On the Anisotropy of the Arrival Directions of Galactic Cosmic Rays

Markus Ahlers
Niels Bohr Institute, Copenhagen

TeVPA 2017, August 11, 2017
• **Standard paradigm:**
Galactic CRs accelerated in supernova remnants

✓ sufficient power: \(\sim 10^{-3} \times M_\odot \) with a rate of \(\sim 3 \) SNe per century

[Baade & Zwicky’34]

• galactic CRs via diffusive shock acceleration?

\[n_{\text{CR}} \propto E^{-\gamma} \] (at source)

• energy-dependent **diffusion** through Galaxy

\[n_{\text{CR}} \propto E^{-\gamma-\delta} \] (observed)

• arrival direction **mostly isotropic**
Cosmic ray anisotropies up to the level of one-per-mille at various energies
(Super-Kamiokande; Milagro; ARGO-YBJ; EAS-TOP, Tibet AS-γ; IceCube; HAWC)

HAWC & IceCube @ 10TeV

[→ talk by Dan Fiorino; IceCube & HAWC’17]
Dipole Anisotropy

- spherical harmonic expansion of relative CR intensity:

\[I(\alpha, \delta) \simeq 1 + \delta \cdot n(\alpha, \delta) + \mathcal{O}(\{a_{\ell m}\}_{\ell \geq 2}) \]

- expected dipole anisotropy:

\[\delta = 3K \cdot \nabla \ln n_{\text{CR}} + (2 + \Gamma_{\text{CR}}) \beta \]

- **Data-driven methods** of anisotropy reconstructions used by ground-based observatories are **only sensitive to dipole along the equatorial plane (EP)** (or, more generally, to all \(m \neq 0 \) multipoles).

\[\Delta |\delta_{\text{EP}}| \sim \frac{f_{\text{sky}}}{\sqrt{N_{\text{tot}}}} \]

- **Monte-Carlo-based methods** are sensitive to the full dipole, but are **limited by systematic uncertainties**.
TeV-PeV CR Dipole Anisotropy

![Graph showing anisotropy of the arrival directions of Galactic CRs](image)

Markus Ahlers (NBI, Copenhagen) Anisotropy of the Arrival Directions of Galactic CRs August 11, 2017 slide 5
Local Magnetic Field

- reconstructed diffuse dipole:

\[\delta^* = \delta - (2 + \Gamma_{\text{CR}})\beta = 3K \cdot \nabla \ln n^* \]

- projection onto equatorial plane:

\[\delta_{\text{EP}}^* = (\delta_{0h}^*, \delta_{6h}^*) \]

- strong ordered magnetic fields in the local environment

\[\rightarrow \text{diffusion tensor reduces to projector:} \]

\[K_{ij} \rightarrow \kappa || \hat{B}_i \hat{B}_j \]

- TeV–PeV dipole data consistent with magnetic field direction inferred by IBEX data

\[\rightarrow \text{talk by Eric Zirnstein} \]

\[\text{[McComas et al.'09]} \]

\[\text{[e.g. Mertsch & Funk’14; Schwadron et al.’14]} \]
Known Local Supernova Remnants

- projection maps source gradient onto \hat{B} or $-\hat{B}$

→ **dipole phase** α_1 depends on orientation of magnetic hemispheres

- intersection of magnetic equator with Galactic plane defines two source groups:

 $120^\circ \lesssim l \lesssim 300^\circ \rightarrow \alpha_1 \simeq 49^\circ$

 $-60^\circ \lesssim l \lesssim 120^\circ \rightarrow \alpha_1 \simeq 229^\circ$
Local Magnetic Field

- 1–100 TeV phase indicates dominance of a local source within longitudes:
 \[120^\circ \lesssim l \lesssim 300^\circ \]

- plausible scenario: Vela SNR \([\text{MA}'16]\)

