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• Introduction—Higgs-mediated flavor changing neutral currents (FCNCs) in
the two Higgs doublet model (2HDM)

• The flavor-aligned 2HDM [A2HDM]

• Imposing flavor alignment at Λ = MP

• Higgs-mediated FCNCs in the one-loop leading logarithmic approximation

• Phenomenological consequences

– t → ch
– B and K meson mixing
– Bs → µ+µ−

– B → τν
– H → bs̄, b̄s

• Conclusions

This talk is based on work in collaboration with Stefania Gori and Edward

Santos, arXiv:1703.xxxxx.



Higgs-mediated FCNCs and the 2HDM

The 2HDM Higgs-quark Yukawa Lagrangian (in terms of quark mass-

eigenstates), summed over i = 1, 2, is:

−LY = ULΦ
0 ∗
i hU

i UR−DLK
†Φ−

i h
U
i UR+ULKΦ+

i h
D †
i DR+DLΦ

0
ih

D †
i DR+h.c. ,

where there is an implicit sum over i, K is the CKM mixing matrix, and the

hU,D are 3× 3 Yukawa coupling matrices.

We can re-express the Yukawa couplings in terms of the Higgs basis, {H1 , H2},
where 〈H0

1〉 = v/
√
2 and 〈H2〉 = 0 and v ≃ 246 GeV. If 〈Φ0

i 〉 = vi/
√
2 where

v̂i ≡ vi/v is a unit vector in Higgs “flavor” space, then the Higgs basis fields are

H1 = (H+
1 , H0

1) = v̂∗iΦi , H2 = (H+
2 , H0

2) = ŵ∗
iΦi ,

where ŵi = vjǫji. We can then expand

hD
i = κF v̂i + ρF ŵi ,

with F = U,D and κF ≡
√
2MF/v where MF is a diagonal mass matrix.



The resulting Higgs basis Yukawa Lagrangian is

−LY = UL

(√
2MU

v
H

0 †
1 + ρ

U
H

0 †
2

)
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†
(√
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v
H
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)

DR + DL
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0
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0
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)

DR

In the most general 2HDM, ρU and ρD are arbitrary complex 3×3matrices, which

yield neutral Higgs-mediated CP-violating and flavor-changing interactions.

For simplicity, assume that the Higgs scalar potential and vacuum are CP-
invariant. Then, the neutral Higgs interactions are

−LY =
1

v

∑

F=U,D,E

F

{

sβ−αMF − cβ−αM
1/2
F

[

ρF
R + iεFγ5ρ

F
I

]

M
1/2
F

}

Fh

+
1

v

∑

F=U,D,E

F

{

cβ−αMF + sβ−αM
1/2
F
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ρ
F
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F
I

]

M
1/2
F

}

FH

−1

v

∑

F=U,D,E

F

{

M
1/2
F

(

ρ
F
I − iεFγ5ρ

F
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)

M
1/2
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}

FA

where ǫF = +1 [−1] for F = U [F = D, E]; the ρFR,I are Hermitian matrices.



Note: In the Φ1–Φ2 real basis, tanβ ≡ v2/v1 (which is a real number of either

sign) and α is the angle that diagonalizes the CP-even Higgs squared-mass

matrix. The CP-conserving Higgs potential in the Higgs basis is

V ∋ 1
2Z1(H

†
1H1)

2 +
{

1
2Z5(H

†
1H2)

2 + Z6(H
†
1H1)(H

†
1H2) + h.c.

}

.

where Z5 and Z6 can be chosen real. The CP-odd Higgs boson, A =
√
2 ImH0

2 ,

has squared-mass m2
A. The CP-even Higgs squared-masses are obtained by

diagonalizing the 2× 2 squared-mass matrix, M2
H, with respect to Higgs basis

states, {
√
2Re H0

1 − v ,
√
2Re H0

2},

M2
H =

(

Z1v
2 Z6v

2

Z6v
2 m2

A + Z5v
2

)

.

