


Multiple point principle
• God wants another (nearly) degenerate vacuum at φ〜MP 

• “PREdicted the Higgs mass” 135±9 GeV, Froggatt, Nielsen (1995) 

• Via λ(μ)|μ=MP=0 so that V1-loop 〜 λ(φ) φ4 =0 at φ〜MP. 

• Title taken from Nielsen (2012) 

• Derived by assuming QFT as micro canonical ensemble 

• A human-understandable review in Appendix D in  
“Eternal Higgs inflation and cosmological constant problem”  
Hamada, Kawai, KO (2015)



We may be seeing greater 
desert than we thought.

F Rbc T U ][ eT (



We may be seeing greater 
desert than we thought.

F Rbc T U ][ eT (

With some oasis of DM+



Plan
• MPP review 

• More non-SUSY vacua than SUSY ones 

• Higgs inflation 

• Cosmological constant problem solved by MPP?



Plan
• MPP review 

• More non-SUSY vacua than SUSY ones 

• Higgs inflation 

• Cosmological constant problem solved by MPP?



Canonical vs micro-canonical
• Path integral resembles canonical ensemble 

• Micro-canonical more fundamental

D Multiple point principle

We review the original argument for the MPP that says that the SM parameters
should be tuned so that our SM vacuum is degenerate with another one whose
vacuum expectation value of the Higgs field is around the Planck scale [36, 37, 38].

The quantum field theory (QFT) is formulated by the path integral

Z({�}) =

Z
[d'] e�S({�})['], (183)

where {�} denotes the dependence on the coupling constants (and mass) col-
lectively. The partition function (183) is analogous to the one in the canonical
ensemble in the statistical mechanics:

Z(�) =
X

n

e��Hn . (184)

However in the statistical mechanics, the most fundamental concept is the micro-
canonical ensemble:

⌦(E) =
X

n

�(Hn � E) . (185)

Froggatt and Nielsen argue that more fundamental formulation of the QFT may
be analogous to the micro-canonical ensemble, in which rather the average field
value is fixed while the coupling constants are determined dynamically. Let us
review their argument step by step.

The canonical ensemble becomes equivalent to the micro-canonical one in the
thermodynamic (large volume) limit: Given the partition function (184), we can
compute the multiplicity

⌦(E) :=

Z
d� e�EZ(�) =

Z
d�

Z
dE
 
X

n

�(Hn � E)

!
e��(E�E)

=

Z
d�

Z
dE ⌦(E) e��(E�E)

=

Z
d�

Z
dE eS(E)��(E�E), (186)

where we used the entropy S(E) := ln ⌦(E); noting that S(E), E , and E are
extensive variables, in the thermodynamic limit, the integral over � and E is
dominated by the strong peak at their stationary values; by taking variations of
E and �, we get dS/dE = � and E = E:

⌦(E) ! eS(E) = ⌦(E). (187)

The energy is fixed first, and then the temperature T := 1/� is determined dy-
namically. Later we will see, in the QFT language, that the inverse-temperature �
corresponds to the coupling constants, that the energy E, E to the spatial integral
over field values

R
dDx |'|n, and that the summation over the states

P
n to the

path integration
R

[d'].
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Micro-canonical QFT
• Field value (integrated over spacetime vol) fixed, 

couplings integrated over: 

• Cf. energy fixed, temperature integrated over: 

• Thermodynamic (large vol) limit:

As an illustration, let us consider a system of co-existing water and vapor with
a fixed pressure in a piston, placed in a room temperature. We add heat into
the piston. The temperature ��1 in the piston rises to the boiling point. Even if
we further continue to add the heat, it is used to make the water into the vapor,
without changing the temperature. This way, for a large range of energy, the
temperature is tuned to be the boiling point due to the two co-existing phases.
In QFT language, this will be translated to the statement that even if Nature
changes the field value in the micro-canonical version of the QFT, the coupling
constant (mass) is tuned to the value that allows two co-existing vacua.18

The ordinary QFT starts from the path integral (183). Let us illustrate the
situation by a simple toy model:

S
�
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. (188)

The partition function reads

Z
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�
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Z
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The counterpart of Eq. (186) should be the following:
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(190)

where the dimensionality is

['] =
D � 2

2
, [I

0

] = �D, [I
2

] = �2, [I
4

] = D � 4, (191)

etc.
From the observation, we know that the volume of the universe V is much

larger than the Planck volume: V :=
R

dDx o M�D
P . In the thermodynamic

18 The e↵ective potential must be convex, which is realized as a spatially inhomogeneous configuration with
' = '1 in some regions and ' = '2 in other places, where '1 and '2 are local minima of the potential; see
e.g. Ref. [114].
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Backup
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Thermodynamic limit
• Temperature (coupling constants) automatically chosen to allow 

multiple phases (vacua) for wide range of energy (field value) 

