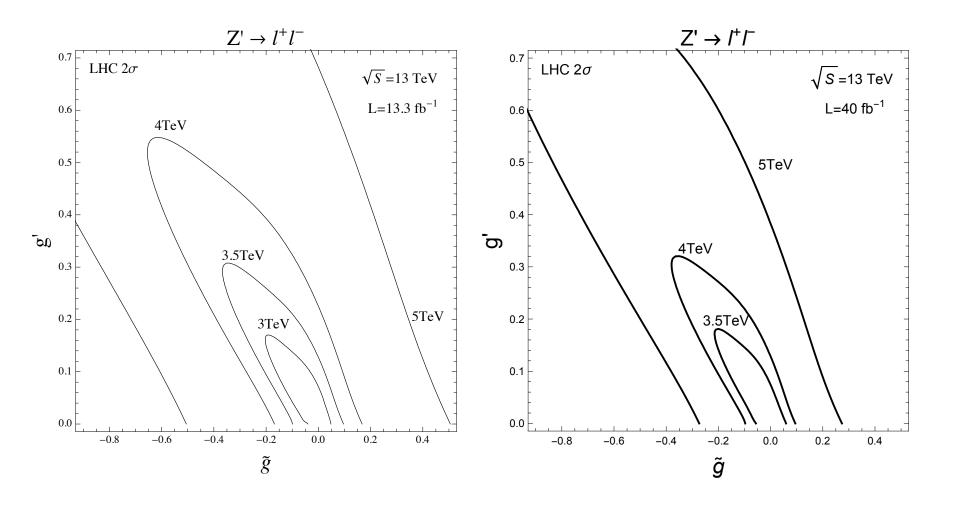
$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} - \frac{\kappa}{2} F^{\mu\nu} F'_{\mu\nu}$$

even if absent at tree-level it can be reintroduced by radiative corrections

• The kinetic Lagrangian can be recast into a diagonal form thus introducing a non-diagonal covariant derivative

$$\mathcal{D}_{\mu} = \partial_{\mu} + ig_1 Y B_{\mu} + i(\tilde{g} Y + g'_1 Y_{B-L}) B'_{\mu} + \dots$$

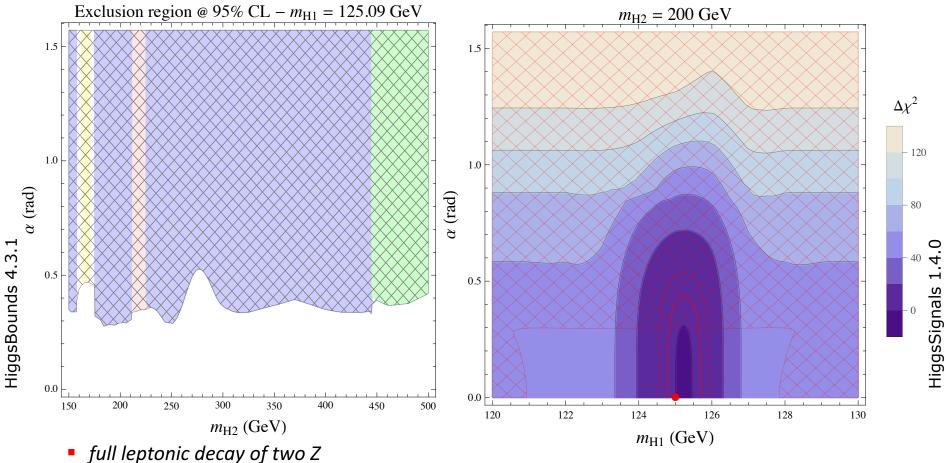
an additional abelian gauge factor can always be described by a linear combination of the hypercharge and of the B-L quantum number


- We can explore an entire class of minimal Abelian models through the ratio of the gauge couplings $\tilde{g}/{g'}_1$
- Typical benchmark models:

 $g'_1 = 0$: sequential SM $\tilde{g} = 0$: pure B-L

$$\tilde{g} = -2g'_{1}: U(1)_{R}$$

 $\tilde{g} = -4/5g'_{1}: U(1)_{X}$ from SO(10)


