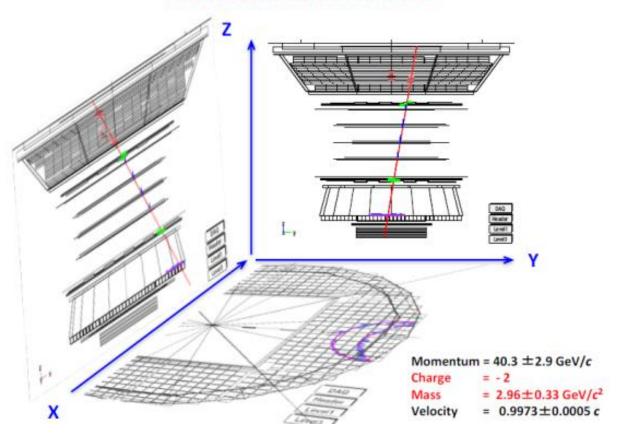
Secondary production of Cosmic ray anti-Helium3

Ryosuke Sato (Weizmann Institute of Science)

based on arXiv:1704.05431[astro-ph.HE] Kfir Blum, Kenny C.Y. Ng, RS, Masahiro Takimoto

2017. 8. 9 @ TeVPA 2017


[1/14]

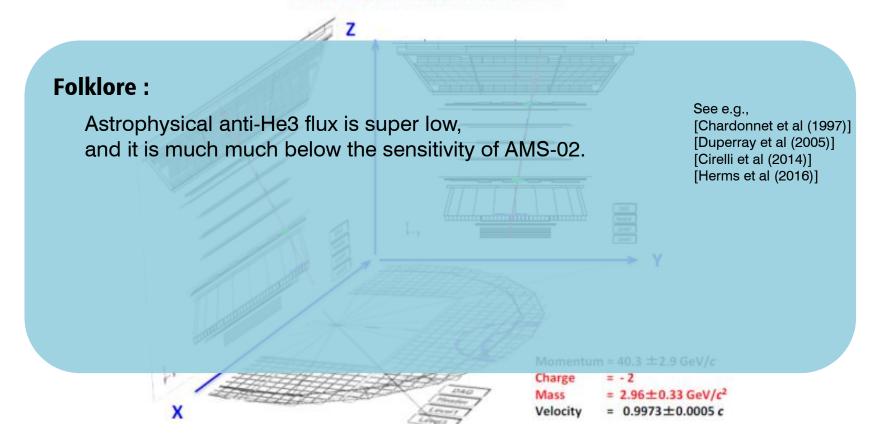
AMS-02 observed Anti-Helium3?

In 2016 Dec, AMS-02 announced,

"we have observed a few events with Z=-2 and with mass around 3He."

An anti-Helium candidate:

[taken from S. Ting's slide]


[2/14]

AMS-02 observed Anti-Helium3?

In 2016 Dec, AMS-02 announced,

"we have observed a few events with Z=-2 and with mass around 3He."

An anti-Helium candidate:

[taken from S. Ting's slide]

AMS-02 observed Anti-Helium3?

In 2016 Dec, AMS-02 announced,

"we have observed a few events with Z=-2 and with mass around 3He."

An anti-Helium candidate:

Folklore :

Astrophysical anti-He3 flux is super low, and it is much much below the sensitivity of AMS-02.

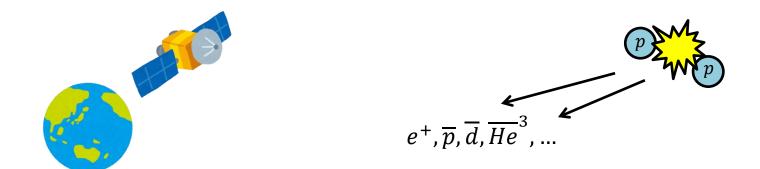
Z

See e.g., [Chardonnet et al (1997)] [Duperray et al (2005)] [Cirelli et al (2014)] [Herms et al (2016)]

Summary of my talk :

Q : Is secondary flux of anti-He3 below AMS-02 sensitivity?

A : Not really. Secondary CR Anti-Helium3 could be observed by AMS-02.