 - **age**: \(\simeq 11,000\) yrs
 - **distance**: \(\simeq 1,000\) lyrs
 - **SNR rate**: \(R_{\text{SNR}} = 1/30\) yr\(^{-1}\)
 - **(effective) isotropic diffusion**: \(K_{\text{iso}} \simeq 4 \times 10^{28} (E/3\text{GeV})^{1/3} \text{cm}^2/\text{s}\)
 - **Galactic half height**: \(H \simeq 3\) kpc
 - **instantaneous CR emission** \((Q_\star)\)

\[n/Q_\star \text{[kpc}^{-3}] \]
\[K_{\text{iso}} |\nabla n|/Q_\star \text{[kpc}^{-3}] \]
Local Magnetic Field

- 1–100 TeV phase indicates dominance of a local source within longitudes:
 \[120^\circ \lesssim l \lesssim 300^\circ\]

- plausible scenario: Vela SNR [MA’16]
 - **age**: \(\simeq 11,000\) yrs
 - **distance**: \(\simeq 1,000\) lyrs
 - **SNR rate**: \(\mathcal{R}_{\text{SNR}} = 1/30\) yr\(^{-1}\)
 - **(effective) isotropic diffusion**: \(K_{\text{iso}} \simeq 4 \times 10^{28} (E/3\text{GeV})^{1/3} \text{cm}^2/\text{s}\)
 - **Galactic half height**: \(H \simeq 3\) kpc
 - **instantaneous CR emission** \((Q_\star)\)
Small-Scale Anisotropy

Significant TeV small-scale anisotropies down to angular scales of $O(10)$ degrees.

$E_{\text{CR}} \approx 1 \text{ TeV}, N_{\text{CR}} \sim 4.9 \times 10^{10}$ [HAWC’14 (HAWC-111)]
Suggested Origin of Small-Scale Anisotropy

- magnetic reconnections in the heliotail \[\text{[Lazarian & Desiati'10]}\]
- non-isotropic particle transport in the heliosheath \[\text{[Desiati & Lazarian'11]}\]
- heliospheric electric field structure \[\text{[Drury'13]}\]
- non-uniform pitch-angle diffusion \[\text{[Malkov, Diamond, Drury & Sagdeev'10; Giacinti & Kirk'17]}\]
 \[\rightarrow \text{talk by Gwenael Giacinti}\]
- non-diffusive CR transport \[\text{[Salvati & Sacco'08; Drury & Aharonian'08]}\]
 \[\text{[Battaner, Castellano & Masip'14; Harding, Fryer & Mendel'16]}\]
- magnetized outflow from old SNRs \[\text{[Biermann, Becker, Seo & Mandelartz'12]}\]
 \[\rightarrow \text{talk by Julia Tjus}\]
- strangelet production in molecular clouds or neutron stars \[\text{[Kotera, Perez-Garcia & Silk '13]}\]
- small-scale anisotropies from local magnetic field mapping of a global dipole \[\text{[Giacinti & Sigl'12; MA'14; MA & Mertsch'15]}\]
 \[\text{[Pohl & Rettig'16; López-Barquero, Farber, Xu, Desiati & Lazarian'16]}\]
Angular Power Spectrum

- smooth function $g(\theta, \phi)$ on a sphere can be decomposed in terms of spherical harmonics $Y_m^\ell(\theta, \phi)$:

$$g(\theta, \phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_m^\ell(\theta, \phi)$$

- angular power spectrum:

$$C_\ell = \frac{1}{2\ell + 1} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^2$$

- approximate relation between angular scale and multipole ℓ

$$\Delta \alpha \approx \frac{180^\circ}{\ell}$$

[IceCube’16 (top) & HAWC’14 (bottom)]
Analogy to Gravitational Lensing

CMB temperature fluctuations

Cosmic Ray Gradient

Local Magnetic Turbulence

Large Scale Structure

small scale temperature fluctuations

small scale anisotropies

Markus Ahlers (NBI, Copenhagen)
Simulation via CR Backtracking

- (quasi-)stationary solution of the diffusion approximation:

\[4\pi \langle f \rangle \simeq n + r \nabla n - 3 \hat{p} K \nabla n \]

1st order correction

- Liouville’s theorem:

\[f(t, r(t), p(t)) = f(t', r(t'), p(t')) \]

- CR backtracking \((T \gg \tau_{\text{diff}})\):

\[f(0) \simeq \delta f(-T) + \langle f \rangle (-T) \]

