The Multiwavelength Properties of Arp 220 Tova Yoast-Hull

Canadian Institute for Theoretical Astrophysics University of Toronto

8 August 2017

Collaborators: Norm Murray (CITA), Susanne Aalto, Eskil Varenius (Chalmers University, Sweden), Jay Gallagher, Ellen Zweibel (University of Wisconsin)

In This Talk ...

- The Interstellar Medium of Arp 220
- Non-Thermal Detections

Radio & Gamma-Ray Disconnect

Aug 2017, 2 / 14

Observational Information

- Radio
 - CR electrons, magnetic fields
- Millimeter
 - Molecular gas content
- Infrared
 - Radiation field
 - Dust temperatures
- Optical
 - ISM pressures, winds
- X-Rays
 - Hot gas content, winds

- Gamma-Rays
 - CR protons & electrons,
 ISM density
- Neutrinos
 - CR protons & ISM density

Aug 2017, 3 / 14

Essential Properties of Arp 220

- Closest Ultra-Luminous Infrared Galaxy (ULIRG)
- Late stage merging galaxy
 - Two nuclei separated by ~ 1"
 ~ 370 pc.
 - Nuclei are embedded in counter-rotating disk
- ISM properties:
 - $L_{FIR} \sim 10^{11.5-12.5} L_{\odot} \sim 10^{45} \text{ erg/s}$
 - $M_{\rm H2} \sim 10^9 \ M_{\odot}$
 - B ~ few mG

Scoville+ 2017 ApJ, 836, 66 ALMA Band 3

Aug 2017, 4 / 14

The Central Nuclei of Arp 220

- Power from star formation:
 - SFR ~ 200 M_{\odot} yr⁻¹
 - SN Rate ~ 2 4 yr-1
 - See SNRs with VLBI
- Power from an AGN?
 - Observations of centers hindered by dust obscurration
 - The usual indicators for AGN are not applicable.
 - mm emission lines
 - dust temperature
 - X-rays

Varenius+ 2016, A&A, 593, 86 LOFAR 150MHz

Tova M. Yoast-Hull, CITA

Aug 2017, 5 / 14

Observational Information

Radio

- CR electrons, magnetic fields
- Millimeter
 - Molecular gas content
- Infrared
 - Radiation field
 - Dust temperatures
- Optical
 - ISM pressures, winds
- X-Rays
 - Hot gas content, winds

- Gamma-Rays
 - CR protons & electrons,
 ISM density
- Neutrinos
 - CR protons & ISM density

Tova M. Yoast-Hull, CITA

Aug 2017, 6 / 14

Star Formation Model

$$\int_{E_{min}}^{E_{max}} Q(E) E dE = \frac{\eta v_{SN} E_{51}}{V}$$

Fraction of SN Energy into CRs:

Proton to Electron Ratio:

$$\eta \sim 0.05 - 0.2$$

 $Q_{p}/Q_{e} = 50$

Yoast-Hull+ 2013, ApJ, 768, 53

Aug 2017, 7 / 14

- SNRs are primary CR accelerators.
- Secondary e+/- are included in all leptonic emission calculations.
- $U_{\rm B}$ and $U_{\rm CR}$ are not assumed to be coupled.

Arp 220 Nuclear Properties

Arp 220 East CO (1-0)

	East	West	CND	0.6 4890 to 600 0 km s ⁻¹
Radius (pc)	70	90	30	
SN Rate (yr ⁻¹)	0.7	0.7	1.4	-0.2 -0.4 HPBW flux
FIR Luminosity (L _☉)	3 x 1011	3 x 10 ¹¹	6 x 1011	$0.4 0.2 0.0 -0.2 \\ \Delta \alpha \text{ (orcsec)} -0.2 \\ \mathbf{Arp 220 West CO (1-0)} \\ 0.4 4750 t_{2} 5950 km s^{-1} - 1 \\ \mathbf{Arp 220 West CO (1-0)} \\ \mathbf$
Molecular Mass (M _☉)	6 x 10 ⁸	4 x 10 ⁸	6 x 10 ⁸	

Yoast-Hull+ 2015, MNRAS, 453, 222

Aug 2017, 8 / 14

0.0

Δα (arcsec)

HPBW

0.4

0.2

-0.4

total flux

-0.4

-0.2

Radio Synchrotron Predictions

Tova M. Yoast-Hull, CITA

- Achieve good fits to the radio spectra for both nuclei based on observed supernova rate.
- Gamma-ray predictions fall short of the *Fermi* observations.
- How much additional energy into cosmic rays is necessary to match gamma-rays?

Yoast-Hull+ 2015, MNRAS, 453, 222

Aug 2017, 9 / 14

Gamma-Ray Implications

Yoast-Hull+ 2017, MNRAS, 469L, 89

Tova M. Yoast-Hull, CITA

Aug 2017, 10 / 14

Gamma-Ray Implications

Tova M. Yoast-Hull, CITA

Aug 2017, 10 / 14

Cosmic Ray Electrons

- Competitive energy loss processes:
 - Bremsstrahlung
 - Inverse Compton
 - Synchrotron

Aug 2017, 11 / 14

10²

Interstellar Medium Density

- Increase in molecular gas mass of factor of >10 is necessary to match the observed radio emission.
- Increase this large is unphysical.

Aug 2017, 12 / 14

Yoast-Hull+ 2017,

Radiation Field Energy Density

Aug 2017, 13 / 14

Radiation Field Energy Density

Aug 2017, 13 / 14

Conclusions

- There is an overabundance of gamma-rays compared to the radio (and the SFR).
- CR energy requirements for the gamma-rays are factors of 4 – 8 larger than suggested by observations.
- To lower the radio emission, IR opacities of 5 1000 are necessary.
- Further testing of the radio models (particularly the thermal component) is required.

Yoast-Hull+ 2017, In prep

Aug 2017, 14 / 14