Momentum = $40.3 \pm 2.9 \text{ GeV}/c$

Charge	=	- 2
Mass	=	$2.96 \pm 0.33 \text{GeV}/c^2$
Velocity	=	0.9973±0.0005 c

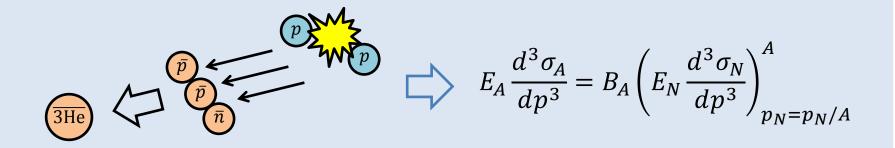
[taken from S. Ting's slide]

[4/14]

Secondary production in our galaxy

$$\frac{n_{\overline{He^3}}}{n_p} = \frac{X_{esc}/m}{1 + (n_{\overline{He^3}}/n_p)\sigma_{\overline{He^3}}/m} \times \sigma_{pp \to \overline{He^3}}$$

[Dogiel, Berezinsky, Bulanov, Ptsukin (1990)] [Gaisser, Schaefer (1992)] [Blum, Katz, Waxman (2009, 2013)]


 $\sigma_{\overline{He^3}}$: fragmentation cross section of antihelium3 $X_{esc}(R)$ is determined from Boron-Carbon ratio.

The production cross section is important!

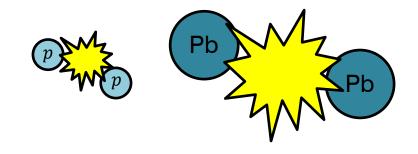
Cross section for nuclei production

Coalescence anzats :

Nucleons (p, n) which travels (almost) same direction forms nuclei

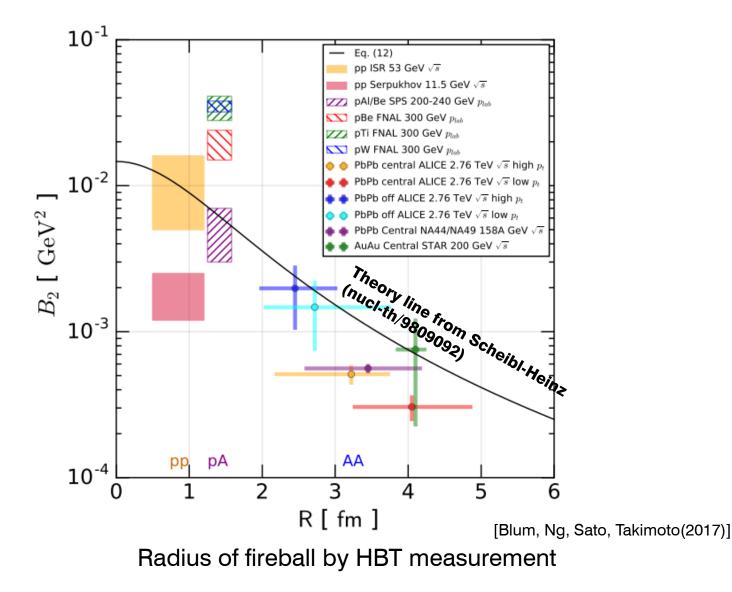
- B_A is (almost) independent on other parameters (e.g., \sqrt{s} , p_t , η).
- B_A should be determined from the experiment.

Anti-deuteron : ISR (*pp* collision at $\sqrt{s} = 53$ GeV)

