The Galactic Center Excess & 511 keV Bulge Emission

Richard Bartels*
GRAPPA, University of Amsterdam
r.t.bartels@uva.nl

*in Collaboration with Francesca Calore, Emma Storm & Christoph Weniger
The Galactic Center Excess & 511 keV Bulge Emission

Richard Bartels*
GRAPPA, University of Amsterdam
r.t.bartels@uva.nl

*in Collaboration with Francesca Calore, Emma Storm & Christoph Weniger
The Galactic Center Excess
&
511 keV Bulge Emission

Richard Bartels*
GRAPPA, University of Amsterdam
r.t.bartels@uva.nl

*in Collaboration with Francesca Calore, Emma Storm & Christoph Weniger

TeVPA, 7 August 2017
Columbus (OH), UsA
Part 1: GCE

Part 1: GCE

Speckled gamma-ray emission from inner Galaxy points to a new source population

Wavelet transformation

Bartels et al. 2016

Non-Poissonian noise

Lee et al. 2016
Part 1: GCE

Speckled gamma-ray emission from inner Galaxy points to a new source population

Also: M. di Mauro
This session
Part 1: GCE

That's why I'm in this session =)

Speckled gamma-ray emission from inner Galaxy points to a new source population

Wavelet transformation

Bartels et al. 2016

Non-Poissonian noise

Lee et al. 2016

Also: M. di Mauro
This session
GCE features

Calore, Cholis & Weniger (2014)
Calore, Cholis, McCabe & Weniger (2015)
SkyFact
SkyFact
SkyFact

Advantages

- Hybrid between image reconstruction & template fitting

Foreground/Background Templates

- Inverse-Compton
- Gas (π0) emission
- IGRB
- 3FGL
- Fermi Bubbles
GCE Analysis

1) Fixed Templates
GCE Analysis

1) Fixed Templates

Bartels+ in prep.

cNFW
GCE Analysis

1) Fixed Templates

- cNFW
- Einasto

Bartels+ in prep.
GCE Analysis

1) Fixed Templates

- cNFW
- Einasto
- 511 keV
 - Siegert+ 2015

Bartels+ in prep.
GCE Analysis

1) Fixed Templates

- **cNFW**
 - Dwek+ 1995; Cao+ 2013

- **Einasto**

- **511 keV**
 - Siegert+ 2015

Boxy bulge

Superpositions of these

Richard Bartels (GRAPPA, Amsterdam)
GCE Analysis

1) Fixed Templates

- cNFW
- Einasto
- 511 keV
 - Siegert+ 2015

Superpositions of these

- Boxy bulge
 - Dwek+ 1995; Cao+ 2013
- Nuclear bulge
 - Launhardt+ 2002

Bartels+ in prep.
GCE Analysis

1) Fixed Templates

- cNFW
- Einasto
- 511 keV

Bartels+ in prep.

- Boxy bulge: Dwek+ 1995; Cao+ 2013
- Nuclear bulge: Launhardt+ 2002
- X-shape: Ness & Lang 2016

Superpositions of these
GCE Analysis

1) Fixed Templates

- cNFW
- Einasto
- 511 keV
 - Siegert+ 2015

- Boxy bulge
 - Dwek+ 1995; Cao+ 2013

- Nuclear bulge
 - Launhardt+ 2002

- X-shape
 - Ness & Lang 2016

Superpositions of these

Richard Bartels (GRAPPA, Amsterdam)
GCE Analysis

2) Fixed spectrum
GCE Analysis

2) Fixed spectrum

Bartels+ in prep.
GCE Analysis

2) Fixed spectrum

Bulge

Bartels+ in prep.
GCE Analysis

2) Fixed spectrum

Bulge + NB

Bartels+ in prep.
GCE Analysis

2) Fixed spectrum

Bulge + NB + X

Bartels+ in prep.
GCE vs. Stellar Mass

$1.9 \times 10^{27} \text{ erg s}^{-1} \text{ M}_\odot^{-1}$

- Nuclear bulge
- Boxy bulge
- Disk
- M31

Bartels+ in prep.
Surprising?