Constraints from LHC searches

2σ significance contour levels in the $\tilde{g} - {g'}_1$ space

Constraints from LHC searches

The extended scalar sector is strongly constrained by Higgs searches at the LHC

- full leptonic decay of two W
- full and semi leptonic decay of ZZ and WW
- combined search in γγ, ZZ, WW, ττ, bb

establish a direct connection between accessible EW scale spectra and a potential underlying GUT structure

along the RG evolution we require: *perturbativity of the couplings stability of the vacuum unification (work in progress)*

delineate the viable parameter space from both a *phenomenological perspective* and its *theoretical consistency*

ultimately direct experimental investigations towards key analyses enabling one to make an assessment of the high energy structure of the model

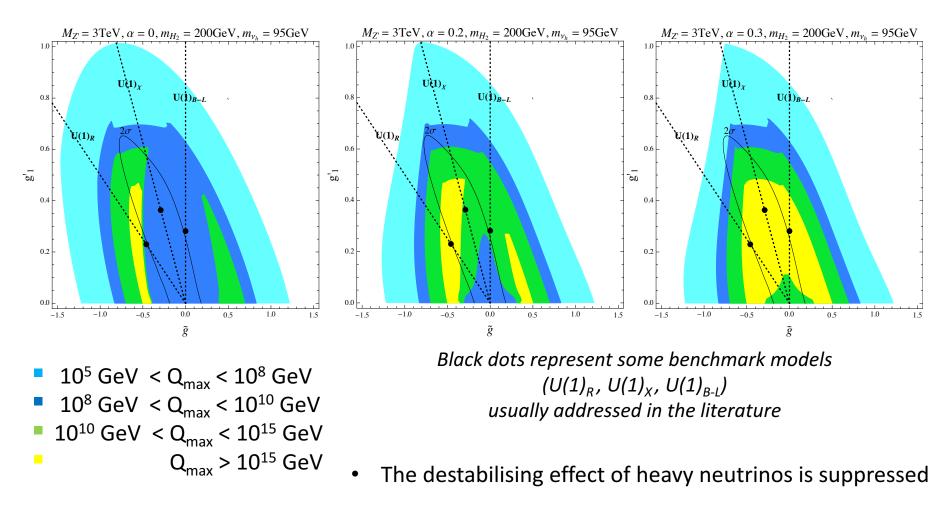
Renormalisation group evolution

Some technical details:

		β functions	matching conditions	
	LO	one loop	tree level	-
	NLO	two loop	one loop	
	NNLO	three loop	two loop	

> A complete NNLO analysis is only available for the SM

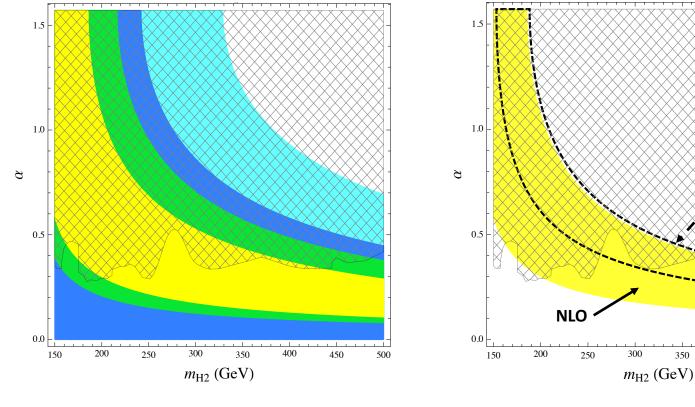
> NLO analysis can be implemented for a general QFT


- 2L β functions are known
- 1L matching conditions must be computed for each model

Matching conditions provide the initial value of the running couplings computed in the $\overline{\text{MS}}$ renormalisation scheme as a function of the physical on-shell parameters

$$\alpha_{\overline{MS}} = \alpha_{OS} + \delta \alpha_{OS} \Big|_{fin}$$

High energy behaviour


Perturbativity of the couplings and stability of the vacuum and in the $\tilde{g} - {g'}_1$ space

• Stability improves as α moves away from zero

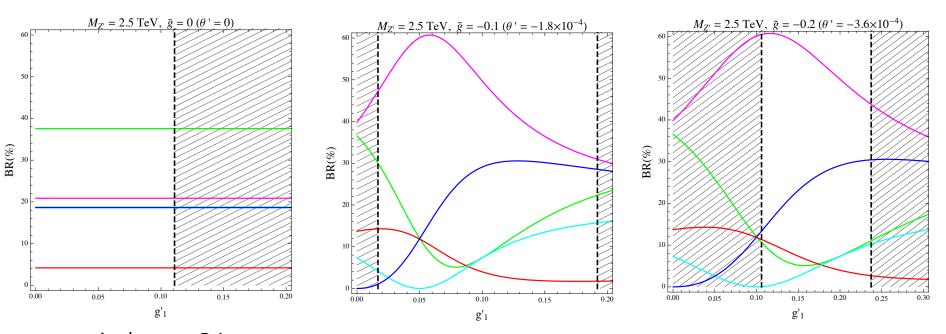
High energy behaviour

Perturbativity of the couplings and stability of the vacuum and in the $m_{H2} - \alpha$ space