• To repeat, coupling constants wants to allow multiple vacua 

• Another vacuum at φ〜MP allows any input value of φ in between.真空の(不)安定性

	  �$ ]c T a V dT] Ycab b aW e P c]b U bc] ]V

5

leff

10¥dleffêd lnm
5 10 15 20

-0.05

0.00

0.05

0.10

Log10m @GeVD

l e
ff

FIG. 1: The light red (lower) and blue (upper) bands are 2-loop RGE running of �e↵(µ) from the tree level

potential (3) and from the 1-loop e↵ective potential (4), respectively. The dark red (upper) and blue (lower)

bands are the beta function times ten 10⇥ d�e↵/d lnµ evaluated at the tree and 1-loop levels, respectively.

We take MH = 125.9GeV and ↵s = 0.1185. The band corresponds to 95% CL deviation of Mt; see Eq. (10).
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FIG. 2: Left: The tree level Higgs potential as a function of Higgs field '. Right: The one-loop Higgs

potential. Here we take MH = 125.9GeV and ↵s = 0.1185.

CMS value. Then, the tree and one-loop Higgs potential becomes flat around 1017–18GeV as shown

in Fig. 2.

Let us expand the e↵ective potential of the Higgs field V
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where the overall factor '4 is put to make the expansion well-bahaved. In the potential analysis

around the minimum, we can safely neglect the higher order terms with n � 3, and we will omit

N P PSP APeP , ) (+O

Statement may be  
relaxed to allow  

slight non degeneracy, 
Nielsen (2012)

Example: Water

✦ =U C ? U a fXST aP]VT U ���
cT TaPcdaT � Xb ? 2 c �� &

m yFTRP[[2 r3Ho) Xb ? ? 	   X] E:H&z

The total energy is given first, and the temperature 
is determined as a result. 
Example:  Water molecules in a cylinder with a  
                  fixed pressure. 

> @ > @� � > @ > @� �exp /d H E d H TM G M M M� � �³ ³

p 

water 

vapor 

E 

T 

water 

vapor 

water + vapor T* 

T is automatically tuned to T* for wide range of E. 

T corresponds to coupling constants in field theory. 

micro canonical               canonical 
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micro canonical               canonical 



Thermodynamic limit
• Temperature (coupling constants) automatically chosen to allow 

multiple phases (vacua) for wide range of energy (field value) 

• To repeat, coupling constants wants to allow multiple vacua 

• Another vacuum at φ〜MP allows any input value of φ in between.真空の(不)安定性

	  �$ ]c T a V dT] Ycab b aW e P c]b U bc] ]V

5

leff

10¥dleffêd lnm
5 10 15 20

-0.05

0.00

0.05

0.10

Log10m @GeVD

l e
ff

FIG. 1: The light red (lower) and blue (upper) bands are 2-loop RGE running of �e↵(µ) from the tree level

potential (3) and from the 1-loop e↵ective potential (4), respectively. The dark red (upper) and blue (lower)

bands are the beta function times ten 10⇥ d�e↵/d lnµ evaluated at the tree and 1-loop levels, respectively.

We take MH = 125.9GeV and ↵s = 0.1185. The band corresponds to 95% CL deviation of Mt; see Eq. (10).
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FIG. 2: Left: The tree level Higgs potential as a function of Higgs field '. Right: The one-loop Higgs

potential. Here we take MH = 125.9GeV and ↵s = 0.1185.

CMS value. Then, the tree and one-loop Higgs potential becomes flat around 1017–18GeV as shown

in Fig. 2.

Let us expand the e↵ective potential of the Higgs field V
e↵

(') on the flat space-time background

around its minimum:

V (') =
�
e↵

(µ = ')

4
'4, �

e↵

(µ) = �
min

+
1X

n=2

�n
(16⇡2)n

✓
ln

µ

µ
min

◆
2

, (11)

where the overall factor '4 is put to make the expansion well-bahaved. In the potential analysis

around the minimum, we can safely neglect the higher order terms with n � 3, and we will omit

N P PSP APeP , ) (+O

Statement may be  
relaxed to allow  

slight non degeneracy, 
Nielsen (2012)

Example: Water
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The total energy is given first, and the temperature 
is determined as a result. 
Example:  Water molecules in a cylinder with a  
                  fixed pressure. 

> @ > @� � > @ > @� �exp /d H E d H TM G M M M� � �³ ³
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water 
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water + vapor T* 

T is automatically tuned to T* for wide range of E. 

