

RESOLVING HIGH ENERGY UNIVERSE USING STRONG GRAVITATIONAL LENSING

Anna Barnacka Einstein Fellow at Harvard

EXTRAGALACTIC JETS - M87

Increased X-ray emission by a factor of **50** from the HST-1 knot (Harris et al. 2006,2009)

 -36.0 $\times 10^{-12}$ Chandra f(0.2-6 keV) [arbitrary units] **HST-1 HEGRA** LE.S.S./MAGIC/VERITAS camp $H.E.S.S.$ -32.0 **VERITAS** Chandra (nucleus) **60 pc** Chandra (HST-1) **TeV flareCore** 01/2000 12/2004 Date [mm/yyyy]

Core and HST-1: Separation ~ 60 pc

Flares from knots along the jets

 $2 \t3 \t4 \t5$

L.

➤Frequency of M87-like variability

➤Origin of gamma-ray flares

GRAVITATIONALLY LENSED JETS

Credit: NASA's Goddard Space Flight Center

IMAGINE M87 AT Z=1

Differences between the *core* and the *HST-1*: difference in time delay: ~ 2 days

Barnacka, A., Geller, M., Dell'Antonio, I., & Benbow, W. (2014, ApJ)

LENSED GAMMA-RAY JETS: PKS 1830-211

Source $z = 2.5$, Lens $z = 0.9$

Radio Time Delay 26±5 days

The first evidence of lensing at gamma-rays (Barnacka et al. 2011)

• **Time Delay = 27±0.5 days**

GAMMA-RAY FLARES: TIME DELAYS

Barnacka, A., Geller, M., Dell'Antonio, I., & Benbow, W. (ApJ,2015)

SPATIAL ORIGIN OF GAMMA-RAY FLARES

Barnacka, A., Geller, M., Dell'Antonio, I., & Benbow, W. (ApJ,2015)

➤**PKS 1830-211**

➤Effective Spatial Resolution ~ **0.02"** (~ HST) Barnacka, A., et al. (2015, ApJ, 809, 100)

➤What if we could resolve emission ~**0.001"**?

LENSED BLAZAR: B2 0218+35

1.687 GHz, Patnaik et al. (1992)

Source $z = 0.944$, Lens $z = 0.6847$

Radial Jet Projection

Reconstruction

~ 1 milliarcsecond

Radio Time Delay 10.5 ± 0.5 days

GAMMA-RAY TIME DELAY

Time Delay = 11.38±0.13 days (Barnacka et al.,2016) Time Delay = 11.46±0.16 days (Cheung et al. 2014)

COSMIC SCALE

Time Delay + Position of the Images + Lens Model

 Cosmic Scale: Hubble Parameter

Offset between the resolved emitting region and the variable emitting region

Barnacka, A., et al. (2015,ApJ,799,48)

HUBBLE CONSTANT & GAMMA-RAY SOURCE CONNECTION

GALAXIES AS HIGH-RESOLUTION TELESCOPES

LENSED QUASARS IN CAUSTIC CONFIGURATION

EUCLID, LSST, AND SKA SYNERGY

First light: 2020 Resolution: 2 mas at 10 GHz 20 mas at 1 GHz

SKA Euclid

First light: 2020 HST like resolution to \sim 24 mag

LSST First light: 2019 Angular resolution: 0.7″ Time Delays

In near future: observations of more than **105** strongly lensed flat spectrum radio-loud quasars

SUMMARY

➤Spatial Resolution at Gamma Rays:

- ➤~1 milliarcsecond
- ➤ Gamma-ray Flares not always from Radio Core
- ➤ Radio Core not at Central Engine

➤Caustic Configuration:

- ➤ >50 x Flux Magnification
- ➤>50 x Offset Amplification

➤ Insight into inner parts of active galaxies at high redshifts

➤Currently: dozen of sources

➤ Near future: SKA and Euclid dozen of thousands of sources

Backup Slides

Backup Slides

Galaxies as High Resolution Telescopes

ANGULAR AMPLIFICATION IN CAUSTIC REGION

Monte Carlo Simulations of **106** pair of offset sources

FLUX MAGNIFICATION IN CAUSTIC REGION

Barnacka (2017, arXiv:1705.00690)

 $\bullet\bullet\bullet\bullet\bullet$

Backup Slides B2 0218+35

THE HUBBLE PARAMETER TUNING APPROACH

The Hubble parameter enters into distance ratio in the time delay calculations $D \equiv \frac{D \sin(D \cos \theta)}{D \cos \theta} = h d$ where

: For an Singular Isothermal Sphere gravitational potential :

OBSERVATIONS: B2 0218+35

LENS MODELING

Barnacka et al. 2016, ApJ, 821, 58

RADIO FOLLOW UP

GAMMA-RAY FLARE 2

FUTURE FLARES

If Flare 1 and Flare 2 connected:

$$
\beta_{app} = \frac{D_{projected}(1+z_S)}{c \Delta t_{obs}}
$$

$$
\approx 70 \left(\frac{D_{projected}}{24 \,\text{pc}} \right) \left(\frac{\Delta t_{obs}}{690 \,\text{days}} \right)
$$

9 milliarcseconds

If plasmoid continues its motion:

interaction with radio core **~ July 2016**

Backup Slides PKS 1830-211

Lensed Gamma-Ray Jets: PKS 1830-211 magnification ration ratios along the limitial set projection ratios in Fig. 2. In Fig. 2. In Fig. 2. In Fig. W for emitting region located along the limiting jet projections.

 \cdot The first evidence of lensing at gamma-rays (Barnacka et al. 2011) responsived in the provided and the provided a basis for a number of measured a basis for a number of measured
A basis for a number of measured a basis for a number of measured and measured a basis for a number of measure t und σ tidi. 2011)

Gamma-Ray Time delay 27.1 ± 0.45 days \mathbf{D} and \mathbf{E} are a challenge for the light-curve analysis. A number of

Gamma-ray Flares Time Delays ? $R = 200$; Pelt et al. 1998; Pelt et al. 19

Gamma-ray Flare 1 and 2: Time Delays

-2

 $F_{\rm{z}}$ $F_{\rm{z}}$ $F_{\rm{z}}$ and $F_{\rm{z}}$ and $F_{\rm{z}}$ is the delay $>$ 10 days Gamma-Ray Time delay > 50 days

Monte Carlo Simulations

Fig. B1.— The artificial light curve generated as pink noise with a flare like structure with time delay of 48 days. This light curve

Application of strong lensing

Barnacka, A., Geller, M., Dell'Antonio, I., & Benbow, W. (June 2014, ApJ)