The CP-even Higgs bosons are h and H with mh ≤ mH . In particular, the

CP-even mass eigenstates are:
(

H

h

)

=

(

cβ−α −sβ−α

sβ−α cβ−α

) (√
2 Re H0

1 − v√
2Re H0

2

)

,

with sβ−α ≡ sin(β − α) and cβ−α ≡ cos(β − α), where 0 ≤ β − α ≤ 1
2π.



Indeed, tree-level FCNCs mediated by neutral Higgs bosons are present (as well

as new sources of CP-violation), governed by the 3×3 Hermitian matrices ρFR,I,

which are generically non-diagonal.

Definitions of ρF
R,I

M
1/2
F ρFRM

1/2
F =

v

2
√
2

(

ρF + [ρF ]†
)

, iM
1/2
F ρFI M

1/2
F =

v

2
√
2

(

ρF − [ρF ]†
)

.

In the CP-conserving Type-I and Type-II 2HDM, ρU,D
I = 0 and

Type I : ρDR = ρUR = −1 cotβ ,

Type II : ρDR = 1 tanβ , ρUR = −1 cot β ,

where 1 is the 3× 3 identity matrix. Thus, the neutral Higgs-fermion couplings

are flavor diagonal!

In Type-I and Type-II models, the couplings to leptons follows the pattern of

the down-type quark couplings. In the so-called Types Y and X models, the

Types I and II quark Yukawa couplings are associated with Types II and I lepton

Yukawa couplings, respectively.



The flavor-aligned two-Higgs doublet model (A2HDM)

We can by fiat declare that ρF = aFκF for F = U,D,E, were aF

is called the alignment parameter.∗ It follows that

ρFR = (Re aF )1 , ρFI = (Im aF )1 .

The corresponding neutral Higgs–fermion Yukawa couplings are

flavor-diagonal and are given by

−LY =
1

v

∑

F=U,D,E

FMF

{

sβ−α − cβ−α

[

Re a
F
+ iǫ

F
Im a

F
γ5

]

}

Fh
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v
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{
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]

}
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v

∑

F=U,D,E

FMF

{
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FA .

∗A. Pich and P. Tuzon, Phys. Rev. D 80, 091702 (2009) [arXiv:0908.1554 [hep-ph]].



Is the flavor aligned 2HDM radiatively stable?

The flavor-alignment conditions of the A2HDM are not radiatively

stable, except in the case of the Types I, II X and Y 2HDMs.

Indeed, flavor alignment is preserved by the renormalization-group

(RG) running of the Yukawa coupling matrices only in the cases of

the standard type-I, II, X, and Y models.†

Suppose that the flavor alignment condition is imposed by new

physics at the Planck scale.‡ due to new physics that is presently

unknown. One can then use an RG analysis to determine the

structure of the Yukawa couplings at the electroweak scale. This

in turn will lead to small flavor-violation in the neutral Higgs-quark

interactions that can be constrained by experiment.

†P.M. Ferreira, L. Lavoura and J.P. Silva, arXiv:1001.2561 [hep-ph].
‡This ansatz was first considered by C.B. Braeuninger, A. Ibarra and C. Simonetto, arXiv:1005.5706 [hep-ph]].



RG equations for the Yukawa coupling matrices

Defining D ≡ 16π2µ(d/dµ), here are two examples of the RGEs that govern
the running of the Yukawa coupling matrices,

Dκ
U

= −
(

8g
2
s + 9

4g
2
+ 17

12g
′ 2)
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+

{
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κ
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+ ρ
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The diagonalization of the fermion mass matrices is carried out at the electroweak scale. Only

Yukawa couplings evolve under RG running. The end result is that the RGEs for the κF and

ρF explicitly contain factors of the CKM matrix K. Thus, if κF and ρF are proportional at

one energy scale, they will no longer be proportional at another scale.



Flavor-aligned Yukawa coupling matrices at Λ = MP

We shall assume flavor-alignment at the Planck scale, Λ = MP,

ρQ(Λ) = aQκQ(Λ) .