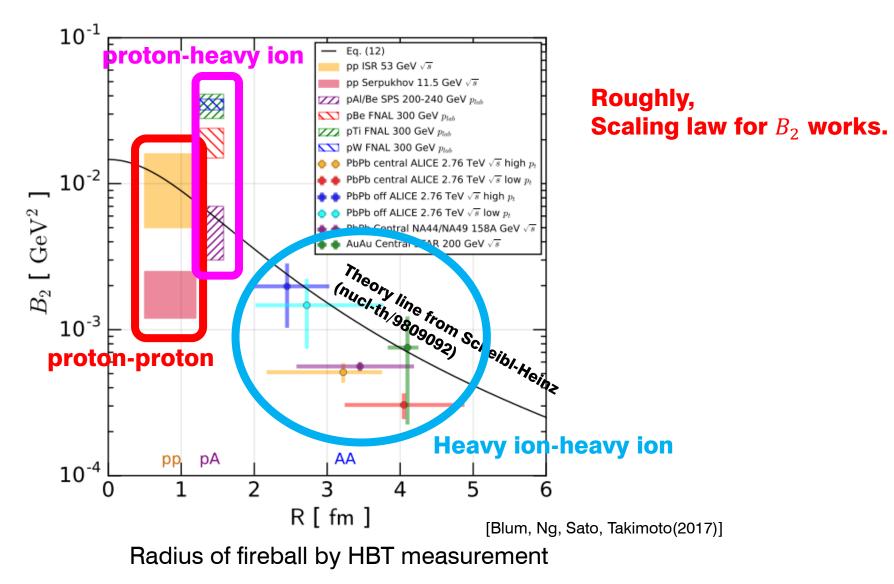

Anti-Helium3 : No *pp* collision data ! (except for ALICE 7 TeV preliminary result) Heavy ion collision gives information.

Volume scaling of BA

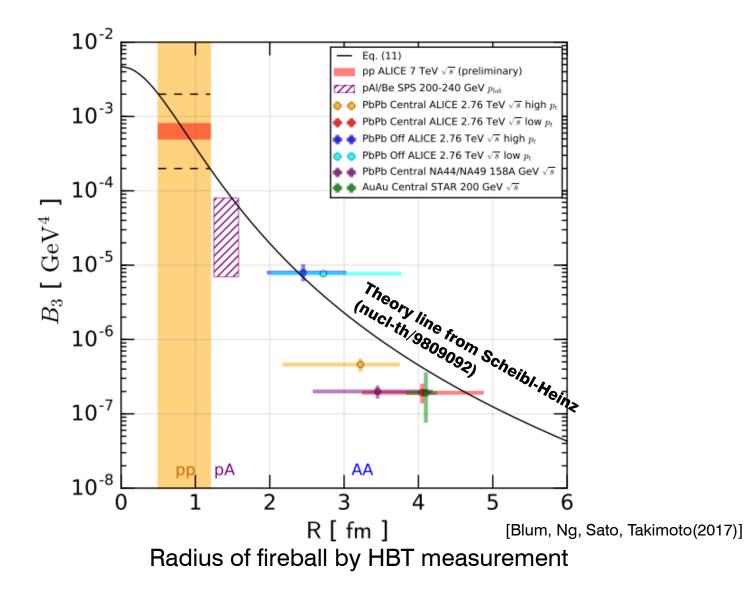
Q : B_A at pp collision and B_A at heavy ion collision should be same? A : No. It depends on the size of interaction region (fireball).


$$B_A \propto \rho^{A-1} \propto V^{-A+1}$$

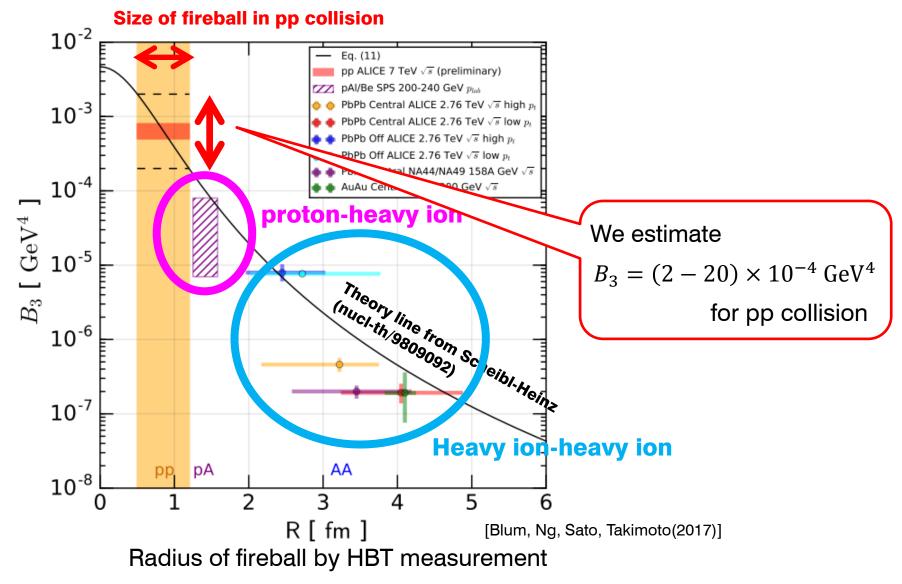
 ρ : number density of fireball V : fireball volume



