The Galactic Center Excess \$ 511 kev Bulge Emission

Richard Bartels* GRAPPA, University of Amsterdam <u>r.t.bartels@uva.nl</u>

TeVPA, 7 August 2017 Columbus (OH), UsA

*in Collaboration with Francesca Calore, Emma Storm & Christoph Weniger

The Galactic Center Excess \$ 511 kev Bulge Emission

Richard Bartels* GRAPPA, University of Amsterdam <u>r.t.bartels@uva.nl</u>

TeVPA, 7 August 2017 Columbus (OH), UsA

*in Collaboration with Francesca Calore, Emma Storm & Christoph Weniger

The Galactic Center Excess \$ 511 kev Bulge Emission

Richard Bartels* GRAPPA, University of Amsterdam <u>r.t.bartels@uva.nl</u>

*in Collaboration with Francesca Calore, Emma Storm & Christoph Weniger

TeVPA, 7 August 2017 Columbus (OH), UsA

University of Amsterdam

Parle 1. Contraction

Goodenough & Hooper 2009, Vitale+ (Fermi coll.) 2009, Hooper & Goodenough 2011, Hooper & Linden 2011, Boyarsky+ 2011 (no signal), Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Huang+ 2013, Gordon & Macias 2013, Macias & Gordon 2014, Zhou+2014, Abazajian+ 2014, Daylan+2014, Calore+ 2014, Gaggero + 2015, Carlson+ 2015. Fermi-LAL 2016, 2017

Richard Bartels (GRAPPA, Amsterdam)

Parle 1: Con Con

Speckled gamma-ray emission from inner Galaxy points to a new source population

Bartels et al. 2016

Lee et al. 2016

Richard Bartels (GRAPPA, Amsterdam)

Park 1: Crck Also. This M. di from inner Galaxy Mis Session

This session Speckled gamma-ray emission from inner Galaxy

Bartels et al. 2016

Lee et al. 2016

Richard Bartels (GRAPPA, Amsterdam)

rare 1: Co CE Also. This session That's why I'm in this session =)

This session Speckled gamma-ray emission from inner Galaxy

Bartels et al. 2016

Lee et al. 2016

Richard Bartels (GRAPPA, Amsterdam)

Calore, Cholis & Weniger (2014)

Calore, Cholis, McCabe & Weniger (2015)

Richard Bartels (GRAPPA, Amsterdam)

3

Skyfact

Skyfact

TeVPA 2017, Columbus (OH), USA

F. Calore Wed. 205.00 Wed. 205.040bt

Skypace

Advantages

Hybrid between image reconstruction & template fitting

Foreground/Background Templates

- Inverse-Compton
- Gas (pi0) emission
- IGRB
- 3FGL
- Fermi Bubbles

F. Calore Wed. Ob.00 Wed. 705.040bt arXiv:1705.04

GCE Analysis Bartelst in prep. 1) Fixed Templates CNFW

CECE Amalysis 2) Fixed spectrum

Richard Bartels (GRAPPA, Amsterdam)

CECE AMALYSIS 2) Fixed spectrum

Bartelst in prep.

Richard Bartels (GRAPPA, Amsterdam)

CECE AMALYSES 2) Fixed spectrum

Bulge + NB

Richard Bartels (GRAPPA, Amsterdam)

CECE AMALYSES 2) Fixed spectrum

Bulge + NB + X

Richard Bartels (GRAPPA, Amsterdam)

Surprising

Surprising?

conclusions part 1

- The GCE from skyfact is more oblate wrt previous analyses
- 2. It traces stellar mass in the inner galaxy! MSPs?

Parl 2: GCE & 511 KeV

511 keV: positron annihilation

Morphology appears similar to that of the GCE 0

Richard Bartels (GRAPPA, Amsterdam)

- 1. Thermonuclear SNe (Crocker+ 2016)
- 2. Low Mass X-ray binaries (LMXBs)
 - MSP progenitors
 - Positrons from jets of accreting BHs (Guessoum+ 2005; Bandyopadhyay+ 2008)
 - 511 keV observed in microquasar jet!
 (Siegert+ 2016)

- 1. Thermonuclear SNe (Crocker+ 2016)
- 2. Low Mass X-ray binaries (LMXBs)
 - MSP progenitors
 - Positrons from jets of accreting BHs
 (Guessoum+ 2005; Bandyopadhyay+ 2008)
 - 511 keV observed in microquasar jet!
 (Siegert+ 2016)

ultracompact X-ray binaries in the Bulge

Richard Bartels (GRAPPA, Amsterdam)

ultracompact X-ray binaries in the Bulge

✓ van Haaften+ 2013 model the population of UCXBs in the Bulge.