T corresponds to coupling constants in field theory. 

micro canonical               canonical 



Plan
• MPP review 

• More non-SUSY vacua than SUSY ones 

• Higgs inflation 

• Cosmological constant problem solved by MPP?



SM criticality



We are put on the edge of 
vacuum instability

As we have seen in many talks in HPNP2017.
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [112] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.6GeV + 2.0(Mt � 173.34GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (64)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-

19

[Buttazzo et al. 1307.3536]
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Bare Higgs mass also
✦ Can be small for Planck scale cutoff. 

✦ Triple coincidence: λ, βλ, mB
2 〜 0 

✦ Must indicate something!
[Hamada, Kawai, KO, 2013]



Veltman condition
✦ “This mass-relation, implying a certain cancellation between bosonic and 

fermionic effects, would in this view be due to an underlying 
supersymmetry.” [Veltman, 1981] 

✦ SUSY may well be broken at string/Planck scale. 

✴ Indeed there are more non-super string theories than superstring 
theories  

✤ in 4D fermionic construction. [Kawai, Lewellen & Tye, 1986, 1987] 

✤ They are tachyon free unlike 26D bosonic string theory. 

✦ We assume: 

✴ Higgs is a massless mode (Recall mB
2
 〜 0) 

✴ in a superstring theory without spacetime supersymmetry.



Plan
• MPP review 

• More non-SUSY vacua than SUSY ones 

• Higgs inflation in (non-super) superstring 

• Cosmological constant problem solved by MPP?



Higgs in non-super string
✦ Assumption: Higgs emission vertex separates into left and right 

movers for k=0: 

✦ This is in general the case when Higgs is from e.g. 

✴ Extra-dim. component of gauge field, as in GHU. 

✴ Untwisted sector in orbifold construction. 

✤ Blaszczyk, Groot Nibbelink, Loukas & Ramos-Sanchez, “Non-supersymmetric 
heterotic model building” [arXiv:1407.6362] JHEP (2014). 

✴ Only one field in fermionic construction.

• The Higgs comes from an extra dimensional component of a gauge field.

• The Higgs is given in the fermionic construction.

• The Higgs comes from an untwisted sector in the orbifold construction.

Then we consider multiple insertions of such emission vertices to evaluate the
e↵ective potential. It is very important to understand the whole shape of the
Higgs potential in order to discuss the initial condition of the Higgs inflation, as
well as to examine whether the MPP is realized or not. We find that the large field
limit of the Higgs field fits into the three categories, namely, runaway, periodic,
and chaotic. In all cases, we argue that the Higgs field can be a source of an
eternal inflation.

This paper is organized as follows. In Sec.
classification
2, we show that the potential in

large field limit can be classified into the above three categories. In Sec.
SO(16)
3, we

compute the one-loop partition function as a function of a background field in
SO(16)⇥SO(16) non-supersymmetric heterotic string on R1,8⇥S1, as a concrete
toy model

Dixon:1986iz,AlvarezGaume:1986jb,Ginsparg:1986wr,Itoyama:1986ei,Itoyama:1987rc
[56, 57, 58, 59, 60]. We explicitly check that the limiting behavior

of the potential fits into the three categories mentioned above. In Sec.
eternal section
4, we

point out a possibility that the Higgs inflation is preceded by an eternal inflation,
which occurs either in a domain wall or in a false vacuum. In Sec.

solution to cosmological constant
5, we show a

possible mechanism to generate the observed value of the cosmological constant
of the order of (meV)4. In Sec.

summary
6, we summarize our results. In Appendix

notation
A, we

summarize our notation for several mathematical functions. In Appendix
fermionic construction
B, we

review the fermionic construction that we use for the heterotic superstring theory.
The computation of the partition function is also outlined. In Appendix

T-duality section
C, we

review the T-duality that we use in this work. In Appendix
MPP review
D, we review the

MPP.

2 Higgs potential in string theory
classification

In this section, we show how to treat the large constant background of a massless
mode in closed string theory. In general, we start from a worldsheet action, say,

S
0

=
1

2⇡↵0

Z
d2z GMN @XM @̄XN + · · · , (3)

where GMN is the target space metric and M,N, . . . run from 0 to D � 1. In
general, a genetic massless string state has the emission vertex

O(z, z̄) eik·X , (4)

where k2 = 0 andO(z, z̄) has conformal dimensions (1, 1) to preserve the conformal
symmetry on the worldsheet.

As said in Introduction, we assume in this paper that the emission vertex at
the zero momentum of the physical Higgs can be decomposed into a product of
the (1, 0) operator OL(z) and the (0, 1) operator OR(z̄):

O(z, z̄) = OL(z) OR(z̄) . (5)

4

http://jp.arxiv.org/abs/1407.6362


Decompactification in 
large field limit

✦Limit of large Higgs field 
generally leads to opening up 
extra dimension. 