Radius [deg] vs. GCE intensity, $E^2 dN/dE$ [GeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$]

- **Einasto**
- **NFW, $\gamma = 1.26$**
- **511 keV (Siegert+ 2015)**
- **Boxy bulge + nuclear bulge**
- **Calore+ 2014**

Bartels+ in prep.
Surprising?

Bartels+ in prep.
Conclusions part 1

1. The GCE from skyfact is more oblate wrt previous analyses

2. It traces stellar mass in the inner galaxy! MSPs?
Part 2: GCE & 511 keV

- 511 keV: positron annihilation
- Morphology appears similar to that of the GCE

Knoedler+ 2005, INTEGRAL SPI
Population synthesis

1. Thermonuclear SNe (Crocker+ 2016)

2. Low Mass X-ray binaries (LMXBs)
 - MSP progenitors
 - Positrons from jets of accreting BHs (Guessoum+ 2005; Bandyopadhyay+ 2008)
 - 511 keV observed in microquasar jet! (Siegert+ 2016)
Population synthesis

1. Thermonuclear SNe (Crocker+ 2016)

2. Low Mass X-ray binaries (LMXBs)
 - MSP progenitors
 - Positrons from jets of accreting BHs
 (Guessoum+ 2005; Bandyopadhyay+ 2008)
 - 511 keV observed in microquasar jet!
 (Siegert+ 2016)
ultracompact X-ray binaries in the Bulge
ultracompact X-ray binaries in the Bulge

van Haaften+ 2013 model the population of UCXBs in the Bulge.
ultracompact X-ray binaries in the Bulge

- van Haaften+ 2013 model the population of UCXBs in the Bulge.
 - 2×10^5 NS-UCXBs in the Bulge
ultracompact X-ray binaries in the Bulge

van Haaften+ 2013 model the population of UCXBs in the Bulge.

- 2×10^5 NS-UCXBs in the Bulge
- 10^4 isolated MSPs \Rightarrow GCE
ultracompact X-ray binaries in the Bulge

- van Haaften+ 2013 model the population of UCXBs in the Bulge.
 - 2×10^5 NS-UCXBs in the Bulge
 - 10^4 isolated MSPs \Rightarrow GCE

We:
ultracompact X-ray binaries in the Bulge

van Haaften+ 2013 model the population of UCXBs in the Bulge.
- 2×10^5 NS-UCXBs in the Bulge
- 10^4 isolated MSPs \Rightarrow GCE

We:
- Assume BH:NS = 1:10
ultracompact X-ray binaries in the Bulge

van Haaften+ 2013 model the population of UCXBs in the Bulge.

- 2×10^5 NS-UCXBs in the Bulge
- 10^4 isolated MSPs \Rightarrow GCE

We:
- Assume BH:NS = 1:10
ultracompact X-ray binaries in the Bulge

van Haaften+ 2013 model the population of UCXBs in the Bulge.

- 2×10^5 NS-UCXBs in the Bulge
- 10^4 isolated MSPs \Rightarrow GCE

We:

- Assume BH:NS = 1:10
- Model BH-UCXB population as a function of \(\dot{M} \)
 (van Haaften+ 2012)
ultracompact X-ray binaries in the Bulge

- van Haaften+ 2013 model the population of UCXBs in the Bulge.
 - 2×10^5 NS-UCXBs in the Bulge
 - 10^4 isolated MSPs \Rightarrow GCE

- We:
 - Assume BH:NS = 1:10
 - Model BH-UCXB population as a function of \dot{M}
 (van Haaften+ 2012)
 - Calculate Power in BH jets (NSs have too weak jets!!)
Takeaway recipe
Takeaway recipe

star-formation rate

PDF, Star-formation rate

0.8
0.6
0.4
0.2
0.0

0
-2
-4
-6
-8
-10
-12
T[Gyr]
Takeaway recipe

star-formation rate

Delay Time

adapted from van Haaften+ 2013
Takeaway recipe

star-formation rate

PDF: Star-formation rate

\[\dot{M} \propto \left(\frac{T_{\text{age}}}{1 \text{yr}} \right)^{-\frac{14}{11}} \]