- $10^{5} \text{ GeV} < \text{Q}_{\text{max}} < 10^{8} \text{ GeV}$
- $10^8 \text{ GeV} < \text{Q}_{\text{max}} < 10^{10} \text{ GeV}$
- $10^{10} \text{ GeV } < \text{Q}_{\text{max}} < 10^{15} \text{ GeV} \\ Q_{\text{max}} > 10^{15} \text{ GeV}$

Comparison between NLO (yellow region) and LO (region in dashed line) results

ŶÔ


400

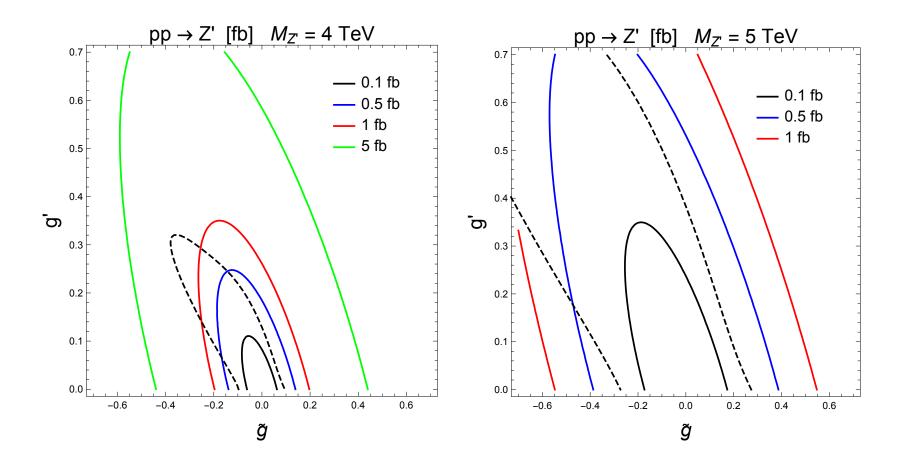
450

500

Z' decays

Z' branching ratios

in the pure B-L charged lep. decay is preferred


- *Z' -> charged leptons*
- *Z' -> light neutrinos*
- *Z' -> light quarks*
- *Z' -> top quarks*
 - *Z' -> heavy neutrinos*

The decay mode hierarchy is drastically changed when $\tilde{g} \neq 0$

 $g'_{1} = 0 \text{ recovers the SSM limit}$ $\tilde{g} \neq 0 \text{ opens new } Z' \text{ decay channels}$ $BR \sim 2 \% \text{ each}$ $\begin{cases} Z' \rightarrow WW \\ Z' \rightarrow Z H_{1} \\ Z' \rightarrow Z H_{2} \end{cases}$

Z' production

Z' on-shell production cross section at the LHC (13TeV)

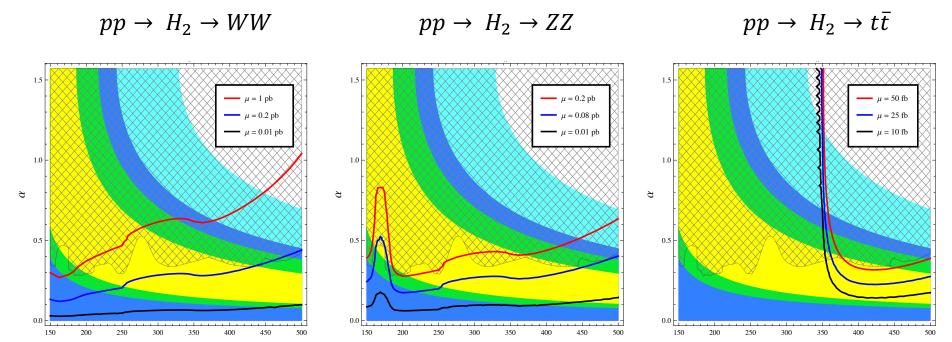


Dashed lines: 2σ significance contour levels from DY at 13 TeV and L = 40/fb

RISE meeting 2017

Heavy Higgs production and decay

(LHC 13 TeV)