✦Energy of this runaway vacuum 
is exactly zero. 

✦Nicely fits in MPP! (later)

kL

kR kL + kR

kL � kR

Lorentz boost�

kL

kR kL + kR

kL � kR

Lorentz boost�

Figure 2: Schematic picture of the momentum boost in the k
R

vs k
L

plane. The light cone in
the momentum space is depicted by the dashed diagonal lines. The sets of lighter (magenta)
and black dots represent the initial momentum lattice and the one after the boost, respectively.
Left: There exists a point of the initial lattice on the light cone. Then there exist infinite
amount of its integer multiplications on the light cone. In the infinite boost limit, they are
contracted to form a decompactified dimension, which is represented by the black dots. Right:
There is no initial point on the light cone, and such a decompactification does not occur.

where the blank slots stand for zero. This background corresponds to the com-
bination of q boosts in the 1-1̄, . . . , q-q̄ planes. That is, the (p + q)-dimensional
vector

k =
⇣
k1

L

, . . . , kp
L

; k
¯

1

R

, . . . , kq̄
R

⌘
(26)

is transformed by


k0i
L

k0¯i
R

�
=


cosh ⌘i sinh ⌘i
sinh ⌘i cosh ⌘i

� 
ki
L

k
¯i
R

�
,

k0j
L

= kj
L

, (27)

for i = 1, . . . , q and j = q + 1, . . . , p.
Let us first consider the e↵ect of a boost in a single plane:


k0
L

k0
R

�
=


cosh ⌘ sinh ⌘
sinh ⌘ cosh ⌘

� 
k
L

k
R

�
. (28)

Then one of k
L

± k
R

is contracted and the other expanded:

k0
L

+ k0
R

= e⌘ (k
L

+ k
R

) ,

k0
L

� k0
R

= e�⌘ (k
L

� k
R

) . (29)

The e↵ective potential in the large ⌘ limit depends on whether or not there exists
a lattice point on the light cone in this plane, as is illustrated schematically in
Fig. 2. There are two possibilities in the infinite boost limit:

9

Figure 6: Contour and 3D plots are shown in the left and right panels, respectively, for the
energy density ⇢

9

in the Jordan frame as a function of ⌧̃
1

= rA/
p

↵0 and ⌧̃
2

= r/
p

↵0, with all
their values being given in ↵0 = 1 units. In the left, we shade the fundamental region for the
T-dual transformation: |⌧

1

|  1/
p

2, |⌧ | � 1. We can see the shift-symmetry ⌧̃
1

! ⌧̃
1

+
p

2,
up to distortions due to numerical errors.

since it comes from the fact that the energy is proportional to the volume of the
compactified dimension.

Now let us turn to the Einstein frame:

VE(r) = � 1

(2⇡r)2/7
ZT 2

2⇡rV
9

,

= � 1

↵09/2
1

2 (2⇡)72/7
1

r9/7

Z

F

d⌧
1

d⌧
2

⌧11/2
2

1

|⌘(⌧)|16 ⌘(⌧)16⌘̄(⌧̄)4
X

sector ↵~w

Z̃T 2,↵~w;

(69)

see Eq. (19). We plot this potential in Fig. 7. Important fact is that the potential
in the Einstein frame becomes runaway for the large radius limit r � p

↵0. As
discussed above, this behavior should not be altered by the higher loop corrections.

Note that this e↵ective potential in the Einstein frame is reliable only for large
r � p

↵0 since the treatment in terms of the e↵ective field theory (14) becomes
valid only in this limit; furthermore, we can regard r as the physical radius only
in this limit; see also the argument around Eq. (56).

3.4 Large boost limit

We want to examine the behavior of the Higgs potential in the large field limit.
However, in this nine dimensional toy model, there are two flat directions at this
level, namely, A and R. If the Higgs comes from a similar mechanism to the gauge-
Higgs unification, the Higgs field should be identified with A. Therefore, we check
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Figure 7: Contour and 3D plots are shown in the left and right panels, respectively, for the
energy density V

E

in the Einstein frame as a function of ⌧̃
1

= rA/
p

↵0 and ⌧̃
2

= r/
p

↵0, with
all their values being given in ↵0 = 1 units. The shaded fundamental region and the existence
of the

p
2-shift are the same as in Fig. 6. We see that the potential becomes runaway for the

large radius limit r � p
↵0.