We further assume the existence of a low-energy scale ΛH that

characterizes the mass scale of the second Higgs doublet. We take

ΛH = 400 GeV, in order that the observed Higgs boson possess

SM-like properties (within about 20%). To be consistent with the

observed diagonal quark mass matrix MQ, we impose

κQ(ΛH) =
√
2MQ(ΛH)/v .

We therefore have two boundary conditions, one at the high scale

and one at the low scale.



We begin by assuming flavor-alignment at ΛH via a low-scale

alignment parameter a′Q in the first approximation of an iterative

process, ρQ(ΛH) = a′QκQ(ΛH). We then decompose ρQ(Λ) into

parts that are aligned and misaligned with κQ(Λ), respectively,

ρQ(Λ) = aQκQ(Λ) + δρQ,

where aQ represents the aligned part (in general, different from

a′Q), and δρQ the corresponding degree of misalignment at the

high scale.

To minimize the misaligned part of ρQ(Λ), we implement the cost

function,

∆Q ≡
3
∑

i,j=1

|δρQij|2 =
3
∑

i,j=1

|ρQij(Λ)− aQκQ
ij(Λ)|2,

which once minimized, provides the optimal value of the complex

parameter aQ for flavor-alignment at the high scale.



The iteration procedure

• Impose flavor-alignment at the high scale using the optimized

alignment parameters aQ.

• Evolve the one-loop RGEs back down to ΛH.

• At ΛH, match the boundary conditions for the 2HDM and SM.

• Re-diagonalize κU and κD at the scale ΛH (which are no longer

diagonal), while respectively transforming ρU and ρD.

• Evolve κU and κD down to the electroweak scale using the

one-loop SM RGEs.

• If any of the quark masses differ from their known values by

more than 3%, re-establish the correct quark masses, run back

up to ΛP, and then rerun this procedure repeatedly until the

two boundary conditions are satisfied.



The one-loop leading logarithmic approximation

ρU(ΛH) ∼ aUκU(ΛH) +
1

16π2
log

(

ΛH

Λ

)

(DρU − aUDκU),

ρD(ΛH) ∼ aDκD(ΛH) +
1

16π2
log

(

ΛH

Λ

)

(DρD − aDDκD) .

where κU(ΛH) and κD(ΛH) are proportional to the diagonal quark

mass matrices, MU andMD respectively, at the scale ΛH. Working

to one loop order and neglecting higher order terms,

ρU(ΛH)ij ≃ aUδij

√
2(MU)jj

v
+

(MU)jj

4
√
2π2v3

log

(

ΛH

Λ
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]

δij
∑

k
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E)kk
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U
)
[
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U
(a

D
)
∗]∑

k

[

3δij(M
2
D)kk − 2(M

2
D)kkKikK

∗
jk

]

}

,

ρ
D
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D
δij

√
2(MD)ii

v
+

(MD)ii

4
√
2π2v3

log

(
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Λ
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D
)
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D
(a

E
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∗]

δij
∑

k

(M
2
E)kk

+(a
U − a

D
)
[
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D
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U
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2
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2
U)kkK

∗
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}

.



The validity of the one-loop leading log approximation breaks down

for large values of the alignment parameters.
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Blue: region of the A2HDM parameter space where the prediction for all the off-diagonal terms of the ρQ matrices

lies within a factor of 3 from the results obtained with the full running. Red: region where the one-loop leading

log approximation differs significantly from the the results obtained by numerically solving the RGEs.

Remark: In our numerical analysis, we require that no Landau pole

singularities appear below Λ = MP. This constraint is reflected in

the upper boundary of the red curve shown above.



The significance of the parameter tan β in the A2HDM

Since tanβ is a basis-dependent quantity, it has no significance in

the A2HDM. In the CP-conserving case, only β−α (which is basis

independent) has significance. Indeed, tan β does not appear in

the Yukawa couplings of the A2HDM.