B_A in heavy ion collision $< B_A$ in pp collision

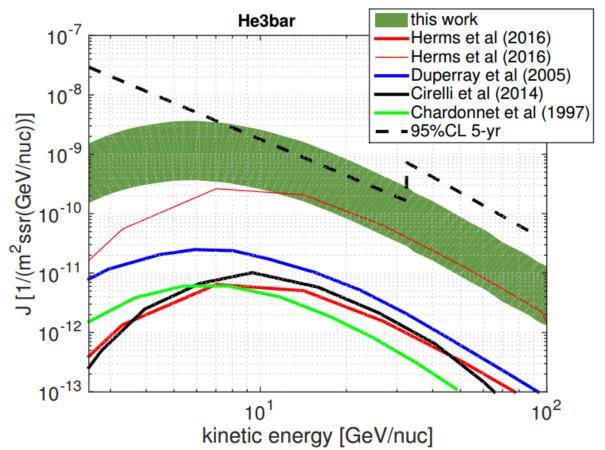

Volume scaling of B2 : anti-deuterium

Volume scaling of B2 : anti-deuterium



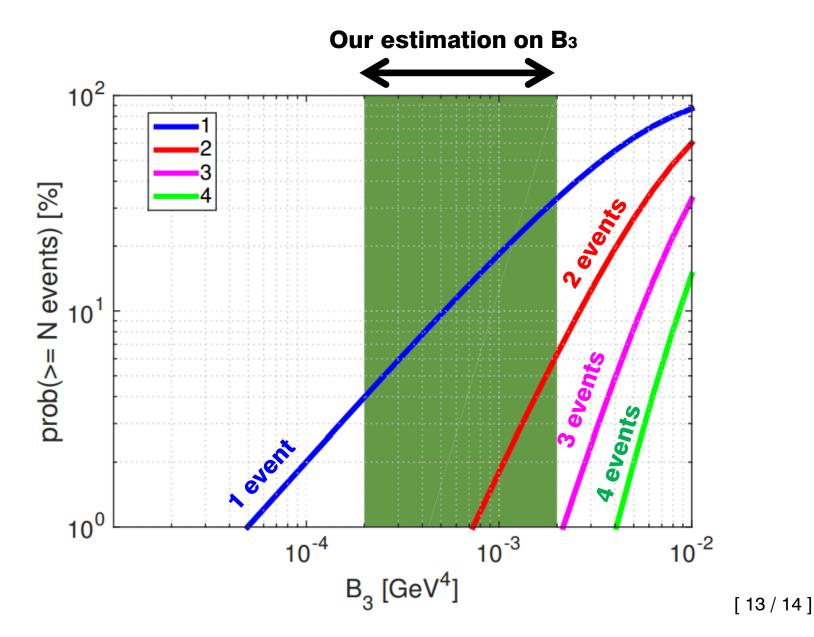
Volume scaling of B3 : anti-Helium 3

[10/14]


Volume scaling of B3 : anti-Helium 3

^[11/14]

Anti-Helium3 flux


[Blum, Ng, Sato, Takimoto(2017)]

Chardonnet 1997
Duperray 2005
Cirelli 2014
Ibarra-Wild 2012
Herms 2016

- : p_c which is derived from d for He3. using different $pp \rightarrow \bar{d}X$ data.
- : *B* parameter from pA/AA collisions.
- : PYTHIA
 - : PYTHIA & DPMJET-III
 - : PYTHIA & DPMJET-III

Number of anti-Helium3 events at AMS-02 5 yrs

Secondary production of anti-He3 is reconsidered

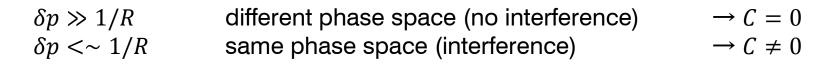
Coalescence parameter of pp collision should be smaller than AA

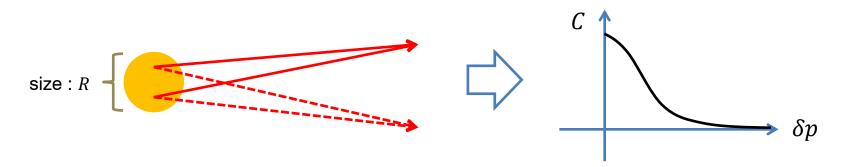
Astrophysical antiHe3 could be within the reach of 5-yr AMS-02

Stay tuned for official AMS-02 paper.