the large A limit for a fixed R. This limit is nothing but the large boost limit as
is easily seen from Eq. (45): ⌘ ! 1. From Eqs. (46) and (59), the trajectory in
the ⌧̃

1

-⌧̃
2

plane is given by

⌧̃
1

=
Rp
↵0

tanh ⌘,

⌧̃
2

=
Rp
↵0

1

cosh ⌘
. (70)

Since ⌧̃2

1

+ ⌧̃2

2

= R2/↵0, this path starts from
⇣
0, R/

p
↵0
⌘

for ⌘ = 0, and moves on

the circle toward
⇣
R/

p
↵0, 0

⌘
as ⌘ ! 1. The question is what this trajectory is

when mapped onto the fundamental region. The large ⌘ behavior depends on the
value of R/

p
↵0:

• If R/
p

↵0 2 p
2Q, then ⌧̃

2

(= r/
p

↵0) goes to infinity in the large ⌘ limit.
This can be seen as follows. Since ⌧̃ ! R/

p
↵0 as ⌘ ! 1, let us check

to what point R/
p

↵0 is mapped in the fundamental region. Let us write
R/

p
↵0 =

p
2p/q with p, q 2 Z. By an appropriate times of

p
2-shifts (T -

transfomation in (60)), we can always make |p| < |q|. Performing the in-
version (S-transfomation in (60)), and again doing an appropriate times ofp

2-shifts, we can make the numerator p smaller and smaller; eventually we
get p/q ! 0. This corresponds to the infinity ⌧

2

! 1 in the fundamental
region.

This behavior is expected from the discussion of the general momentum boost
in Sec. 2.2. In fact, if and only if R/

p
↵0 2 p

2Q, we can have a lattice point
on the light cone in the momentum space, that is, there exist n, m, w 2 Z
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Toy model:  
Heterotic SO(16)×SO(16) on S1

[Hamada, Kawai, KO, 2012]



Higgs inflation at criticality
✦ Extrapolation of SM potential. 

✴ Can be flat as in (extended) MPP. 

✴ Use for inflation? 

✦ Combine with original Higgs inflation by Bezrukov & 
Shaposhnikov. 

✴ Not-so-large ξ〜10. 

✴ Large tensor-to-scalar ratio: r〜0.1. 

✤ Can be seen in near future.

[Hamada, Kawai, KO, Park 2014]
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FIG. 1: The light red (lower) and blue (upper) bands are 2-loop RGE running of �e↵(µ) from the tree level

potential (3) and from the 1-loop e↵ective potential (4), respectively. The dark red (upper) and blue (lower)

bands are the beta function times ten 10⇥ d�e↵/d lnµ evaluated at the tree and 1-loop levels, respectively.

We take MH = 125.9GeV and ↵s = 0.1185. The band corresponds to 95% CL deviation of Mt; see Eq. (10).
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FIG. 2: Left: The tree level Higgs potential as a function of Higgs field '. Right: The one-loop Higgs

potential. Here we take MH = 125.9GeV and ↵s = 0.1185.

CMS value. Then, the tree and one-loop Higgs potential becomes flat around 1017–18GeV as shown

in Fig. 2.

Let us expand the e↵ective potential of the Higgs field V
e↵

(') on the flat space-time background

around its minimum:

V (') =
�
e↵

(µ = ')

4
'4, �

e↵

(µ) = �
min

+
1X

n=2

�n
(16⇡2)n

✓
ln

µ

µ
min

◆
2

, (11)

where the overall factor '4 is put to make the expansion well-bahaved. In the potential analysis

around the minimum, we can safely neglect the higher order terms with n � 3, and we will omit
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FIG. 4: SM Higgs potential in the prescription I with ⇠ = 10 and c = 1, corresponding to µmin = 7.6 ⇥

1017 GeV, and with �2 = 0.5. The red (upper), green (center) and purple (lower) lines are drawn with

�min = 2�c, �c, and �c/2, respectively. The values of �min = 2�c and �c/2 are chosen just for illustration.

Each line roughly corresponds to the one with the same color in Fig. 2.

We expanded the e↵ective potential of the Higgs field V
e↵

on the flat space-time background

around its minimum as in Eq. (14):

V =
�
e↵

(µ)

4
'4, (44)

�
e↵

(µ) = �
min

+
1X

n=2

�n
(16⇡2)n

✓
ln

µ

µ
min

◆
2

. (45)

The choice of scale (33) and (VB) correspond to the prescription I and II, respectively. As in

Section II, we can safely neglect the higher order terms with n � 3, and we continue to omit them.