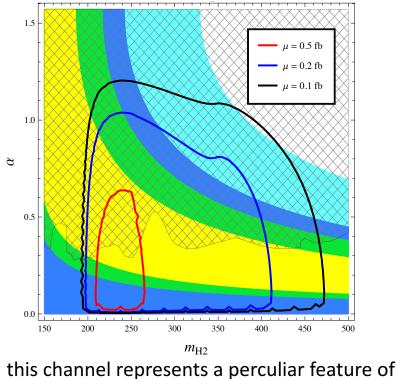
- H_2 couplings to SM particles are rescaled by sin α with respect to the SM Higgs
- Gluon fusion is the main production mode: $\sigma(M_{H_2}, \alpha) \sim (\sin \alpha)^2 \sigma_{SM}(M_{H_2})$
- New decay channels: $H_2 \rightarrow \nu_h \nu_h$, $H_2 \rightarrow H_1 H_1$

Heavy Higgs production and decay

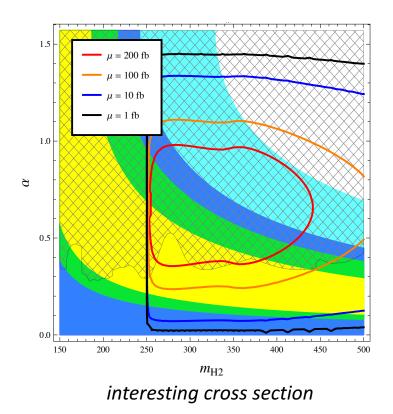
- •
- Favoured discovery channels $\begin{cases} pp \rightarrow H_2 \rightarrow WW & \sigma \text{ up to} \sim 200 \text{ fb} 1 \text{ pb} \\ pp \rightarrow H_2 \rightarrow ZZ & \sigma \text{ up to} \sim 200 \text{ fb} \\ pp \rightarrow H_2 \rightarrow t\bar{t} & \sigma \text{ up to} \sim 50 \text{ fb} \end{cases}$

 σ x BR contour level in the $m_{H2} - \alpha$ space (LHC 13 TeV)

 $m_{\rm H2}$

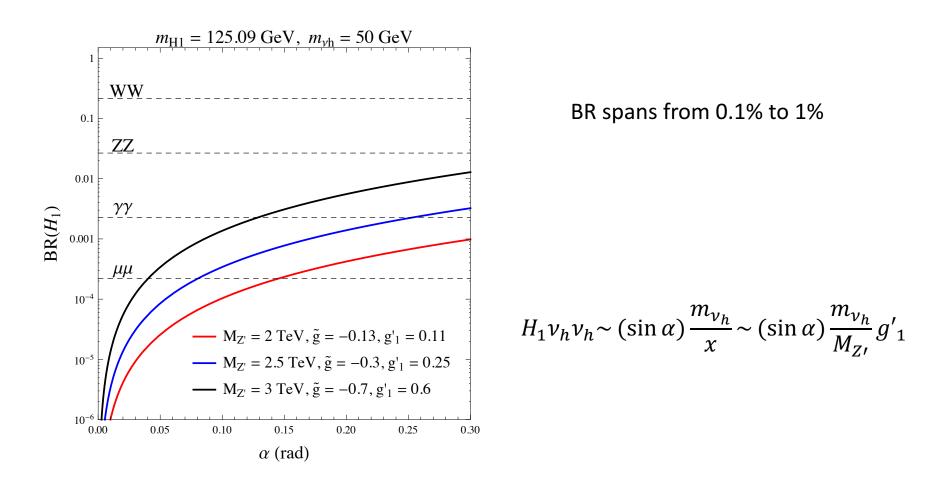

 $m_{\rm H2}$

 $m_{\rm H2}$

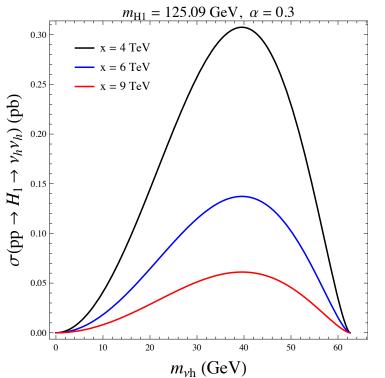

Heavy Higgs production and decay

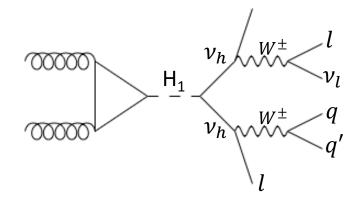
 σ x BR contour level in the $m_{H2} - \alpha$ space (LHC 13 TeV)