We need direct measurement on B_3 !

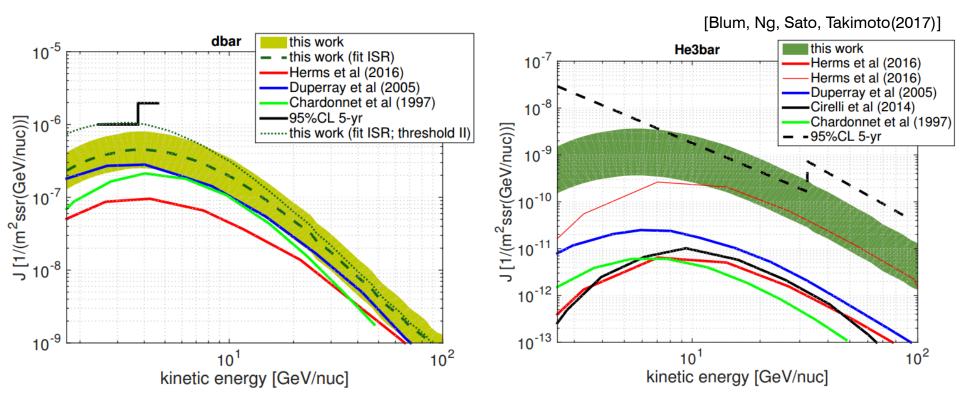
To calculate antinuclei flux coalescence parameter B_A is the most important. ALICE and LHCb could be important to measure B_3 .


Backup


HBT measurement and emission volume

[Hanbury-Brown, Twiss (1954)]

How to measure the size of emission region.


Correlation function of intensity fluctuation : $C = \langle \delta I(p_1) \delta I(p_2) \rangle$

Intensity corr. of π^{\pm} , K^{\pm} , p, \bar{p} etc. at pp, pA, AA collision \rightarrow size of fireball

Antimatter flux

Chardonnet 1997
Duperray 2005
Cirelli 2014
Ibarra-Wild 2012
Herms 2016

- : p_c which is derived from d for He3. using different $pp \rightarrow \bar{d}X$ data.
 - : *B* parameter from pA/AA collisions.
 - : PYTHIA

: PYTHIA & DPMJET-III

: PYTHIA & DPMJET-III

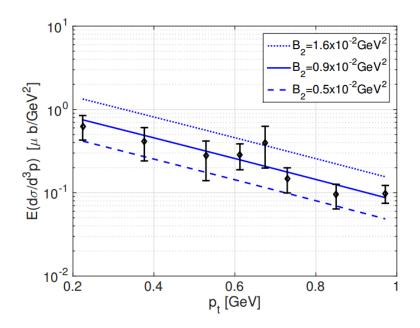
Anti-Helium3 at the LHC

We estimated $B_3(pp)$ from $B_3(AA)$. Direct measurement on $B_3(pp)$? ALICE preliminary analysis (1109.4836) says,...

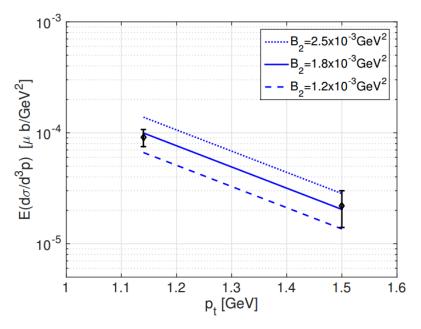
> The raw spectra of $d(\bar{d})$, $t(\bar{t})$, and ${}^{3}\text{He}({}^{3}\overline{\text{He}})$ are obtained for pp collisions at $\sqrt{s} = 7 \text{ TeV}$ and for Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}$. We observed about 20k antideuterons, 20 antitritons, and 20 ${}^{3}\overline{\text{He}}$ candidates for the pp collisions collected in 2010.