A. Prescription I

1. Analysis in prescription I

In the prescription I, the Higgs potential is given by Eq. (26)(44) with the scale (33). Concretely,

U(') =
'4

4(1 + ⇠'2/M2

P )
2

8
<

:�
min

+
�
2

(16⇡2)2

"
ln

 
1

c

s
⇠'2/M2

P

1 + ⇠'2/M2

P

!#
2

9
=

;

U 0(') =
'3M6

P

(M2

P + ⇠'2)3

(
�
min

+
�
2

2 (16⇡2)2

"
1 + 2 ln

 
1

c

s
⇠'2

M2

P + ⇠'2

!#
ln

 
1

c

s
⇠'2

M2

P + ⇠'2

!)
,

(46)



However,



There remains  
initial condition 
problem.



Slow-roll inflation does 
NOT solve horizon problem
✦ E.g. in chaotic inflation, 

✴ A lager region than Hubble length scale 

✴ must have the same field value 

✴ simultaneously & coherently.  

✦ How about having eternal inflation before the one we 
observe by CMB?



Eternal inflation at domain wall
✦ We see there are two vacua: 

✦ Domain wall between two vacua: 

✴ For a given random initial condition. 

✦ If relative curvature at maximum is one, η := MP
2 Uχχ/U < 1.4, 

✴ DW supports inflation forever. 

✴ A solution to horizon problem.

[Hamada, KO, Takahashi, 2014]

[Sakai, Shinkai, Tachizawa & Maeda, 1996]

potential

DW

field value

Figure 9: Schematic figure for the maximum that yields the domain wall, which becomes the
source for the eternal inflation.

it corresponds to the A-R (or ⌧̃
1

-⌧̃
2

) plane. As we have seen in this section,
generally there is at least one runaway direction in this space that corresponds to
opening up an extra dimension; see Fig. 8. We will discuss its physical implications
in the subsequent sections.

4 Eternal Higgs inflation

As shown in Introduction, the Higgs potential V ⇠ �
e↵

|H|4 in the SM shows a
quite peculiar behavior when extrapolated to very large field values: all of the
�
e↵

, its running, and the bare Higgs mass can be accidentally small. In Ref. [58],
we have proposed a possibility that this behavior, so to say the criticality, is a
consequence of the Planck scale physics and that the criticality is closely related
to the cosmic inflation.

We have seen that the large field limit goes down to a runaway direction, which
corresponds to opening up an extra dimension, in the multi degrees of freedom
space, as shown in Fig. 8. Therefore, there is at least one maximum of the potential
around the Planck scale; see Fig. 9. This maximum can be a source of an eternal
inflation at the core of the domain wall [97] between the electroweak vacuum and
the runaway vacuum, in which the fifth dimension is opened up. In order for
this to work, the curvature of the potential at the maximum must be su�ciently
small [98]:

M2

P

V''

V

����
maximum

. 1.4. (82)

In our scenario, this can be naturally satisfied as follows. The potential for the
fifth dimension can be seen by putting D = 5 in Eq. (19). In stringy language, the
action for the fifth dimension R0 � M�1

s

is coming from the one-loop potential:
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Figure 7: The trajectory that starts from ⌘ = 0 at (⌧̃
1

, ⌧̃
2

) =
⇣
0, R/

p
↵0
⌘

for a fixed value of

R/
p

↵0 being
p

2, 2, and 21/3 in the left, center, and right panels, respectively, showing the
runaway, periodic, and chaotic limits. We have shaded the fundamental region for the T-dual
transformations.

potential

field value

䠛 A direction in
multi-d.o.f. sp.

Figure 8: Schematic figure for the Higgs potential. Low energy side is determined phe-
nomenologically. High energy side represents a runaway direction in the multi degrees of
freedom space.

what is the physical large field limit along a potential valley after including all the
higher order corrections. In Fig. 7, we have checked the large A limit for a fixed
R. Is this a physical limit, and if not, what should it be? Comparing Figs. 5 and
6, we see that it is a generic feature that there is a runaway vacuum no matter
what the structure is around A, R�1 ⇠ M

s

. It seems plausible that if the physical
large A limit is not the one with fixed ⌧̃

2

, then large A limit goes into the runaway
vacuum after all. However, we consider all the three limits, runaway, periodic,
and chaotic in order not to loose generality.

As said above, the extrapolation from the low energy data has revealed that
there is the quasi-flat direction of the Higgs potential in the SM. We are interested
in the potential for the large field values. Beyond the string or Planck scale,
there opens up several quasi-flat directions in general. Therefore we need to
consider a multi-dimensional field space. In the example examined in this section,
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Solution to CC problem
✦ r→∞ runaway vacuum with CC exactly zero. 

✦ MPP requires our vacuum be degenerate with this. 

✴ New solution to CC problem. 