→ ensemble-averaged power spectrum \((\ell \geq 1)\):

\[
\frac{\langle C_\ell \rangle}{4\pi} \simeq \int \frac{d\hat{p}_1}{4\pi} \int \frac{d\hat{p}_2}{4\pi} P_\ell (\hat{p}_1 \hat{p}_2) \lim_{T \to \infty} \langle r_{1i}(-T) r_{2j}(-T) \rangle \frac{\partial_i n \partial_j n}{n^2}
\]

\[\sigma^2 = 1, \frac{r_L}{L_c} = 0.1, \lambda_{\min} / L_c = 0.01, \lambda_{\max} / L_c = 100, \Omega T = 100 \]
Summary

- Observation of CR anisotropies at the level of one-per-mille is challenging.
- Reconstruction methods introduce bias.
- **Dipole anisotropy** can be understood in the context of standard diffusion theory:
 - TeV-PeV dipole phase aligns with local ordered magnetic field.
 - **New method** of measuring local magnetic fields
 - Amplitude variations as a result of local sources
 - Plausible & natural candidate: the Vela supernova remnant
- Observed CR data shows evidence of **small-scale anisotropy**.
 - Effect of heliosphere? [e.g. review by MA & Mertsch’16]
 - Result of local magnetic turbulence? [Giacinti & Sigl’12; MA’14; MA & Mertsch’15]
 - Induces cross-talk with dipole anisotropy in limited field of view.
Angular Power Spectrum

- Every smooth function $g(\theta, \phi)$ on a sphere can be decomposed in terms of spherical harmonics Y_m^ℓ:

$$g(\theta, \phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_m^\ell(\theta, \phi) \quad \leftrightarrow \quad a_{\ell m} = \int d\Omega(Y_m^\ell)^*(\theta, \phi)g(\theta, \phi)$$

- angular power spectrum:

$$C_\ell = \frac{1}{2\ell + 1} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^2$$

- related to the two-point auto-correlation function: (n_{1/2} : unit vectors, $n_1 \cdot n_2 = \cos \eta$)

$$\xi(\eta) = \frac{1}{8\pi^2} \int d\mathbf{n}_1 \int d\mathbf{n}_2 \delta(n_1 n_2 - \cos \eta)g(n_1)g(n_2) = \frac{1}{4\pi} \sum_\ell (2\ell + 1) C_\ell P_\ell(\cos \eta)$$

Note that individual C_ℓ’s are independent of coordinate system (assuming full sky coverage).
Multipole Cross-Talk

- relative CR intensity (including small-scale structure):

\[I(\alpha, \delta) = 1 + \sum_{\ell \geq 1} \sum_{m \neq 0} a_{\ell m} Y_{\ell m}(\alpha, \pi/2 - \delta) \]

- dipole: \(a_{1-1} = (\delta_0h + i\delta_6h) \sqrt{2\pi/3} \) and \(a_{11} = -a_{1-1}^* \)

- traditional dipole analyses extract amplitude “\(A_1 \)” and phase “\(\alpha_1 \)” from data projected into right ascension \((s_{1/2} \equiv \sin \delta_{1/2}) \)

\[
A_1 e^{i\alpha_1} = \frac{1}{\pi} \int_0^{2\pi} d\alpha e^{i\alpha} \frac{1}{s_2 - s_1} \int_{s_1}^{s_2} d\sin \delta \ I(\alpha, \delta) \]

- the presence of high-\(\ell \) multipole moments introduces cross-talk

Can now estimate the systematic uncertainties of dipole measures from dipole-induced small-scale power spectrum.
Systematic Uncertainty of CR Dipole

IceTop

$\left(\Delta \delta^{\ast}_{\delta}/\delta^{\ast}\right)_{\text{IceTop}} = 0.41, \delta_1 = -90^\circ, \delta_2 = -35^\circ$

IceCube

$\left(\Delta \delta^{\ast}_{\delta}/\delta^{\ast}\right)_{\text{IceCube}} = 0.39, \delta_1 = -90^\circ, \delta_2 = -25^\circ$

EAS-TOP

$\left(\Delta \delta^{\ast}_{\delta}/\delta^{\ast}\right)_{\text{EAS-TOP}} = 0.31, \delta_1 = 10^\circ, \delta_2 = 58^\circ$

