

RESOLVING HIGH ENERGY UNIVERSE USING Strong gravitational lensing

Anna Barnacka Einstein Fellow at Harvard

EXTRAGALACTIC JETS – M87

36.0

Increased X-ray emission by a factor of **50** from the HST-1 knot (Harris et al. 2006,2009)

×10⁻¹² HEGRA H.E.S.S. VERITAS Chandra (nucleus)

Core and HST-1: Separation $\sim 60 \text{ pc}$

Flares from knots along the jets

► Frequency of M87-like variability

► Origin of gamma-ray flares

GRAVITATIONALLY LENSED JETS

Credit: NASA's Goddard Space Flight Center

IMAGINE M87 AT Z=1

Differences between the *core* and the *HST-1*: difference in time delay: ~ 2 days

Barnacka, A., Geller, M., Dell'Antonio, I., & Benbow, W. (2014, ApJ)

LENSED GAMMA-RAY JETS: PKS 1830-211

Source z = 2.5, Lens z = 0.9

Radio Time Delay 26±5 days

The first evidence of lensing at gamma-rays (Barnacka et al. 2011)

Time Delay = 27±0.5 days

GAMMA-RAY FLARES: TIME DELAYS

Barnacka, A., Geller, M., Dell'Antonio, I., & Benbow, W. (ApJ,2015)

SPATIAL ORIGIN OF GAMMA-RAY FLARES

Barnacka, A., Geller, M., Dell'Antonio, I., & Benbow, W. (ApJ,2015)

►PKS 1830-211

► Effective Spatial Resolution ~ 0.02" (~ HST) Barnacka, A., et al. (2015, ApJ, 809, 100)

►What if we could resolve emission ~0.001"?

LENSED BLAZAR: B2 0218+35

1.687 GHz, Patnaik et al. (1992)

Source z = 0.944, Lens z = 0.6847

Radial Jet Projection

Reconstruction

~ 1 milliarcsecond

Radio Time Delay 10.5 ± 0.5 days

GAMMA-RAY TIME DELAY

Time Delay = 11.38 ± 0.13 days (Barnacka et al.,2016) Time Delay = 11.46 ± 0.16 days (Cheung et al. 2014)

COSMIC SCALE

Time Delay + Position of the Images + Lens Model

Cosmic Scale: Hubble Parameter

Offset between the resolved emitting region and the variable emitting region

Barnacka, A., et al. (2015, ApJ, 799, 48)

HUBBLE CONSTANT & GAMMA-RAY SOURCE CONNECTION

GALAXIES AS HIGH-RESOLUTION TELESCOPES

LENSED QUASARS IN CAUSTIC CONFIGURATION

EUCLID, LSST, AND SKA SYNERGY

SKA

First light: 2020 Resolution: 2 mas at 10 GHz 20 mas at 1 GHz

Euclid

First light: 2020 HST like resolution to ~ 24 mag

LSST

First light: 2019 Angular resolution: 0.7" Time Delays

In near future: observations of more than **10⁵** strongly lensed flat spectrum radio-loud quasars

SUMMARY

► Spatial Resolution at Gamma Rays:

- ►~1 milliarcsecond
- ► Gamma-ray Flares not always from Radio Core
- ► Radio Core not at Central Engine

► Caustic Configuration:

- >50 x Flux Magnification
- ►>50 x Offset Amplification

Insight into inner parts of active galaxies at high redshifts

►Currently: dozen of sources

► Near future: SKA and Euclid dozen of thousands of sources

Backup Slides

Backup Slides

Galaxies as High Resolution Telescopes

ANGULAR AMPLIFICATION IN CAUSTIC REGION

Monte Carlo Simulations of **10⁶** pair of offset sources

FLUX MAGNIFICATION IN CAUSTIC REGION

Barnacka (2017, arXiv:1705.00690)

....

Backup Slides B2 0218+35

THE HUBBLE PARAMETER TUNING APPROACH

: For an Singular Isothermal Sphere gravitational potential :

OBSERVATIONS: B2 0218+35

....

LENS MODELING

Barnacka et al. 2016, ApJ, 821, 58

RADIO FOLLOW UP

GAMMA-RAY FLARE 2

FUTURE FLARES

If Flare 1 and Flare 2 connected:

$$\begin{split} \beta_{app} &= \frac{D_{projected}(1+z_S)}{c\,\Delta t_{obs}} \\ &\approx 70 \left(\frac{D_{projected}}{24\,\mathrm{pc}}\right) \left(\frac{\Delta t_{obs}}{690\,\mathrm{days}}\right) \end{split}$$

9 milliarcseconds

If plasmoid continues its motion:

interaction with radio core ~ July 2016

Backup Slides PKS 1830-211

•

Lensed Gamma-Ray Jets: PKS 1830-211

The first evidence of lensing at gamma-rays (Barnacka et al. 2011)

Gamma-Ray Time delay 27.1±0.45 days

Gamma-ray Flares Time Delays ?

Gamma-ray Flare 1 and 2: Time Delays

Gamma-Ray Time delay > 50 days

Monte Carlo Simulations

Application of strong lensing

Barnacka, A., Geller, M., Dell'Antonio, I., & Benbow, W. (June 2014, ApJ)