✦ How to explain observation?

Figure 11: The schematic behavior of the Higgs potential with the chaotic limit. schematic chaotic potential

to collide.

5 Solution to cosmological constant problem
solution to cosmological constant

As is reviewed in detail in Appendix
MPP review
D, the MPP requires a degenerate vacuum at

the field value of the order of the Planck scale. The cosmological constant of the
runaway vacuum is exactly zero; see footnote

limit is free
4. Then the MPP tells us that our

electroweak vacuum must have the zero cosmological constant too. This is a new
solution to the cosmological constant problem in terms of the MPP. Note that
this solution applies regardless of the existence of the eternal topological inflation.
Then how can we explain the observed value of the cosmological constant? This
is also explained in the same framework as follows.

The observed value of the cosmological constant is
Ade:2013zuv
[80]

⇢obs
⇤

= (0.686± 0.020) 3H2

0

M2

P ' (2.2meV)4 , (76) cosmological constant observed

where MP := 1/
p
8⇡G = 2.4⇥ 1018GeV and

H
0

= (67.4± 1.4)
km/s

Mpc
. (77) observed Hubble

We will show that this value can be explained by a consideration of the statistical
fluctuation in the canonical ensemble in the MPP, reviewed in Appendix

MPP review
D.

The current universe is being dominated by the cosmological constant (
cosmological constant observed
76) and

is entering the second inflationary stage with the Hubble constant

H2 ⇠ ⇢obs
⇤

3M2

P

⇠ �
10�33 eV

�
2

, (78)

which becomes the de Sitter space dS
4

. After the Euclideanization, the spacetime
becomes S4 with radius rU = 1/H ' 1027m. In Planck units, this is

rU
lP

=
MP

H
⇠ 1060. (79)
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⇥

H
0

= (67.4± 1.4)
km/s

Mpc
.



CC as fluctuation
✦ Partition function Z, while i spacetime points. 

∵ Si 〜 O(1) 

✦ Then

Z =

Z "
Y

i

d'i

#
e�S

=
Y

i

✓Z
dSi

d'i

dSi
e�Si

◆

=
Y

i

✓Z
dSi e

�fi(Si)

◆
,

Since the action S can be written as

S ⇠ r4U⇢⇤, (87)

Eq. (
typical action
86) implies

⇢
⇤

?⇠ 1

l4P
= M4

P , (88)

which is of the 120 orders of magnitude larger than the observation (
cosmological constant observed
76).

Now let us assume that S⇤ is tuned to be zero e.g. by the mechanism proposed
in this paper, namely the MPP with runaway vacuum. Then the value of the
cosmological constant that we observe today will be the root mean square of the
fluctuations from zero. For each site, the natural value of the variance of Si would
be of order unity. There are totally N := r4U/l

4

P sites, and the total fluctuation is

�S ⇠ 1p
N

=
l2P
r2U

⇠ 10�120. (89)

For each site i with volume l4P , the fluctuation of the cosmological constant �⇢
⇤i

for a given �Si is �⇢
⇤i = �Si/l4P . Therefore, the root mean square value of the

cosmological constant becomes

�⇢
⇤

⇠ �S

l4P
⇠ 10�120

�
1018GeV

�
4

= (meV)4 . (90)

We have obtained the right amount of the cosmological constant as the root mean
square of the fluctuation from zero!

6 Summary
summary

We have studied possible large field limits of the SM Higgs, assuming that it is
coming from a massless mode of a closed string at the tree level in the super-
string theory with its supersymmetry broken at the string scale. In the toroidal
compactification, putting a background for such a massless state corresponds to
a boost in the momentum space lattice. We have classified the large boost limits
into three categories: runaway, periodic, and chaotic.

As a concrete toy model, we have examined the ten-dimensional SO(16) ⇥
SO(16) non-supersymmetric heterotic string, with a dimension being compactified
on S1. We have considered the large field limit of a Wilson line on the S1, and
reproduced these three limits. We have argued that this behavior is universal if
the emission vertex of the Higgs is written as a product of holomorphic (1,0) and
anti-holomorphic (0,1) operators, not only in the case of toroidal compactification.
In the known models of fermionic construction and of orbifolding, the emission
vertex tends to be written as such a product, and our argument applies for these
wide class of models.

We may get the eternal inflation from the above three large field limits, together
with the possibility of the criticality of the SM Higgs potential. In the runaway
and periodic cases, this is realized as a topological inflation at the domain wall
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Let us recall what was the cosmological constant problem. In ordinary QFT
sense, natural values of Si∗ would be order unity, and S∗ will take a typical value

S∗ =

r4U/l4P∑

i=1

Si∗ ∼
r4U
l4P

. (86) typical action

Since the action S can be written as

S ∼ r4UρΛ, (87)

Eq. (
typical action
86) implies

ρΛ
?∼ 1

l4P
= M4

P , (88)

which is of the 120 orders of magnitude larger than the observation (
cosmological constant observed
76).