In our analysis, we have neglected neutrino masses, so that

alignment in the leptonic sector is preserved by RG running. Thus,

it is convenient to define tan β via

aE ≡ tanβ ,

which is a real number of either sign. The significance of tan β

is that in the Φ1–Φ2 basis, we have hE
2 = 0, although this is not

enforced by a discrete symmetry. The Yukawa couplings to leptons

then resemble those of a Type II or Type X 2HDM.



Phenomenological consequences

Flavor-changing top decays

BR(t → uih) = c2β−α(|ρ
U
i3|

2 + |ρU
3i|

2) × v2

4m2
t

(1 − m2
h/m

2
t)

2

(1 − m2
W/m2

t)
2(1 + 2m2

W/m2
t)
ηQCD ,

where ηQCD = 1 + 0.97αs ∼ 1.10 is the NLO QCD correction to

the branching ratio. Note the dependence on cβ−α.

Remark: In the SM, BR(t → ch) ∼ 3× 10−15. Projections for the

HL-LHC show that the bounds on the branching ratios of flavor

violating top decays will likely be at the 10−4 level. At a future

100 TeV proton-proton machine with a large luminosity, recent

estimates suggest that branching ratios as small as ∼ 10−7 could

be probed with 10 ab−1 luminosity.



t → ch t → uh
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Tree-level contributions to top flavor changing branching ratios as a function of the alignment parameters aU and

aD. Yellow, red, green and blue colors correspond to branching ratios < 10−11, [10−11 − 10−10], [10−10 −
10−8], > 10−8. We have fixed β − α = π/2 − 0.2 and ΛH = 400 GeV.

Remark: Flavor changing top decays are also generated at one-

loop via charged Higgs exchange. These contributions (not

included above) can dominate for light charged Higgs masses

(e.g., mH± <∼ 200 GeV). These contributions decouple when

mH± ≫ mh.



Bounds from Meson Mixing

Higgs mediated contributions to neutral meson mixing (Bd,s–Bd,s, K–K and

D–D mixing) arise in our model. Integrating out the Higgs bosons, we obtain

the following dimension six effective Lagrangian describing Bs meson mixing

Leff = C2(b̄RsL)
2 + C̃2(b̄LsR)

2 + C4(b̄RsL)(b̄LsR) + h.c.,

with Wilson coefficients

C2 =
(ρD32)

2

4

(

sin2(β − α)

m2
H

+
cos2(β − α)

m2
h

− 1

m2
A

)

,

C̃2 =
(ρD∗

23 )
2

4

(

sin2(β − α)

m2
H

+
cos2(β − α)

m2
h

− 1

m2
A

)

,

C4 =
(ρD32)(ρ

D∗
23 )

2

(

sin2(β − α)

m2
H

+
cos2(β − α)

m2
h

+
1

m2
A

)

,

and corresponding ones for Bd, K, and D mixing.
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Bounds from meson mixing observables. Left panel: experimentally preferred regions, as computed in our model

at the leading log. The dark purple region is favored by the measurement of Bs mixing, the purple region by Bd

mixing, and the dark pink (pink) region by the phase (mass difference) of the Kaon mixing system. D meson

mixing does not give any interesting bound on the parameter space and it is not shown. Right panel: corresponding

Bs results as obtained scanning the parameter space and using the full RG running. The yellow, red, and green

points corresponds to a Wilson coefficient whose magnitude relative to the present bound from Bs mixing is

< 1/3, [1/3, 1], > 1.



Bs,d → µ+µ−

For our calculations, we use§

BR(Bs,d → µ+µ−)

BR(Bs,d → µ+µ−)SM
≃
(

|Ss,d|2 + |Ps,d|2
)

×
(

1 + ys,d

Re(P 2
s,d) − Re(S2

s,d)

|Ss,d|2 + |Ps,d|2
)(

1

1 + ys,d

)

.

