Imaging Galactic Dark Matter with IceCube's High-Energy Cosmic Neutrinos

Ali Kheirandish

TeVPA 2017 Columbus, Ohio, August 2017

Based on

[arXiv:1703.00451] C. A. Argüelles, A.K, A. C. Vincent Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos

Also VFATE: High-energy neutrino attenuation in the Earth and its associated uncertainties [arXiv:1706.09895]

IceCube & Cosmic Neutrinos

- IceCube Neutrino Observatory discovered neutrinos with extraterrestrial origin in 2013 in a search for High Energy Starting Event (HESE).
- High-energy neutrino flux above the atmospheric background.
- · Observation of astrophysical flux was confirmed in through going tracks analysis.
- · A new window to the Universe: Neutrinos carry information!

Astrophysical Neutrino Observables

Aaron Vincent

4 Years of HESE

- 53 Events in 4 years.
- Events arrival directions is compatible with isotropic hypothesis.
- No correlation with Galactic plane.
- Event distribution suggests **extragalactic** origin for the majority of the events.
- Flavor ratio is consistent with 1:1:1 ratio.

- HE cosmic neutrino flux: new opportunities for new physics studies.*
- A high degree of complementarity exist between astrophysical and cosmological observations.
- What can we understand from DM-neutrinos interaction?

*more on new physics with IceCube: C.Argüelles, M. Bustamante, J. Conrad, A.K. , A. C. Vincent, in preparation!

Dark Matter-Neutrino Interaction?

- What is dark matter?
- What SM particles does dark matter interact with?
- How does it interact?

if _____ = quarks, then

= direct detection (LUX, LZ, SuperCDMS, ...)

But if ——too light, or ? does not talk to quarks, then —— could be neutrinos

[Boehm+ 01, 02, 05, 14—Bertschinger+ 06— Mangano+ 06—Serra+ 10—Wilkinson+ 14—van den Aarssen+ 12—Farzan+ 14—Cherry+ 14—Bertoni+ 15—Chewtschenko+ 15] 7

DM-Neutrino Interaction

Generic scattering cross section for $E_{\nu} \ll m_{\chi}$

1) $\sigma \rightarrow const.$

2)
$$\sigma \to const. \times E_{\nu}^2$$

Cosmological limits

$$\sigma_{\mathrm{DM}-\nu,0}^{(WiggleZ)} \lesssim 4 \times 10^{-31} \left(m_{\mathrm{DM}}/\mathrm{GeV} \right) \mathrm{cm}^2$$

$$\sigma_{\rm DM-\nu,2}^{(WiggleZ)} \lesssim 1 \times 10^{-40} \left(m_{\rm DM}/{\rm GeV} \right) \ {\rm cm}^2 \\ \times (T_{\nu}/T_{\rm today})^2$$

[Escudero et.al, 2016]

At High-Energy?

$$\sigma_{DM-\nu} \propto E_{\nu}^2$$

IceCube has seen events above a PeV....

 $\left(\frac{\text{PeV}}{T_{\nu.recomb.}}\right)^{-} \sim 10^{30}$

DM density is largest in center of the galaxy.

DM-v interaction will result in scattering of neutrinos from extragalactic sources, leading to *anisotropy and energy loss*.

column density:
$$\tau(b,l) = \int_{l.o.s} n_{\chi}(x;b,l) \ dx.$$

b, I: galactic latitude, longitude

Two fiducial simplified models

Scalar DM, fermionic mediator:

e.g. sneutrino dark matter, neutralino mediator. Resonant behaviour (s-channel)

Dark matter column density* seen from Earth

Simulation including effects of detector, Earth

Energy & morphology

Energy

Resonance @ 810 TeV

Direction

LeCube HESE events

We test the likelihood of events originating from 3 components:

- Astrophysical neutrino component modified by DM-neutrino interaction, originating from E⁻² spectrum
- Atmospheric neutrinos
- Atmospheric muons

$$\mathcal{L}(\{t, E, \vec{x}\}|\vartheta) = e^{-\sum_{b} N_{b}} \prod_{i=1}^{N_{obs}} \sum_{a} N_{a} P_{a}(t_{i}, E_{i}, \vec{x}_{i}|\vartheta)$$

We establish a limit based on MCMC scan of the parameter space of each interaction model.

Parameters:
$$(m_{\chi}, m_{\phi}, g, N_{astro}, N_{atmo}, N_{\mu})$$

Scalar DM Fermionic Mediator

Fermionic DM Vector Mediator

With only 53 events, can do better than cosmology in some ranges.

Summary & Outlook

- No reason to believe DM-neutrino interactions aren't there.
- Isotropy of the cosmic neutrino signal can be used to constrain such interactions.
- This study does better than cosmology in some ranges, mainly 1-100 MeV DM mass.
- Need more statistics: forecasts for *IceCube-Gen2* & more studies to come.
- Updates with 6 years of observation to come soon.

Thank you!

APPENDIX

DM-neutrino interactions: two constraints from cosmology

Extra radiation N_{eff}

If DM is light (< 10 MeV) it can dump entropy into neutrino sector as it becomes non-relativistic

BBN neutrons less boltzmann suppressed at FO: more D, He

upper limit on DM mass Aaron Vincent

Perturbation damping

Scattering damps power spectrum of primordial fluctuations

Boehm et. al 1404.7012

Upper limit on cross section

Fermion DM—Vector Mediator

$$\frac{d\sigma}{d\cos\theta} = \frac{g^2 \left(g'\right)^2 E_{\nu}^2 m_{\chi}^2 \left(2(1-x)E_{\nu} + (1+x)m_{\chi}\right)}{4\pi \left((1-x)E_{\nu} + m_{\chi}\right) \left((1-x)E_{\nu}m_{\phi}^2 + m_{\chi}\left(m_{\phi}^2 - 2(x-1)E_{\nu}^2\right)\right)^2}$$
$$\sigma = \frac{g^2 g'^2}{16\pi E_{\nu}^2 m_{\phi}^2} \left(m_{\phi}^2 \log\left(\frac{m_{\phi}^2 (2E_{\nu} + m_{\chi})}{m_{\chi}(4E_{\nu}^2 + m_{\chi}^2) + 2E_{\nu}m_{\phi}^2}\right) + \frac{4m_{\chi}E_{\nu}^2}{m_{\chi} + \frac{2E_{\nu}m_{\phi}^2}{4E_{\nu}^2 + m_{\phi}^2}}\right)$$

Scalar DM—Fermion Mediator

$$\frac{d\sigma}{d\cos\theta} = \frac{g^4 E_{\nu}^2 m_{\chi} ((x-1)m_{\phi}^6 - 2(x-1)m_{\phi}^4 m_{\chi}^2 + 8E_{\nu}^2 ((x-1)E_{\nu} - m_{\chi})m_{\chi}^3 + (x-1)m_{\phi}^2 m_{\chi}^4)}{4\pi ((x-1)E_{\nu} - m_{\chi})^3 ((m_{\phi}^2 - m_{\chi}^2)^2 - 4E_{\nu}^2 m_{\chi}^2)^2}$$

$$\sigma = \frac{g^4 E_{\nu}^2 (m_{\phi}^6 - 2m_{\phi}^4 m_{\chi}^2 + m_{\phi}^2 m_{\chi}^4 + 8E_{\nu}^2 m_{\chi}^3 (2E_{\nu} + m_{\chi}))}{2\pi (2E_{\nu} + m_{\chi})^2 ((m_{\chi}^2 - m_{\phi}^2)^2 - 4E_{\nu}^2 m_{\chi}^2)^2}$$