TeV Particle Astrophysics Columbus, OH August 10, 2017

How bright can the brightest neutrino source be?

Shin'ichiro Ando

University of Amsterdam

GRavitation AstroParticle Physics Amsterdam

Lessons from gamma rays

DATA P7REP_ULTRACLEAN_V15, 1-2 GeV

Fornasa et al. Phys. Rev. D 94, 123005 (2016)

Lessons from gamma rays

DATA P7REP_ULTRACLEAN_V15, 1-2 GeV

Fornasa et al. Phys. Rev. D 94, 123005 (2016)

Lessons from gamma rays

DATA P7REP_ULTRACLEAN_V15, 1-2 GeV

Fornasa et al. Phys. Rev. D 94, 123005 (2016)

Is there signature of point sources here?

Angular power spectrum: Observations with Fermi

Energy bin [50.00-95.27] GeV

- 20×10⁻²¹ Analysis of Fermi data for the angular power spectrum of the diffuse gammaray background in 2012 → Discoveryof small-scale anisotropies
 - _Reanalysed in 20136 Masking sources in 2FGL

-15

- Poissonian fit (masking sources in 3FGL)
- Almost constant excess compared with shot noise of the photons $a^{10^{\circ}}$ to < I <700
- Data are more **consistent with** discrete point sources rather than diffuse component (blazars; Ando et al. 2007)

Fornasa et al. Phys. Rev. D 94, 123005 (2016) Ando et al. *Phys. Rev. D* **95**, 123006 (2017)

Implications

- Anisotropy analyses have already been established for GeV gamma rays
- Solid measurement of angular power spectrum implies (sub-threshold) point-source contribution
 - They can be identified, not individually but statistically
- Same technique can be used for high-energy neutrinos, to identify source population

High-energy neutrinos: Searches for point sources

IceCube, Astrophys. J. 835, 151 (2017)

- No excess over the atmospheric backgrounds
- Roughly ~ 10^{-11} TeV/cm²/s for the E^{-2} spectrum

Significant signal clustering? Angular power!

IceCube, Astropart. Phys. 66, 39 (2015)

- No angular power was found (everything is consistent with diffuse the background model)
 Image: Signal spectrum: E⁻²
 Signal spectrum: E⁻²
- It can exceed the point-source fimit for more than avoid the point-source distr., upper limit (90% CL), post-tr
- But it is assumed that all the set of the

Flux distribution and implications

Ando, Feyereisen, Fornasa, Phys. Rev. D 95, 103003 (2017)

- Flux distribution of any astrophysical sources will follow a power law
 - Particularly *F*-^{2.5} for high-flux region (cf., Olbers' paradox)
- First moment (mean): Intensity
- Second moment (variance): Angular power spectrum

Procedure:

- 1. Pick N* as a parameter
- 2. From measured intensity *I*, calculate *F**
- 3. Discuss what constraints we have on *F*_{max}

One-source limit

- If *F_{max}* gets too large, the expected number of the source at this flux gets significantly smaller than 1
- This one-source limit is much stronger than the point-source flux limit for N* > 10⁴

Flux limit from the angular power spectrum: **HESE**

- High-Energy Starting Events (HESE): 14 tracks, 39 showers
- Particularly important for small N*
- So far it is not very constraining
 - Given that there are only 14 track events (HESE; 1 deg angular resolution), this is not surprising
- The sensitivity will however improve as exposure squared

Flux limit from the angular power spectrum: **Upgoing v**_u

- Projection for the *current* upgoing v_µ events above 300 TeV: ~60 astro, 10 atmospheric
 - This doesn't change much even for 50 TeV threshold
- Constraints can already be very strong
 - Critical test of a scenario of blazar-domination for the diffuse flux
- Thanks to much larger exposure and better angular resolution

Flux sensitivity for the next generation

Detector	Strategy	$\mathcal{E}/\mathcal{E}_{\mathrm{today}}$	livetime	$\theta_{\rm psf}$ (tracks)
IceCube	HESE	1	4 yr	1°
	upgoing ν_{μ}	1	6 yr	0.5°
IceCube-Gen2	HESE	10	$8 \mathrm{yr}$	0.5°
	upgoing ν_{μ}	10	$12 \mathrm{yr}$	0.3°
KM3NeT	HESE	4	$8 \mathrm{yr}$	0.2°
	upgoing ν_{μ}	4	12 yr	0.1°

- The angular power spectrum can test cases of any sources with N* < 10⁵-10⁶ (blazars and radio galaxies)
- Similar sensitivities expected for "KM3NeT" and "IceCube-Gen2"

Relation with physical representation

Flux representation

- Phenomenological, but model-independent
- Contribution to the diffuse flux has to be assumed in advance
- Power spectrum constraints nicely integrated

Luminosity representation

- Physical, but model dependent
- No assumption needed for fraction to the diffuse flux
- Power spectrum constraints not well integrated (so far)

Conversion between the two straightforward (but model dependent)

Beyond variance: One-point fluctuation analysis

- Flux PDF is highly non-Gaussian, featuring long power-law tail
- Power spectrum does *not* capture all the statistical information
- One-point fluctuation analysis utilise all the information contained in full PDF
- Benefit is slim for now, but in the future will be large
 - E.g., test of Galactic component in the future KM3NeT data (Feyereisen, Gaggero, Ando, in preparation)

Feyereisen, Tamborra, Ando, JCAP 03, 057 (2017)

Conclusions

- IceCube's detection of TeV-PeV neutrinos has launched highenergy neutrino astrophysics
- The next question to be answered: What are the sources?
- Given that there will be many more events (KM3NeT, IceCube-Gen2, etc.), it is important to go beyond the mean of the flux PDF (i.e., intensity energy spectrum)
- Simple discussions of the PDF such as the angular power spectrum already show good prospects; e.g., testing blazar contribution
- Full usage of one-point PDF will be important to further constrain neutrino sources