ARGO-YBJ

$\left(\Delta \delta^{\ast}_{\delta}/\delta^{\ast}\right)_{\text{ARGO-YBJ}} = 0.20, \delta_1 = -10^\circ, \delta_2 = 70^\circ$

Tibet-ASγ

$\left(\Delta \delta^{\ast}_{\delta}/\delta^{\ast}\right)_{\text{Tibet-ASγ}} = 0.12, \delta_1 = -30^\circ, \delta_2 = 90^\circ$

HAWC (without IC)

$\left(\Delta \delta^{\ast}_{\delta}/\delta^{\ast}\right)_{\text{HAWC (without IC)}} = 0.07, \delta_1 = -41^\circ, \delta_2 = 79^\circ$
Systematic Uncertainty of CR Dipole
Gedankenexperiment

• **Idea:** local realization of magnetic turbulence introduces small-scale structure [Giacinti & Sigl’11]

• Particle transport in (static) magnetic fields is governed by Liouville’s equation of the CR’s phase-space distribution f:

$$\frac{df}{dt}(t, r, p) = 0$$

• “trivial” solution:

$$f(0, 0, p) = f(-T, r(-T), p(-T))$$

• **Gedankenexperiment:**
 Assume that at look-back time $-T$ initial condition is **homogenous, but not isotropic**:

$$f(0, 0, p) = \tilde{f}(p(-T))$$
Gedankenexperiment

- Initial configuration has power spectrum \tilde{C}_ℓ.
- For small correlation angles η flow remains correlated even beyond scattering sphere.
- Correlation function for $\eta = 0$:
 \[
 \xi(0) = \frac{1}{4\pi} \int d\hat{p}_1 \tilde{f}^2(p_1(-T))
 \]
- On average, the rotation in an isotropic random rotation in the turbulent magnetic field leaves an isotropic distribution on a sphere invariant:
 \[
 \langle \xi(0) \rangle = \frac{1}{4\pi} \int d\hat{p}_1 \tilde{f}^2(p_1)
 \]
 \[
 \rightarrow \text{The weighted sum of } \langle C_\ell \rangle \text{'s remains constant:}
 \]
 \[
 \frac{1}{4\pi} \sum_{\ell \geq 0} (2\ell + 1) \tilde{C}_\ell = \frac{1}{4\pi} \sum_{\ell \geq 0} (2\ell + 1) \langle C_\ell(T) \rangle
 \]
Evolution Model

- Diffusion theory motivates that each $\langle C_\ell \rangle$ decays exponentially with an effective relaxation rate

$$\nu_\ell \propto L^2 \propto \ell(\ell + 1)$$

- A linear $\langle C_\ell \rangle$ evolution equation with generation rates $\nu_{\ell \rightarrow \ell'}$ requires:

$$\partial_t \langle C_\ell \rangle = -\nu_\ell \langle C_\ell \rangle + \sum_{\ell' \geq 0} \nu_{\ell' \rightarrow \ell} \frac{2\ell' + 1}{2\ell + 1} \langle C_{\ell'} \rangle \quad \text{with} \quad \nu_\ell = \sum_{\ell' \geq 0} \nu_{\ell' \rightarrow \ell}$$

- For $\nu_\ell \simeq \nu_{\ell \rightarrow \ell+1}$ and $\tilde{C}_\ell = 0$ for $\ell \geq 2$ this has the analytic solution:

$$\langle C_\ell \rangle(T) \simeq \frac{3\tilde{C}_1}{2\ell + 1} \prod_{m=1}^{\ell-1} \nu_m \sum_n \prod_{p=1(\neq n)}^{\ell} \frac{e^{-T\nu_n}}{\nu_p - \nu_n}$$

- For $\nu_\ell \simeq \ell(\ell + 1)\nu$ we arrive at a finite asymptotic ratio:

$$\lim_{T \to \infty} \frac{\langle C_\ell \rangle(T)}{\langle C_1 \rangle(T)} \sim \frac{18}{(2\ell + 1)(\ell + 2)(\ell + 1)}$$
Comparison with CR Data

\[
\lim_{T \to \infty} \frac{\langle C_\ell \rangle(T)}{\langle C_1 \rangle(T)} \approx \frac{18}{(2\ell + 1)(\ell + 2)(\ell + 1)}
\]

