Search for Solar Atmospheric Neutrinos with IceCube Carsten Rott

(for the IceCube Collaboration)

August 7-11 Columbus, Ohio TeVPA 2017

- Motivation
- Energetic Radiation from the Sun
- IceCube Neutrino Telescope
- Observing the Sun with IceCube
 - Sun Shadow
 - Solar Dark Matter
 - Solar Atmospheric Neutrinos and the Dark Matter Neutrino Floor
- Outlook and Conclusions

Motivation

Motivation

- GeV Radiation from the Sun
 - Inverse Compton (IC)
 - Cosmic ray electrons and positrons on solar photons
 - Solar Disk (Disk)
 - Cosmic rays with solar atmosphere
 - Exotics
 - Dark matter, ...

Energetic Radiation from the Sun

see talks by Kenny Ng/ Bei Zhou Cosmic ray interactions with the Sun

- Cosmic-ray interactions with the solar atmosphere produce gamma-rays and neutrinos
- Background to dark matter search from the Sun, that soon will be relevant and a first high-energy neutrino point source ?

- Moskalenko, Porter, Digel (2006)
- Orlando, Strong (2007)

Hadronic

- Seckel, Stanev, Gaisser (1991)
- Moskalenko, Karakula (1993)
- Ingelman & Thunman (1996)

see talks by Kenny Ng/ Bei Zhou Cosmic ray interactions with the Sun

- Cosmic-ray interactions with the solar atmosphere produce gamma-rays and neutrinos
- Background to dark matter search from the Sun, that soon will be relevant and a first high-energy neutrino point source ?

Ng, Beacom, Peter, Rott Phys.Rev. D94 (2016) no.2, 023004

Leptonic

- Moskalenko, Porter, Digel (2006)
- Orlando, Strong (2007)

Hadronic

- Seckel, Stanev, Gaisser (1991)
- Moskalenko, Karakula (1993)
- Ingelman & Thunman (1996)

The IceCube Neutrino Observatory

The IceCube Neutrino Telescope

- Gigaton Neutrino Detector at the Geographic South Pole
- 5160 Digital optical modules distributed over 86 strings
- Completed in December 2010, start of data taking with full detector May 2011
- Neutrinos are identified through Cherenkov light emission from secondary particles produced in the neutrino interaction with the ice

Carsten Rott

IceCube Performance and Moon/Sun Shadows

see also talk by Mike Kroll

Sun Shadow

Solar Dark Matter Searches

Solar Dark Matter

3yrs IceCube Solar Dark Matter Analysis

Solar Atmospheric Neutrino Search

Solar Atmospheric Neutrino Analysis

- Ingelman & Thunman flux as reference signal
- Honda atmospheric neutrino flux as background

Carsten Rott

1398

 $\nu_{\mu} + \bar{\nu}_{\mu}$

Calculate flux within cone opening angle matching kinematic angle at given neutrino energy

- 68% of solar disk neutrino flux falls within the cone (assume Sun is a point source)
- Background isotrope (angle averaged flux)

 $\nu_e + \bar{\nu}_e$

Solar Atmospheric Neutrino Analysis

- Strategy:
 - Muon neutrinos for good pointing
 - Up-going neutrino events (reject large atmospheric muon background) → consider declination angles of δ = 5° to -30°
 - Base analysis on well tested existing data samples
 - Check suitable samples for their sensitivity and optimize cuts where needed

Point Source Sample suites the solar atmospheric neutrino analysis well

Event Expectation Solar Atmospheric Neutrinos

- Using point source analysis sample we determine the expected event rates as function of the distance from the Sun
- Assume emission of solar atmospheric neutrinos homogeneously over the surface of the Sun
- Optimize signal to sqrt(background) ratio based on energy and angle selection cut

Carsten Rott

Event Expectation Solar Atmospheric Neutrinos

Carsten Rott

Solar Atmospheric Neutrino Floor

see talks by Kenny Ng / Carlos Argüelles Cosmic background from the Sun

- Natural background to Solar Dark Matter Searches !
- However, energy spectrum expected to be different
- DM annihilation neutrinos significantly attenuated above a few 100GeV

Expect ~2events per year at cubic kilometer detector

Recent works on the Solar Atmospheric Neutrino Floor

- Argüelles et al. [astro-ph/1703.07798]
- Ng et al. [astro-ph/1703.10280]
- J. Edsjö, J. Elevant, R. Enberg, and C. Niblaeus, JCAP 2017 .06 (2017), p. 033, [astro-ph/1704.02892]
- M. Masip (2017), [hep-ph/1706.01290]

1398

Conclusions

Conclusions

- The Sun is an exciting target for neutrino telescopes
 - IceCube set the worlds best bound on spin-dependent dark matter nucleon scattering for masses above 100GeV
 - Cosmic ray shadow provides clues about propagation in the inner solar system
 - Solar atmospheric neutrinos might be observable in the near future
 - First sensitivity evaluated further optimization on going
- Observing solar atmospheric neutrinos is important for:
 - Understanding solar magnetic fields
 - Cosmic ray propagation in the inner solar system
 - Improving models of CR interactions in the solar atmosphere
 - Identifying a first high-energy neutrino point source