Volume scaling

[See e.g., Csernai and Kapusta (1986)]

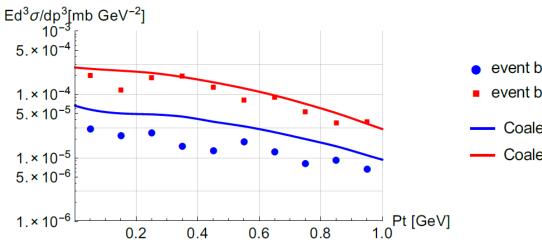

Non-relativistic case

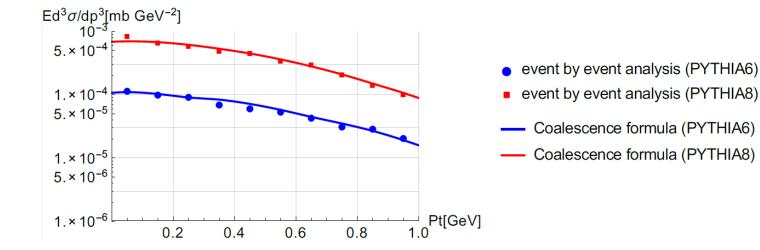
If we can neglect the size of particles,


$$W(p,x) = c \left(W_p(p/A,x) \right)^Z \left(W_p(p/A,x) \right)^N$$
$$\frac{1}{dp^3} = c \left(\frac{(2\pi)^3}{V} \right)^{A-1} \left(\frac{d^3N}{dp^3} \right)^Z \left(\frac{d^3N}{dp^3} \right)^N$$

Anti-d observation at pp collision

ISR (1970's)


Serpukhov (1987)


- $\sqrt{s} = 53 \text{ GeV}$
- $p_t < 1 \text{ GeV}$
- $B_2 \approx 0.9 \times 10^{-2} \text{GeV}^2$

- $\sqrt{s} = 11.6 \text{ GeV}$
- $p_t > 1 \text{ GeV}$
- $B_2 \approx 0.18 \times 10^{-2} \text{GeV}^2$

Pythia versus Coalescence formula

event by event analysis (PYTHIA6)
event by event analysis (PYTHIA8)
Coalescence formula (PYTHIA6)
Coalescence formula (PYTHIA8)

[Dogiel, Berezinsky, Bulanov, Ptsukin (1990)] [Gaisser, Schaefer (1992)] [Blum, Katz, Waxman (2009, 2013)]

Assumptions :

- 1. Same rigidity (R = p/Z) gives same trajectory in magnetic field.
- 2. Neglect energy loss (I will not discuss e⁺ today)
- 3. Composition is same in every point in which production is active

 $n_B(R; \vec{x}_{\odot}, t_{\odot}) = \int dt \int d^3 \vec{x} \, \rho_{ISM}(\vec{x}, t) P(R; \{x, t\}, \{\vec{x}_{\odot}, t_{\odot}\}) Q_B(R; \vec{x}, t)$

 ρ_{ISM} : ISM density P : probability to reach the earth Q_B : source term

$$Q_B = \frac{\sigma_{C \to B}}{m_{ISM}} n_C - \frac{\sigma_B}{m_{ISM}} n_B$$

[Dogiel, Berezinsky, Bulanov, Ptsukin (1990)] [Gaisser, Schaefer (1992)] [Blum, Katz, Waxman (2009, 2013)]

Assumptions :

- 1. Same rigidity (R = p/Z) gives same trajectory in magnetic field.
- 2. Neglect energy loss (I will not discuss e⁺ today)
- 3. Composition is same in every point in which production is active

 $\frac{n_B(R;\vec{x}_{\odot},t_{\odot})}{Q_B(R;\vec{x}_{\odot},t_{\odot})} = \int dt \int d^3\vec{x} \,\rho_{ISM}(\vec{x},t) P(R;\{x,t\},\{\vec{x}_{\odot},t_{\odot}\}) \frac{Q_B(R;\vec{x},t)}{Q_B(R;\vec{x}_{\odot},t_{\odot})}$

