

Understanding neutron yield from neutrino interactions with ANNIE

EMRAH TIRAS & MATTHEW WETSTEIN

ON BEHALF OF ANNIE COLLABORATION

IOWA STATE UNIVERSITY

TEVPA CONFERENCE IN COLUMBUS, OH AUG 7-11, 2017

Outline

(1) Motivation

- Physics objectives
- Technical goals

2 ANNIE overview

③ Current Status: Phase I

- Hardware
- Software & Simulations

④ Future: Phase II

- Detector R&D
- Timeline

Motivation

Primary physics objectives: Measuring the abundance of final state neutrons (neutron yield) from neutrino interactions in water as a function of energy.

It is relevant to studies of:

- 1 Neutrino oscillation experiments:
 - help understand critical systematics on energy reconstruction in long-baseline measurements.
 - could help in explaining short baseline anomalies.
 - possible handle for neutrino/antineutrino separation.
- 2 Signal/background separation for proton decay measurements and supernova neutrino observations.

Technical goals:

- First major application of Large Area Picosecond Photo-Detectors (LAPPDs) in a neutrino experiment.
- 2) First Gd-loaded water Cherenkov detector to run in a neutrino beam.

ANNIE Overview

ANNIE is located at SciBooNE Hall along the Booster Neutrino Beam (BNB) at Fermilab.

- on-axis neutrino flux
- Spectrum peaks around 0.7 GeV (range of interest for atmospheric neutrinos)
- Expect $14 \times 10^3 v_{\mu}$ of charged-current interactions per ton of water per year.

An event in ANNIE tank

- 1. CC interaction in the fiducial volume produces a muon, reconstructed in the water volume and MRD.
- 2. Neutrons scatter and thermalize
 3. (3-4) Thermalized neutrons are captured on the Gd producing flashes of light, cascade of 8 MeV gammas in several tens of microseconds.

The Current State of the Detector (Phase I)

ANNIE is located at SciBooNE Hall along the Booster Neutrino Beam (BNB) at Fermilab.

- on-axis neutrino flux
- Spectrum peaks around 0.7 GeV (range of interest for atmospheric neutrinos)
- The detector was built in April 2016 and it has been taking data since then.

ANNIE Phase I

The main physics goal of Phase I is understanding neutron backgrounds. Potential background neutrons in ANNIE:

- Sky-shine neutrons from the beam dump
- **Dirt neutrons from the rock**

The background neutron flux was measured at different locations in the tank.

²⁵²Cf neutron source is used for calibration.

2 2

- We have detected neutron captures from both a calibration source and the beam.
- Preliminary estimates based on measurements below the surface indicate neutron backgrounds in less than 2% of spills.
- Backgrounds are acceptable and can be mitigated with <2 ft of buffer.
- Final luminosity normalized estimates of beam induced background neutrons are coming soon.

ANNIE Moving Towards Phase II

LAPPDs (20 cm x 20 cm) are:

- novel technology for photodetection with gain of >10⁶
- based on microchannel plates
- with excellent timing (~ 50 psec for SPE) and sub-centimeter spatial resolution → this will give us a significant improvement for vertex reconstruction.

ANNIE will host the first live test of this novel technology during Phase II.

Incom has now produced multiple LAPPD prototypes, quickly approaching the specifications needed by ANNIE:

Tile #9: fully sealed detector with an aluminum photocathode Tile #10: sealed detector with multi-alkali photocathode (~5 % QE) Tile #12: ~10% QE Tile #15: uniform photocathode >25% QE Tile #18, 19: recently produced by Incom.

LAPPD Characterization Tests at ISU

LAPPDs #9 and #12 were tested at ISU w/ PSEC electronics provided by UChicago

example single PE-pulses

Multi-PE transit time spread

Multi-PE pulses with PSEC electronics

Quantum Efficiency Tests at Incom

The average QE at 375 nm remains at 30%, with a maximum 35% and minimum of 22%

Phase I \rightarrow Phase II

- Complete the tank inner structure •
- Add the LAPPD System •
- Add Gadolinium (0.2% Gd-sulfate concentration) •
- Finish refurbishing the muon range detector (reinstall paddles) •
- Expand standard photocathode coverage w/ more PMTs •
- Expand electronics channel count •

Small slots to insert the LAPPDs through guides.

- Neutron detection efficiency as a function of the interaction position in X (the transverse direction) and Z (the beam direction)
- The plots are integrated between -1 and +1 meters in the vertical direction, Y.

- The detector is large enough to fully contain neutrons
- Requested PMT coverage is sufficient to efficiently detect neutrons.

- LAPPDs show substantial improvement in precision for vertex reconstruction.
- LAPPDs help to understand the topology of the events.

Conclusion

Phase I:

- The detector was built in April 2016 and it has been taking data since then.
- We have detected neutron captures from both a calibration source and the beam.
- Preliminary results of neutron backgrounds show they are acceptable.
- LAPPDs are ready and we are testing them at ISU.

Phase II:

- It was recently approved by Fermilab Physics Advisory Committee (PAC).
- ANNIE will measure the neutron yield from neutrino-nucleus interactions in the energy range of atmospheric neutrinos.
- Also, it will be the first experiment testing LAPPDs in Gd-loaded water.

Backup Slides

Timing to separate between Cherenkov and scintillation light

Theia

THEIA Concept

arXiv:1409.5864

- 50 kilotons fiducial
- Deep depth (>4000 mwe)
- Fast timing, high efficiency photosensors, high coverage
- Isotopic loading, possibly with a balloon to avoid "wasting" isotope and to achieve long attenuation lengths
- Reconfigurable, capable of economically for long periods to have a broad program