Delay Time

UCXB Evolution

adapted from van Haaften+ 2013

\[\text{Delay Time} \]

\[\text{# of systems starting RLOF [Myr]} \]

\[\text{Delay time since ZAMS [Gyr]} \]
Takeaway recipe

star-formation rate

\[
\text{PDF, Star-formation rate}
\]

Delay Time

\[
\text{adapted from van Haaften+ 2013}
\]

UCXB Evolution

\[
\dot{M} \propto \left(\frac{T_{\text{age}}}{1 \text{ yr}} \right)^{-\frac{14}{11}}
\]

=}

Richard Bartels (GRAPPA, Amsterdam)
Takeaway recipe

star-formation rate

Delay Time

UCXB Evolution

\[\dot{M} \propto \left(\frac{T_{\text{age}}}{1 \text{ yr}} \right)^{-\frac{14}{11}} \]

Richard Bartels (GRAPPA, Amsterdam)
Jet kinetic power & positrons

\[L_J \propto \dot{M} \propto \begin{cases} \frac{L_X^{0.5}}{} & \text{(BH)} \\ L_X & \text{(NS)} \end{cases} \]

Fender+ (2003)

\[\dot{N}_{e^+} = \frac{L_J}{2\Gamma \langle \gamma \rangle m_e c^2} \]

Heinz & Sunyaev (2002)
Jet kinetic power & positrons

\[L_J \propto \dot{M} \propto \begin{cases} L_X^{0.5} \text{ (BH)} \\
L_X \text{ (NS)} \end{cases} \]

Fender+ (2003)

\[\dot{N}_{e^+} = \frac{L_J}{2\Gamma \langle \gamma \rangle m_e c^2} \]

Heinz & Sunyaev (2002)

We assume a cold, pair dominated jet
Jet kinetic power & positrons

\[\frac{L_J}{J} = \dot{M} \left(L_{X,0.5} \times (BH) \right) \]

\[\dot{N}_{e^+} + \dot{N}_{\text{ne}} = \frac{L_J}{J} \]

We assume a cold, pair dominated jet.

Heinz & Sunyaev (2002)

Bartels+ in prep.

Fender+ (2003)

Cumulative positron yield

\[N_{e^+} (\geq L_X) \]

- BH-UCXBs
- NS-UCXBs
- Observed

Richard Bartels (GRAPPA, Amsterdam)
Conclusions part 2

- Evolutionary channel of Millisecond pulsars through LMXBs can explain both the 511 keV and GCE signals from the Bulge!
Conclusion

- The GCE appears to trace stellar mass!
- We find a correspondence with the Bulge + nuclear bulge
- 511 keV and GCE could be related through population synthesis
THANK YOU :)}
Central region ($|b| < 15^\circ$ and $|\ell| < 15^\circ$)

- freeFS
- freeFS_FT
- freeFS_FS
- freeFS+_GeV
- freeFS-_GeV
- NFW100
- NFW126
- Einasto
- BulgeGC
- RCGBulge
- RCGBulgeNB
- RCGBulgeNB_X

Backup: Spectra

Bartels+ in prep.
Backup: spectra 2

Central region (|b| < 15° and |ℓ| < 15°)

- IGRB
- Bubbles
- ExtSrc
- ICS
- X
- NB
- RCG
- Gas ring I
- Gas ring II
- Gas ring III
- Data

σ

E [GeV]

Bartels+ in prep.
Backup: X-shape

\[1.9 \times 10^{27} \text{ erg}\, s^{-1} \, M_\odot^{-1} \]

- Nuclear bulge
- Boxy bulge
- X-shape
- Disk
- M31

Bartels+ in prep.
OTHER COMPONENTS

NFW

BULGE

Richard Bartels (GRAPPA, Amsterdam)

TeVPA 2017, Columbus (OH), USA
OTHER COMPONENTS

NFW

BULGE

Bartels+ in prep.