 $pp \rightarrow H_2 \rightarrow \nu_h \nu_h$



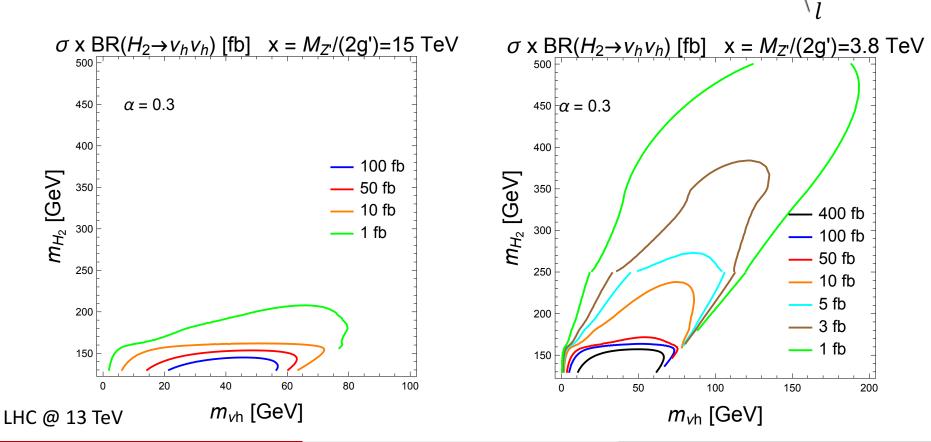
his channel represents a perculiar feature o this minimal class of Z' models $pp \rightarrow H_2 \rightarrow H_1H_1$


SM-like Higgs new decay channel


When $m_{H_1} > 2m_{\nu_h}$ a new decay channel becomes accessible $H_1 \rightarrow \nu_h \nu_h$

Heavy neutrino production processes

- 1. Heavy neutrino production from the SM-like Higgs
- 2. Heavy neutrino production from the Heavy Higgs
- 3. Heavy neutrino production from the Z'


Heavy neutrinos with $m_{\nu_h} < m_{H_1}/2$ are long-lived and may appear as displaced vertices in the detectors

LHC @ 13 TeV

Luigi Delle Rose, UoS and RAL

Heavy neutrino production processes

- 1. Heavy neutrino production from the SM-like Higgs
- 2. Heavy neutrino production from the Heavy Higgs
- 3. Heavy neutrino production from the Z'

Luigi Delle Rose, UoS and RAL

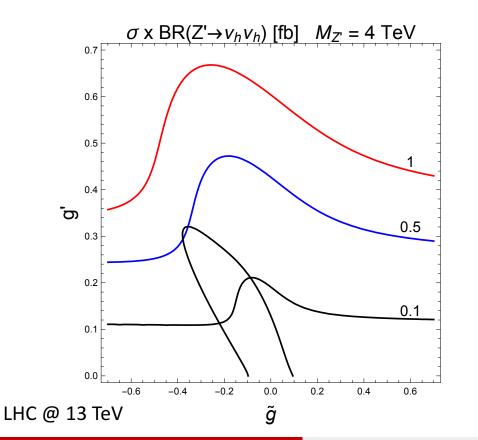
06-07 March

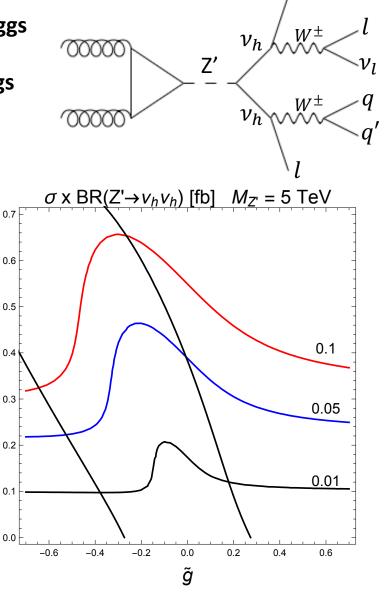
 W^{\pm}

W±

 v_{μ}

 v_h

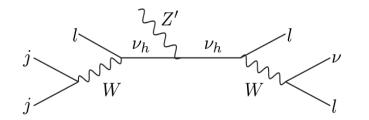

 H_2


00000

0000

Heavy neutrino production processes

- 1. Heavy neutrino production from the SM-like Higgs
- 2. Heavy neutrino production from the Heavy Higgs
- 3. Heavy neutrino production from the Z'