[MA’14; updated with HAWC data]
Local Description: Relative Scattering

- evolution of C_ℓ’s:

$$ \partial_t \langle C_\ell \rangle = -\frac{1}{2\pi} \int d\hat{p}_1 \int d\hat{p}_2 P_\ell(\hat{p}_1 \hat{p}_2) \langle (p_1 \nabla f_1 + i\omega L f_1) f_2 \rangle $$

- large-scale dipole anisotropy gives an effective “source term”:

$$ -\frac{1}{2\pi} \int d\hat{p}_1 \int d\hat{p}_2 P_\ell(\hat{p}_1 \hat{p}_2) \langle (p_1 \nabla f_1) f_2 \rangle \rightarrow Q_1 \delta_\ell_1 $$

- BGK-like Ansatz for scattering term ($\langle i\omega L f \rangle \rightarrow -\frac{\nu}{2} L^2 \langle f \rangle$) [Bhatnagara, Gross & Krook’54]

$$ -\frac{1}{2\pi} \int d\hat{p}_1 \int d\hat{p}_2 P_\ell(\hat{p}_1 \hat{p}_2) \langle i\omega L f_1 \rangle f_2 \rightarrow \frac{1}{2\pi} \int d\hat{p}_1 \int d\hat{p}_2 P_\ell(\hat{p}_1 \hat{p}_2) \tilde{\nu}(\hat{p}_1 \hat{p}_2) L^2 \langle f_1 f_2 \rangle $$

- Note that $\tilde{\nu}(1) = 0$ for vanishing regular magnetic field.

$$ \tilde{\nu}(x) \simeq \nu_0 (1 - x)^p $$
Cosmic Ray Dipole Anisotropy

- cosmic-ray (CR) arrival directions described by \textbf{phase-space distribution}

\[f(t, r, p) = \phi(t, r, p)/(4\pi) + 3\hat{p}\Phi(t, r, p)/(4\pi) + \ldots \]

- monopole

- dipole

- local CR spectral density [GeV\(^{-1}\)cm\(^{-3}\)]

\[n(p) = p^2\phi(t, r_{\oplus}, p) \propto p^{-\Gamma_{CR}} \]

\[\propto p^{-(\Gamma_{CR}+2)} \]

- in the absence of sources, follows Liouville’s equation (\(\dot{f} = 0\))

\[\partial_t \phi \simeq \nabla_r (K \nabla_r \phi) \] \textit{diffusion equation}

\[\Phi \simeq -K \nabla_r \phi \] \textit{Fick’s law}

- diffusion tensor \(K\):

\[K_{ij} = \kappa_{||}\hat{B}_i\hat{B}_j + \kappa_{\perp}(\delta_{ij} - \hat{B}_i\hat{B}_j) + \kappa_A \epsilon_{ijk}\hat{B}_k \]

- \textbf{dipole anisotropy:} \(\delta = 3K \cdot \nabla_r \ln n\)
Compton-Getting Effect

- phase-space distribution is **Lorentz-invariant**

 \[f^*(p^*) = f(p) \]

- consider **relative motion of observer** (\(\beta = \frac{v}{c} \)) in plasma rest frame (\(\star \)):

 \[p^* = p + p\beta + \mathcal{O}(\beta^2) \]

- Taylor expansion:

 \[f(p) \simeq f^*(p) + (p^* - p)\nabla_{p^*}f^*(p) + \mathcal{O}(\beta^2) \simeq f^*(p) + p\beta\nabla_{p^*}f^*(p) + \mathcal{O}(\beta^2) \]

→ splitting in \(\phi \) and \(\Phi \) is **not invariant**:

\[\phi = \phi^* \quad \text{and} \quad \Phi = \Phi^* + \frac{1}{3}\beta \frac{\partial \phi^*}{\partial \ln p} \]

- remember: \(\phi \sim p^{-2n_{\text{CR}}} \propto p^{-2-\Gamma_{\text{CR}}} \)

\[\delta = \delta^* + (2 + \Gamma_{\text{CR}})\beta \]

Compton-Getting effect