Above, BR(Bs,d → µ+µ−)SM is the prediction in the SM for the

branching ratio extracted from an untagged rate, ys = (8.8±1.4)%

and yd ∼ 0, and

Ss,d ≡
mBs,d

2mµ

(CS
s,d − C′S

s,d)

CSM
10 s,d

√

√

√

√1 −
4m2

µ

m2
Bs,d

,

Ps,d ≡
mBs,d

2mµ

(CP
s,d − C′P

s,d)

CSM
10 s,d

+
(C10

s,d − C′
10 s,d)

CSM
10 s,d

.

§W. Altmannshofer and D.M. Straub, JHEP 1208, 121 (2012) [arXiv:1206.0273 [hep-ph]].



The Ci are the Wilson coefficients corresponding to the Lagrangian

Ls =
∑

i

(CiOi + C′
iO

′
i) + h.c.

The relevant operators for the Bs decay are

O
(′)S
s =

mb

mBs

(s̄PR(L)b)(ℓ̄ℓ), O
(′)P
s =

mb

mBs

(s̄PR(L)b)(ℓ̄γ
5
ℓ),

O
(′)
10 s = (s̄γµPL(R)b)(ℓ̄γ

µ
γ
5
ℓ),

The heavy Higgs s-channel tree-level diagrams contributing to Bs decay yield

C
P
s = −mBs

mb

ρD∗
32√
2

mµ

v
tan β

1

m2
A

,

C′P
s =

mBs

mb

ρD
23√
2

mµ

v
tan β

1

m2
A

≪ CP
s ,

CS
s = −mBs

mb

ρD∗
32√
2

mµ

v
tan β

1

m2
H

,

C
′S
s = −mBs

mb

ρD
23√
2

mµ

v
tan β

1

m2
H

≪ C
S
s ,

in the approximation that cos(β − α) ≃ 0. Similar expressions are obtained for Bd decay.



For the SM prediction, we take

CSM
10 s,d = −4.1

e2

16π2

4GF√
2
KtbK

∗
t(s,d) ,

and¶

BR(Bs → µ+µ−)SM = (3.65± 0.23)× 10−9,

BR(Bd → µ+µ−)SM = (1.06± 0.09)× 10−10.

These values are in good agreement with the combination of the LHCb and the

CMS measurements at Run I for the Bs decay, which yields

BR(Bs → µ+µ−)exp = (2.8+0.7
−0.6)× 10−9,

BR(Bd → µ+µ−)exp = (3.9+1.6
−1.4)× 10−10 .

¶C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser, Phys. Rev. Lett. 112,
101801 (2014) [arXiv:1311.0903 [hep-ph]].
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Leading log prediction for the branching ratios for Bs → µ+µ− (left panel) and Bd → µ+µ− (right

panel) relative the the SM, as a function of aU and aD, with fixed tanβ = 10, cos(β − α) = 0, and

mA = mH = 400 GeV. The regions in pink are allowed at the 2σ level by the present measurements. The

regions in purple denote the regions favored by the more precise HL-LHC measurements, assuming a measured

central value equal to the SM prediction. The gray shaded regions produce Landau poles in the Yukawa couplings

below MP.
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The branching ratio for Bs → µ+µ− (left panel) and for Bd → µ+µ− (right panel) relative to the SM, obtained

via scanning the parameter space and using the full RG running, with fixed tanβ = 10, cos(β − α) = 0, and

mA = mH = 400 GeV. The yellow, red, green and blue points corresponds to branching ratios normalized to

the SM prediction < 0.4, [0.4, 1.1], [1.1, 10], > 10. In boldface we denote the range preferred by the LHCb

and ATLAS measurements of Bs → µ+µ−.

The red points shown in the left plot above correspond roughly to

the regions allowed by the experimental measurements at the 2σ

level.



Charged Higgs couplings to fermions

The charged Higgs couplings to fermions are given by

L = −
√
2

v

{

U
[

KM
1/2
D (ρD

R − iρD
I )M

1/2
D PR − M

1/2
U (ρU

R − iρU
I )M

1/2
U KPL

]

DH+

NM
1/2
E (ρE

R − iρE
I )M

1/2
E PREH+ + h.c.

}

,

where K is the CKM mixing matrix.