Luigi Delle Rose, UoS and RAL

ັດ

06-07 March

Z' signatures

$$Z' \to \nu_h \nu_h \to 3l + 2j + E_{Tmiss} (1 \nu_l)$$

Backgrounds

- WZjj
- $t\bar{t}$ (with 3rd lepton from b quark)
- *ttlv*

Cuts

- momenta, angular acceptance, isolation
- $\left|M_{jj} M_W\right| < 20 \ GeV$
- $|M_{l^+l^-} M_Z| > 10 \ GeV$
- $|M_{all} M_{Z'}| < 250 \ GeV$

$$H_{Z} = 210 \text{ fev}, H_{U}_{h} = 200 \text{ dev}$$

$$F_{T} = 100 \text{ fer}$$

 $M_{\pi_{e}} = 25 T \rho V m_{e} = 200 G \rho V$

Its applied except on
$$M_a$$

п

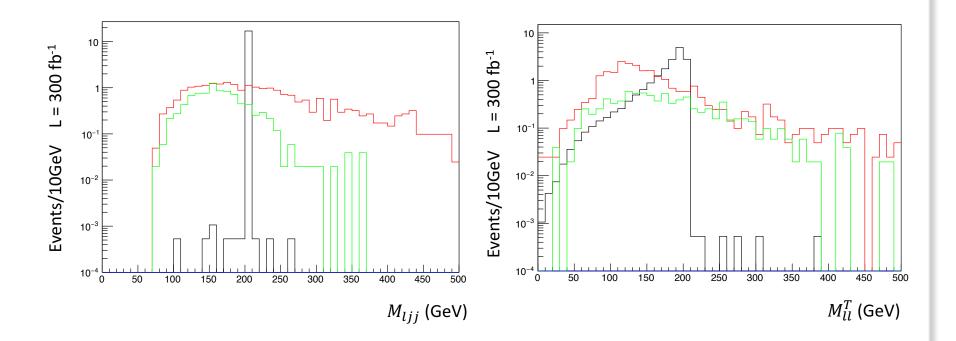
 \cap

No cuts

The longitudinal momentum of the v_l is reconstructed from the W mass and minimising $X = \left| M_{l_1 l_2 v_l}^2 - M_{l_3 j_1 j_2}^2 \right|$

Luigi Delle Rose, UoS and RAL

06-07 March


 M_{all} (GeV)

Z' signatures

 $M_{Z'} = 2.5 \ TeV, m_{\nu_h} = 200 \ GeV$

$$Z' \rightarrow \nu_h \nu_h \rightarrow 3l + 2j + E_{Tmiss} (1 \nu_l)$$

The heavy neutrino mass can be identified

- $|M_{jj} M_W| < 20 \, GeV$
- $|M_{l^+l^-} M_Z| > 10 \ GeV$
- $|M_{all} M_{Z'}| < 250 \ GeV$

The longitudinal momentum of the v_l is reconstructed from the W mass and minimising $X = \left| M_{l_1 l_2 v_l}^2 - M_{l_3 j_1 j_2}^2 \right|$

Luigi Delle Rose, UoS and RAL

RISE meeting 2017

06-07 March

Conclusions

- Minimal Z' extensions of the SM neutral gauge boson, scalar and RH neutrinos and a minimal set of new parameters
- LHC (DY + HiggsBounds/HiggsSignals)significantly constrains the parameter space
- Peculiar signatures:

$$pp \rightarrow Z' \rightarrow \nu_h \nu_h$$

 $pp \rightarrow Z'^* \rightarrow Z'H_2$
 $pp \rightarrow H_2 \rightarrow \nu_h \nu_h, pp \rightarrow H_2 \rightarrow H_1H_1$
 $pp \rightarrow H_1 \rightarrow \nu_h \nu_h$ (heavy neutrinos are long-live particles: *displaced vertices*)

RG methods can be effectively used to establish a connection between EW scale parameters and the underlying GUT structure