 $-2x10^{5}$ NS-UCXBs in the Bulge

✓ van Haaften+ 2013 model the population of UCXBs in the Bulge.

- $-2x10^{5}$ NS-UCXBs in the Bulge
- 10⁴ isolated MSPs ==> GCE

✓ van Haaften+ 2013 model the population of UCXBs in the Bulge.

- $-2x10^{5}$ NS-UCXBs in the Bulge
- 10⁴ isolated MSPs ==> GCE
- We:

✓ van Haaften+ 2013 model the population of UCXBs in the Bulge.

- $-2x10^{5}$ NS-UCXBs in the Bulge
- 10⁴ isolated MSPs ==> GCE
- We:
 - Assume BH:NS = 1:10

Richard Bartels (GRAPPA, Amsterdam)

✓ van Haaften+ 2013 model the population of UCXBs in the Bulge.

- $-2x10^{5}$ NS-UCXBs in the Bulge
- 10⁴ isolated MSPs ==> GCE
- We:
 - Assume BH:NS = 1:10

Richard Bartels (GRAPPA, Amsterdam)

TeVPA 2017, Columbus (OH), USA

 \mathcal{M}

ultracompact X-ray binaries in the Bulge

✓ van Haaften+ 2013 model the population of UCXBs in the Bulge.

- $-2x10^{5}$ NS-UCXBs in the Bulge
- 10⁴ isolated MSPs ==> GCE
- We:
 - Assume BH:NS = 1:10
 - Model BH-UCXB population as a function of M (van Haaften+ 2012)

Richard Bartels (GRAPPA, Amsterdam)

ultracompact X-ray binaries in the Bulge

✓ van Haaften+ 2013 model the population of UCXBs in the Bulge.

- $-2x10^{5}$ NS-UCXBs in the Bulge
- 10⁴ isolated MSPs ==> GCE
- We:
 - Assume BH:NS = 1:10
 - Model BH-UCXB population as a function of M (van Haaften+ 2012)
 - Calculate Power in BH jets (NSs have too weak jets!!)

Richard Bartels (GRAPPA, Amsterdam)

Richard Bartels (GRAPPA, Amsterdam)

star-formation rate

Richard Bartels (GRAPPA, Amsterdam)

star-formation rate

Delay Time

Richard Bartels (GRAPPA, Amsterdam)

star-formation rate

Delay Time

UCXB Evolution

Richard Bartels (GRAPPA, Amsterdam)

star-formation rate

Delay Time

UCXB Evolution

Richard Bartels (GRAPPA, Amsterdam)

star-formation rate

UCXB Evolution

Richard Bartels (GRAPPA, Amsterdam)

Jet kinetic power & positrons $L_J \propto \dot{M} \propto \begin{cases} L_X^{0.5} \, ({ m BH}) \\ L_X \, ({ m NS}) \end{cases}$ Fender+ (2003)

 $\dot{N}_{e^+} = \frac{L_J}{2\Gamma \left< \gamma \right> m_e c^2}$ Heinz & Sunyaev (2002)

Richard Bartels (GRAPPA, Amsterdam)

Jet kinetic power & positrons $L_J \propto \dot{M} \propto \begin{cases} L_X^{0.5} \, ({ m BH}) \\ L_X \, ({ m NS}) \end{cases}$ We assume a cold, pair dominated jet $\dot{N}_{e^+} = \frac{L_J}{2\Gamma \left< \gamma \right> m_e c^2}$ Heinz & Sunyaev (2002)

Richard Bartels (GRAPPA, Amsterdam)

Jel kinelic power &

Richard Bartels (GRAPPA, Amsterdam)

conclusions part 2

Evolutionary channel of Millisecond pulsars through LMXBs can explain both the 511 keV and GCE signals from the Bulge!

Conclusion

- The GCE appears to trace stellar mass!
- We find a correspondence with the
 Bulge + nuclear bulge
- S11 keV and GCE could be related
 through population synthesis

Richard Bartels (GRAPPA, Amsterdam)

THANK YOU :)

Richard Bartels (GRAPPA, Amsterdam)

Backup: Spectra

Richard Bartels (GRAPPA, Amsterdam)

Backup: spectra 2

Richard Bartels (GRAPPA, Amsterdam)

Backup: X-shape

OTHER COMPONENTS NEW BULGE

Richard Bartels (GRAPPA, Amsterdam)

21

OTHER COMPONENTS NEW BULGE

Richard Bartels (GRAPPA, Amsterdam)

21

OTHER COMPONENTS NEW BULGE

Richard Bartels (GRAPPA, Amsterdam)