 ρ_{ISM} : ISM density P : probability to reach the earth Q_B : source term

$$Q_B = \frac{\sigma_{C \to B}}{m_{ISM}} n_C - \frac{\sigma_B}{m_{ISM}} n_B$$

[Dogiel, Berezinsky, Bulanov, Ptsukin (1990)] [Gaisser, Schaefer (1992)] [Blum, Katz, Waxman (2009, 2013)]

Assumptions :

- 1. Same rigidity (R = p/Z) gives same trajectory in magnetic field.
- 2. Neglect energy loss (I will not discuss e⁺ today)
- 3. Composition is same in every point in which production is active

$$n_i(R; x, t) = n_{CR}(x, t) \times f_i(R)$$

$$\frac{n_B(R;\vec{x}_{\odot},t_{\odot})}{Q_B(R;\vec{x}_{\odot},t_{\odot})} = \int dt \int d^3\vec{x} \,\rho_{ISM}(\vec{x},t) P(R;\{x,t\},\{\vec{x}_{\odot},t_{\odot}\}) \frac{n_{CR}(\vec{x},t)}{n_{CR}(\vec{x}_{\odot},t_{\odot})}$$

universal for all elements (function of R)

 $\rho_{ISM}
 : ISM density
 P
 : probability to reach the earth
 Q_B
 : source term$

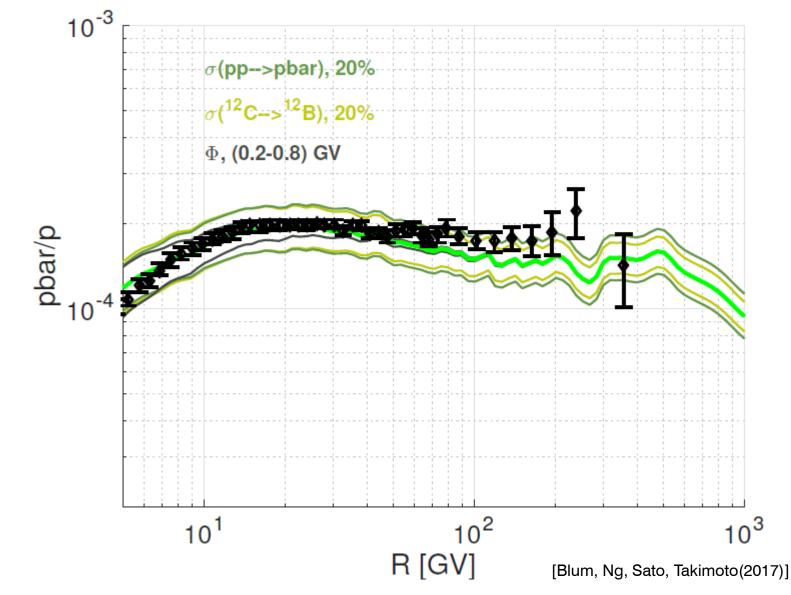
$$Q_B = \frac{\sigma_{C \to B}}{m_{ISM}} n_C - \frac{\sigma_B}{m_{ISM}} n_B$$

[Dogiel, Berezinsky, Bulanov, Ptsukin (1990)] [Gaisser, Schaefer (1992)] [Blum, Katz, Waxman (2009, 2013)]

Assumptions :

- 1. Same rigidity (R = p/Z) gives same trajectory in magnetic field.
- 2. Neglect energy loss (I will not discuss e⁺ today)
- 3. Composition is same in every point in which production is active

$$n_i(R; x, t) = n_{CR}(x, t) \times f_i(R)$$


We can define $X_{esc}(R) [g/cm^2]$ such that

$$\frac{n_B}{Q_B} = \frac{n_{\bar{p}}}{Q_{\bar{p}}} = \frac{n_{\bar{d}}}{Q_{\bar{d}}} = \frac{n_{\overline{3He}}}{Q_{\overline{3He}}} = \cdots = \frac{X_{esc}(R)}{\rho_{ISM}(\vec{x}_{\odot}, t_{\odot})}$$

This relation is

- model-independent relation.
- supported by the measurement of stable nuclei. [Webber, McDonald, Lukasiak (2003)]

Exercise : antiproton / proton ratio