Now let us assume that S∗ is tuned to be zero e.g. by the mechanism proposed
in this paper, namely the MPP with runaway vacuum. Then the value of the
cosmological constant that we observe today will be the root mean square of the
fluctuations from zero. For each site, the natural value of the variance of Si would
be of order unity. There are totally N := r4U/l

4
P sites, and the total fluctuation is

δS ∼ 1√
N

=
l2P
r2U

∼ 10−120. (89)

For each site i with volume l4P , the fluctuation of the cosmological constant δρΛi
for a given δSi is δρΛi = δSi/l4P . Therefore, the root mean square value of the
cosmological constant becomes

δρΛ ∼ δS

l4P
∼ 10−120

(
1018GeV

)4
= (meV)4 . (90)

We have obtained the right amount of the cosmological constant as the root mean
square of the fluctuation from zero!

6 Summary
summary

We have studied possible large field limits of the SM Higgs, assuming that it is
coming from a massless mode of a closed string at the tree level in the super-
string theory with its supersymmetry broken at the string scale. In the toroidal
compactification, putting a background for such a massless state corresponds to
a boost in the momentum space lattice. We have classified the large boost limits
into three categories: runaway, periodic, and chaotic.

As a concrete toy model, we have examined the ten-dimensional SO(16) ×
SO(16) non-supersymmetric heterotic string, with a dimension being compactified
on S1. We have considered the large field limit of a Wilson line on the S1, and
reproduced these three limits. We have argued that this behavior is universal if
the emission vertex of the Higgs is written as a product of holomorphic (1,0) and
anti-holomorphic (0,1) operators, not only in the case of toroidal compactification.
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which becomes the de Sitter space dS4. After the Euclideanization, the spacetime
with radius rU = 1/H ≃ 1027m. In Planck units, this is

This is the CC problem.



Our proposal
✦ MPP＋runaway vacuum gives ρΛ

total=0。 

✦ Average fluctuation from it: 

✦ Energy density:

large universe

our universe

Figure 12: Universe is divided into parts that will eventually become causally disconnected
to each other in the end of their histories.

We consider one of the S4’s and latticize it by the lattice spacing of the order
of lP = 1/M

P

, and let Si be the action on each site labeled by i. The total action
for the S4 becomes the sum over positions:

S =

r4U/l4PX

i=1

Si. (88)

Assuming that Si are independent of each other, the vanishing cosmological con-
stant for the large universe leads to hSii = 0 for each i and in particular to hSi = 0
for this part. Therefore the value of S fluctuates around zero and its variance can
be evaluated as

⌦
S2

↵ ⇠ N :=
r4U
l4P

, (89)

where we have assumed that the variance of each Si is of order unity.
We interpret Eq. (89) as the variance of the actions of the S4’s in the large

universe. Then the typical amount of the energy density of one S4 is estimated as

⇢
⇤

⇠
phS2i

r4U
⇠ 1

l2P r2U
⇠ ( meV)4 . (90)

Thus, we have obtained the right amount of the cosmological constant as the
fluctuation from zero.

We note that the value of H is not really a prediction in this argument. We
have rather provided a consistent explanation of having a finite amount of the
cosmological constant, even though it is fixed to be zero for the large universe.

6 Summary

We have studied possible large field limits of the SM Higgs, assuming that it
is coming from a massless state at the tree level in heterotic string theory with
its supersymmetry broken at the string scale. In the toroidal compactification,
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Assuming that Si are independent of each other, the vanishing cosmological con-
stant for the large universe leads to hSii = 0 for each i and in particular to hSi = 0
for this part. Therefore the value of S fluctuates around zero and its variance can
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We note that the value of H is not really a prediction in this argument. We
have rather provided a consistent explanation of having a finite amount of the
cosmological constant, even though it is fixed to be zero for the large universe.
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is coming from a massless state at the tree level in heterotic string theory with
its supersymmetry broken at the string scale. In the toroidal compactification,
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(This is not really a “solution” but “explanation”.)



Summary
• MPP reviewed 

• More non-SUSY vacua than SUSY ones 

• Higgs inflation in (non-super) superstring 

• Cosmological constant problem solved by MPP?



Summary
• MPP reviewed 

• More non-SUSY vacua than SUSY ones 

• Higgs inflation in (non-super) superstring 

• Cosmological constant problem solved by MPP?
explained within MPP