We apply this to the decay B → τν, which is mediated at tree-level

by charged W± and H± exchange. The present data yields

BR(B → τν)exp = (1.06± 0.19)× 10−4,

which is in a relatively good agreement with the SM prediction,

BR(B → τν)SM = (0.848+0.036
−0.055)× 10−4.



The branching ratio in the 2HDM relative to that of the SM is given by

BR(B → τν)

BR(B → τν)SM
=

∣

∣

∣

∣

∣

∣
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v tanβ√
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2
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ibρ
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∣

∣

∣

∣
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The ratio BR(B → τν)/BR(B → τν)SM as a function of the two alignment parameters aU and aD, at fixed

tanβ = 10 and mH± = 400 GeV. Left panel: predictions at the leading log, where the pink region is favored

by the measurement of B → τν. The purple region are favored by future measurement at Belle II, under the

assumption that the central value of the measurement is given by the SM prediction for this branching ratio. Right

panel: result of the parameter space scan, using the full RG running. Yellow, red, green and blue points correspond

to the ratios < 0.2, [0.79, 1.71], [1.71, 3], > 3, respectively. In boldface we denote the range preferred by the

present world average for BR(B → τν).
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Result of the scan of parameter space, using the full RGEs, and having fixed cos(β − α) = 0, mA = mH =

mH± = 400 GeV, and tanβ = 10. Blue points correspond to points allowed by the measurement of B → τν,

but not by the measurement of Bs mixing or Bs → µ+µ−. Green points are allowed by the measurements of

B → τν and of meson mixing but not by Bs → µ+µ−. Red points are allowed by all constraints. The left and

right panels represent the bounds as they are now and as projected for the coming years.



Future consequences: H decay BRs

If a heavy CP-even Higgs boson H is discovered, then its branching

ratios provide critical tests of the A2HDM approach.

• Possible flavor non-diagonal decays, e.g. H → bs̄, b̄s

• Non-standard ratios of BRs, e.g.

BR(H → b̄b)
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Assuming tanβ = 10, cos(β − α) = 0, and mH = 400 GeV. Left panel: Leading log prediction for

BR(H → b̄s, bs̄). The blue shaded regions have been probed by the LHC searches for H,A → τ+τ−, bb̄. The

gray shaded regions produce Landau poles below the Planck scale MP. Right panel: BR(H → b̄s, bs̄) obtained

by scanning the parameter space and using the full RG running. Yellow, red, green and blue colors correspond to

BR < 0.0005, [0.0005, 0.01], [0.01, 0.1], and > 0.1 based on a full numerical scan.
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Assuming tanβ = 10, cos(β − α) = 0, and mH = 400 GeV. Left panel: Leading log prediction for the

branching ratios of the heavy Higgs boson, H. The blue contours represent the prediction of a Type II 2HDM.

The gray shaded regions produce Landau poles below the Planck scale MP. The blue shaded regions have been

probed by the LHC searches for heavy scalars. Right panel: Branching ratios obtained by scanning the parameter

space and using the full RG running. The yellow, red, green and blue points correspond to: upper left panel,

BR(H → b̄b)m2
τ/BR(H → τ+τ−)3m2

b < 1, [1, 10], [10, 100],> 100.



Conclusions

• In the search for new Higgs bosons, one should try to make the minimal set
of assumptions that are consistent with the observed Higgs data.

• Current electroweak and Higgs data suggest a SM-like Higgs boson and
highly suppressed FCNCs mediated by tree-level neutral Higgs exchange.

• Although special forms of the Higgs-fermion Yukawa couplings can naturally
suppress FCNCs, one can imagine a more general set of assumptions that
yield sufficiently suppressed Higgs-mediated FCNCs.

• In this talk, a framework was considered in which there is flavor alignment
at a very high energy scale, which induces small Higgs-mediated FCNCs at
the electroweak scale that can be consistent with current data.

• Some phenomenological consequences were examined, with an emphasis on
processes that can distinguish among different models for the flavor structure
of Higgs-fermion Yukawa interactions.


